文档库 最新最全的文档下载
当前位置:文档库 › 实验二 二阶系统阶跃响应

实验二 二阶系统阶跃响应

实验二    二阶系统阶跃响应
实验二    二阶系统阶跃响应

实验二二阶系统阶跃响应

一、实验目的

1.研究二阶系统的特征参数如阻尼比ζ和无阻尼自然频率ω

n

对系统动态性能

的影响;定量分析ζ和ω

n 与最大超调量Mp、调节时间t

S

之间的关系。

2.进一步学习实验系统的使用方法。

3.学会根据系统阶跃响应曲线确定传递函数。

二、实验仪器

1.EL-AT-II型自动控制系统实验箱一台

2.PC计算机一台

三、实验原理

1.模拟实验的基本原理:

控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法:超调量%

σ:

1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2)测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常

查找原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

4)在实验课题下拉菜单中选择实验二[二阶系统阶跃响应] 。

5)鼠标双击实验课题弹出实验课题参数窗口。在参数设置窗口中设置相

应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6)利用软件上的游标测量响应曲线上的最大值和稳态值,带入下式算出

超调量:

Y

MAX - Y

%

σ=——————×100%

Y

t

P

与t s:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳

态值所需的时间值,便可得到t

P

与t s。

四、实验内容

典型二阶系统的闭环传递函数为

ω2

n

?(S)= (1)

s2+2ζω

n s+ω2

n

其中ζ和ω

n

对系统的动态品质有决定的影响。

图2-1为典型二阶系统的模拟电路,要求测量其阶跃响应:

图2-1 二阶系统模拟电路图

电路的结构图如图2-2:

图2-2 二阶系统结构图

系统闭环传递函数为

(2)式中 T=RC,K=R2/R1。比较(1)、(2)二式,可得

ω

n =1/T=1/RC ζ=K/2=R

2

/2R

1

(3)

由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC

值可以改变无阻尼自然频率ω

n

今取R1=200K,R2=100KΩ和200KΩ,可得实验所需的阻尼比。电阻R取

100KΩ,电容C分别取1μf和0.1μf,可得两个无阻尼自然频率ω

n

五、实验步骤

1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输

出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

3.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找

原因使通信正常后才可以继续进行实验。

4.在实验课题下拉菜单中选择实验二[二阶系统阶跃响应], 鼠标双击该选项

弹出实验课题参数窗口。

5.取ω

n

=10rad/s, 即令R=100KΩ,C=1μf;分别取ζ=0.5、1、2,即取R1=100KΩ,R2分别等于100KΩ、200KΩ、400KΩ。输入阶跃信号,测量不同的ζ时系统的阶跃响应,并由显示的波形记录最大超调量σ%和调节时间ts的数值和响应动态曲线,并与理论值比较。

6.取ζ=0.5,即取R1=R2=100KΩ;ω

n

=100rad/s, 即取R=100KΩ,改变电路中的电容C=0.1μf(注意:二个电容值同时改变)。输入阶跃信号测量系统阶跃响应,并由显示的波形记录最大超调量σ%和调节时间t s。

7.取R=100KΩ;改变电路中的电容C=1μf,R1=100KΩ,调节电阻R2=50KΩ。

输入阶跃信号测量系统阶跃响应,记录响应曲线,特别要记录t p和σ%的数值。

8.测量二阶系统的阶跃响应并记入表中:

六、实验报告

1.画出二阶系统的模拟电路图,讨论典型二阶系统性能指标与ζ,ωn的关系.

2.把不同ζ和ω

条件下测量的σ%和ts值列表,根据测量结果得出相应结论. 3.

n

画出系统响应曲线,再由ts和σ%计算出传递函数,并与由模拟电路计算的传递函数相比较。

实验三系统频率特性测量

一、实验目的

1.加深了解系统及元件频率特性的物理概念。

2.掌握系统及元件频率特性的测量方法。

二、实验仪器

1.EL-AT-II型自动控制系统实验箱一台

2.PC计算机一台

三、实验内容

1.模拟电路图及系统结构图分别如图3-1和图3-2。

图3-1 系统模拟电路图

图 3-2 系统结构图

2.系统传递函数取R3=500kΩ,则系统闭环传递函数为

U2(S) 500

φ(S)= =

U1(S) S2+10S+500

若输入信号U1(t)=U1sinωt,则在稳态时,其输出信号为

U2(t)=U2sin(ωt+ψ)。

改变输入信号角频率ω值,便可测得多组U2/U1和ψ随ω变化的数值,这个变化规律就是系统的幅频特性和相频特性。

四、实验步骤

1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输

出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

3.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找

原因使通信正常后才可以继续进行实验。

测频率图

4.选中 [实验课题→系统频率特性测量→可测性检查] 菜单项,鼠标双击将

弹出参数设置窗口。参数设置完成后点确认等待观察波形,如图3-3所示。

图3-3检查性信号波形图

测波特图

5.在测量波特图的过程中首先应选择 [实验课题→系统频率特性测量→数

据采集] 采集信息。如图3-4所示

图3-4 数据采集

6.待数据采样结束后点击 [实验课题→系统频率特性测量→波特图观测] 即

可以在显示区内显示出所测量的波特图。

7.按下表测量各点频率特性的实测值并计算相应的理论值。

五、实验报告

1.画出被测系统的结构和模拟电路图,计算其传递函数,根据传递函数绘制

Bode图。

2.整理上表中的实验数据,并算出理论值和实测值。

3.根据实测值画出闭环系统的Bode图。

实验四连续系统串联校正

一、实验目的

1. 加深理解串联校正装置对系统动态性能的校正作用。

2. 对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。

二、实验仪器

1.EL-AT-II型自动控制系统实验箱一台

2.PC计算机一台

三、实验内容

串联超前校正

(1)系统模拟电路图如图4-1,图中开关S断开对应未校情况,接通对应超前校正。

图4-1 超前校正电路图

(2)系统结构图如图4-2

图4-2 超前校正系统结构图图中 Gc1(s)=2

2(0.055s+1)

Gc2(s)=

0.005s+1

四、实验步骤

1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找

原因使通信正常后才可以继续进行实验。

超前校正

3.连接被测量典型环节的模拟电路(图4-1)。电路的输入U1接A/D、D/A

卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

4.开关s放在断开位置。

5.选中 [实验课题→连续系统串联校正→超前校正] 菜单项,鼠标双击将

弹出参数设置窗口。系统加入阶跃信号。参数设置完成后鼠标单击确认测量系统阶跃响应,并记录最大超调量Mp和调节时间ts。

6.开关s接通,重复步骤5,将两次所测的波形进行比较。并将测量结果记

入下表中:

五、实验报告

1.计算串联校正装置的传递函数 Gc(s)和校正网络参数。

2.画出校正后系统的对数坐标图,并求出校正后系统的ωc及γ。

3.比较校正前后系统的阶跃响应曲线及性能指标,说明校正装置的作用。

二阶系统的阶跃响应及频率特性

实验二二阶系统的阶跃响应及频率特性 实验简介:通过本实验学生能够学习二阶系统的频率响应和幅频特性的测试方法,对实验装置和仪器的调试操作,具备对实验数据、结果的 处理及其与理论计算分析比较的能力。 适用课程:控制工程基础 实验目的:A 学习运算放大器在控制工程中的应用及传递函数的求取。 B 学习二阶系统阶跃响应曲线的实验测试方法。 C 研究二阶系统的两个重要参数ζ、ω n 对阶跃瞬态响应 指标的影响。 D 学习频率特性的实验测试方法。 E 掌握根据频率响应实验结果绘制Bode图的方法。 F 根据实验结果所绘制的Bode图,分析二阶系统的主要 动态特性(M P ,t s )。 面向专业:机械类 实验性质:综合性/必做 知 识 点:A《模拟电子技术》课程中运算放大器的相关知识; B《数字电子技术》课程中采样及采样定理的相关知识; C《机械工程控制基础》课程中,传递函数,时域响应, 频率响应三章的内容。 学 时 数:2 设备仪器:XMN-2自动控制原理学习机,CAE-98型微机接口卡,计算机辅助实验系统2.0软件,万用表。 材料消耗:运算放大器,电阻,电容,插接线。 要 求:实验前认真预习实验指导书的实验内容,完成下述项目, 做实验时交于指导教师检查并与实验报告一起记入实验成绩。 B推导图2所示积分放大器的输出输入时域关系和传递函数。

C 推导图3所示加法和积分放大器的输出输入时域关系(两输入单输出) 和S <1>.写出op1,op2,op9,0p6对应的微分方程组(4个方程)。 <2>.画出系统方框图。 <3>.用方框图化简或方程组联立消元的方法求取实验电路所示系统的 传递函数,写出求解过程。 和ζ。 <4>.求取该系统的ω n 实验地点:教一楼327室 实验照片:实验装置及仪器

自动控制实验一典型环节及其阶跃响应分析

广东工业大学实验报告 分数:实验题目典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般办法。 2、掌握控制系统时域性指标的测量方法。 二、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可以进一步分析参数对系统性能的影响。 三、实验仪器 1、EL-AT-II型自动控制系统实验箱一台 2、计算机一台 四、实验内容 1、比例环节 比例环节的模拟电路及其传递函数如下 当R2=200K时,其输出波形如下图:

由上图可得,实际K=2449/1029=2.37 理论值K=2 误差:y=|k`- k|/ k *100% =|2.37-2|/2*100% =18.5% 当R2=400K时,其输出波形如下图: 由上图可得,实际K=4389/1029=4.27 理论值K=4 误差:y=|k`- k|/ k *100% =|4.27-4|/4*100% =6.75% 数据分析:从图中可以看出,比例环节最大的特点就是时间响应快,一旦有输入信号,输出立即响应。且实际K存在一定误差,分析电路可知,误差是由R1、R2的实际值存在偏差而导致的,同时和放大器的结构参数也有关系。 2、惯性环节

惯性环节的模拟电路及其传递函数如下 G(S)=-K/TS+1 K=R2/R1 T=R2C 当C=1uF 时,其输出波形如下图: 由上图可得,实际T=0.076s 理论值T=0.1s 误差:η1=|T`- T|/ T *100% =|0.076-0.1|/0.1*100% =24% 当C=2uF 时,其输出波形如下图:

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

二阶系统阶跃响应实验报告

实验一 二阶系统阶跃响应 一、实验目的 (1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。 (2)学会根据模拟电路,确定系统传递函数。 二、实验内容 二阶系统模拟电路图如图2-1 所示。 系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。 三、预习要求 (1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过 程时间tS 。 ) 1( p 2 e ζζπσ--=, ζ T 3t s ≈

代入公式得: T=0.5,ξ= 0.25,σp=44.43% ,t s=6s; T=0.5,ξ= 0.5,σp=16.3% ,t s=3s; T=0.5,ξ= 0.75,σp=2.84% ,t s=2s; (2)分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS。 ξ= 0.25,T=0.2,σp=44.43% ,t s=2.4s; ξ= 0.25,T=0.5,σp=44.43% ,t s=6s; ξ= 0.25,T=1.0,σp=44.43% ,t s=12s; 四、实验步骤 (1)通过改变K,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。 (2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。 五、实验数据记录与处理: 阶跃响应曲线图见后面附图。 原始数据记录: (1)T=0.5,通过改变R0的大小改变K值

典型环节及其阶跃响

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim 、MATLAB 仿真软件对实验内容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下, 典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间内达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -=

.1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2 C 图.2 惯性环节的模拟电路 3. 积分环节的模拟电路如图.3所示,其传递函数为: 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

典型环节及其阶跃响应

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim、MATLAB仿真软件对实验容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下,典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微

分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -= .1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2C 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

自动控制原理实验-典型环节及其阶跃响应

大学学生实验报告 开课学院及实验室:实验中心 2013 年 11 月4日 学 院 机电 年级、专业、班 学号 实验课程名称 成绩 实验项目名称 典型环节及其阶跃响应 指导 教师 一、实验目的 二、实验原理(实验相关基础知识、理论) 三、实验过程原始记录(程序界面、代码、设计调试过程描述等) 四、实验结果及总结 一、实验目的 1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2.学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 二、实验原理及电路图 (一) 用实验箱构成下述典型环节的模拟电路,并测量其阶跃响应。 1.比例环节的模拟电路及其传递函数如图2-1。 图2-1 G(S)= -R 2 /R 1 2.惯性环节的模拟电路及其传递函数如图2-2。

图2-2 G(S)=-K/(TS+1) K=R 2 /R 1 , T=R 2 C 3.积分环节的模拟电路及其传递函数如图2-3。 图2-3 G(S)=-1/TS T=RC 4.微分环节的模拟电路及其传递函数如图2-4。

图2-4 G(S)=-RCS 5.比例+微分环节的模拟电路及其传递函数如图2-5。 图2-5 G(S)=-K(TS+1) K=R 2 /R 1 ,T=R 2 C 6.比例+积分环节的模拟电路及其传递函数如图2-6。 图2-6 G(S)=K(1+1/TS) K=R 2 /R 1 , T=R 2 C

实验截图 1.比例环节 2.惯性环节

3.积分环节 4.微分环节 5.比例+微分环节

MATLAB下二阶系统的单位阶跃响应

二阶系统在不同参数下对单位阶跃信号的响应 一、二阶系统 所谓二阶系统就是其输入信号、输出信号的关系可用二阶微分方程来表征的系统。比如常见的RLC电路(图a)、单自由度振动系统等。 图a 图b 二阶系统传递函数的标准形式为 2 22 () 2 n n n H s s s ω ξωω = ++ 二、二阶系统的Bode图(nω=1) MATLAB程序为 >> clear >> num=[1]; >> den=[1 0.2 1]; >> bode(num,den); grid on hold on den=[1 0.4 1]; bode(num,den); >> den=[1 0.6 1]; >> bode(num,den); >> den=[1 0.8 1]; >> bode(num,den); >> den=[1 1.4 1]; >> bode(num,den); >> den=[1 2 1]; >> bode(num,den); >> legend('0.1','0.2','0.3','0.4','0.7','1.0')

运行结果为 三、二阶系统对单位阶跃信号的响应( =1) n MATLAB程序为 >> clear >> num=[1]; >> den=[1 0 1]; >> t=0:0.01:25; >> step(num,den,t) >> grid on >> hold on >> den=[1 0.2 1]; >> step(num,den,t) >> den=[1 0.4 1]; >> step(num,den,t) >> den=[1 0.6 1]; >> step(num,den,t) >> den=[1 0.8 1]; >> step(num,den,t) >> den=[1 1.0 1]; >> step(num,den,t)

典型环节及其阶跃响应

典型环节及其阶跃响应 一、实验目的 1. 掌握控制系统模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 3. 加深典型环节的概念在系统建模、分析、研究中作用的认识。 4. 加深对模拟电路——传递函数——响应曲线的联系和理解。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理 根据数学模型的相似原理,我们应用电子元件模拟工程系统中的典型环节,然后加入典型测试信号,测试环节的输出响应。反之,从实测的输出响应也可以求得未知环节的传递函数及其各个参数。 模拟典型环节传递函数的方法有两种:第一种方法,利用模拟装置中的运算部件,采用逐项积分法,进行适当的组合,构成典型环节传递函数模拟结构图;第二种方法将运算放大器与不同的输入网络、反馈网络组合,构成传递函数模拟线路图,这种方法可以称为复合网络法。本节介绍第二种方法。 采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络构成相应的模拟系统。将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 图1-1 模拟实验基本测量原理 模拟系统以运算放大器为核心元件,由不同的R-C输入网络和反馈网络组成的各种 典型环节,如图1-2所示。图中Z1和Z2为复数阻抗,它们都是由R、C构成。 基于图中A点的电位为虚地,略去流入运放的电流,则由图1-2得:

1 21 0)(Z Z u u s G - =-= 由上式可求得由下列模拟电路组成典型环节的传递函数及其单位阶跃响应。 2.一阶系统时域性能指标s r d t t t ,,的测量方法: 利用软件上的游标测量响应曲线上的值,带入公式算出一阶系统时域性能指标。 d t :响应曲线第一次到达其终值∞ y 一半所需的时间。 r t :响应曲线从终值∞y %10上升到终值∞ y % 90所需的时间。 s t :响应曲线从0到达终值∞y 95%所需的时间。 3.实验线路与原理(注:输入加在反相端,输出信号与输入信号的相位相反) 1.比例环节 K R R Z Z s G -=- =- =1 21 2)( 比例环节的模拟电路及其响应曲线如图1-3。 K ——放大系数。K 是比例环节的特征量,它表示阶跃输入后,输出与输 入的比例关系,可以从响应曲线上求出。改变1R 或2R 的电阻值便可以改变比例 图1-2 运放的反馈连接 t K -1 图1-3 比例环节的模拟电路及其响应曲线

一阶系统的单位阶跃响应

图3-5所示系统。其输入-输出关系为 1 1 111)()(+= +=Ts s K s R s C (3-3) 式中K T 1 = ,因为方程(3-3)对应的微分方程的最高阶次是1,故称一阶系统。 实际上,这个系统是一个非周期环节,T 为系统的时间常数。 一、一阶系统的单位阶跃响应 因为单位阶跃函数的拉氏变换为s 1,将s s R 1)(=代入方程(3-3),得 s Ts s C 1 11)(+= 将)(s C 展开成部分分式,有 11()1C s s s T =- + (3-4) 对方程(3-4)进行拉氏反变换,并用)(t h 表示阶跃响应)(t C ,有 t T e t h 1 1)(--= 0t ≥ (3-5) 由方程(3-5)可以看出,输出量)(t h 的初始值等于零,而最终将趋于1。常数项“1”是由s 1反变换得到的,显然,该分量随时间变化的规律和外作用相似(本例为相同),由于它在稳态过程中仍起作用,故称为稳态分量 (稳态响应)。方程(3-5)中第二项由1 1/()s T +反变换得到, 它随时间变化的规律取决于传递函数1/(1)Ts +的极点,即系统特 征方程()10D s Ts =+=的根(1/)T -在复平 面中的位置,若根处在复平面的左半平面 如图3-6(a)所示,则随着时间 t 的增加, 它将逐渐衰减, 最后趋于零 (如图3-6(b) 所示),称为瞬态响应。可见,阶跃响应曲线具有非振荡特性,故也称为非周期响应。 显然,这是一条指数响应曲线,其初始斜率等于1/T ,即 T e T dt dh t t T t 1 |1|01 0===-= (3-6) 这就是说,假如系统始终保持初始响应速度不变,那么当T t =时, 输出量就能达到稳态值。

2. 实验二 二阶系统阶跃响应

实验二二阶系统阶跃响应 一、实验目的 1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。 2. 进一步学习实验系统的使用。 3. 学会根据系统的阶跃响应曲线确定传递函数。 4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。 二、实验原理 典型二阶闭环系统的单位阶跃响应分为四种情况: 1)欠阻尼二阶系统 如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。 (1)性能指标: : 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间t S 最小时间。 超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。 单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。 峰值时间t P : 结构参数ξ:直接影响单位阶跃响应性能。 (2)平稳性:阻尼比ξ越小,平稳性越差 长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间t S 也长,快速性差。ξ=0.7调节时间最短,快速性最好。ξ=0.7时超调量σ%<5%,调节时间t S 平稳性也好,故称ξ=0.7为最佳阻尼比。 2)临界阻尼二阶系统(即ξ=1) 系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。

3)无阻尼二阶系统(ξ=0时)此时系统有两个纯虚根。 4)过阻尼二阶系统(ξ>1)时 此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。 三、实验内容 1. 搭建模拟电路 典型二阶系统的闭环传递函数为: 其中,ζ 和ωn对系统的动态品质有决定的影响。 搭建典型二阶系统的模拟电路,并测量其阶跃响应: 二阶系统模拟电路图其结构图为: 系统闭环传递函数为: 式中, T=RC,K=R2/R1。 比较上面二式,可得:ωn=1/T=1/RC ζ=K/2=R2/2R1。 2 2 2 2 ) ( ) ( ) ( n n n w s w s w s R s C S + + = = ξ φ

实验一、典型环节及阶跃响应

实验一、典型环节及其阶跃响应 一、实验目的 1. 掌握控制模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 二、实验设备 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 2.时域性能指标的测量方法: 超调量ó %: 1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2)检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按 钮,出 现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表 示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续 进行实验。 3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1 输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4)在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。 5)鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框 中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结 果。 6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调 量:

%100%max ?-=∞ ∞Y Y Y σ T P 与T S : 利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P 与T S 。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1. 比例环节的模拟电路及其传递函数如图1-1。 G (S )= -R2/R1 2. 惯性环节的模拟电路及其传递函数如图1-2。 G (S )= - K/TS+1 K=R2/R1,T=R2C 3. 积分环节的模拟电路及传递函数如图1-3。 G (S )=1/TS T=RC 4. 微分环节的模拟电路及传递函数如图1-4。 G (S )= - RCS 5.例+微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf )。 G (S )= -K (TS+1) K=R2/R1,T=R2C

二阶系统阶跃响应实验报告

实验一二阶系统阶跃响应 一、实验目的 (1)研究二阶系统的两个重要参数:阻尼比E和无阻尼自振角频率3 态性能的影 响。 (2)学会根据模拟电路,确定系统传递函数。 二、实验内容 二阶系统模拟电路图如图2-1所示 a 2-i二阶系疣按拟电帘图 系统特征方程为TV+KTS+仁0其中T=RC K=R0/R1根据二阶系统的标准 形式可知,E =K/2,通过调整K可使E获得期望值 三、预习要求 (1) 分别计算出T=0.5,E = 0.25, 0.5, 0.75时,系统阶跃响应的超调量c P和过渡过程时 间ts。 代入公式得: T=0.5, E : =0.25, c P=44.43%,t s=6s; T=0.5, E : =0.5 , d P=16.3% ,t s=3s; T=0.5, E : =0.75, c p=2.84% ,t s=2s; (2) 分别计算出E = 0.25,T-0.2,0.5,1.0时,系统阶跃响应的超调量c P和过渡 过程时间ts。 E = =0.25,T-0.2, c p-44.43% ,t s- 2.4s; E = =0.25,T-0.5, c P-44.43% ,t s-6s; E = =0.25,T-1.0, c P-44.43% ,t s- 12s; 四、 (1) 实验步骤 通过改变K,使E获得0, 0.25, 0.5, 0.75, 1.0等值,在输入端加同样幅值的阶跃 信号,观察过渡过程曲线,记下超调量b P和过渡过程时间ts,将实验值和理论值 进行比较。 n对系统动 ) 2 t s 3T

(2)当E =0.25时,令T=0.2秒,0.5秒,1.0秒(T=RC改变两个C),分别测出超调量b P和过渡过 程tS,比较三条阶跃响应曲线的异同。 五、实验数据记录与处理: 阶跃响应曲线图见后面附图。 原始数据记录: (1) T=0.5,通过改变R0的大小改变K值 理论值与实际值比较: 对误差比较大,比如T=0.5,E =0.75时,超调量的相对误差为30%左右。造成误差的原因主要有以下几个方面: (1)由于R0是认为调整的阻值,存在测量和调整误差,且不能精确地保证E的大小等于 要求的数值; (2)在预习计算中我们使用了简化的公式,例如过渡时间大约为3~4T/ E,这并不是一个 精确的数值,且为了计算方便取3T/E作统一计算; (3)实际采样点的个数也可能造成一定误差,如果采样点过少,误差相对会大。 六、实验总结 通过本次实验,我们从图形上直观的二阶系统的两个参数对系统动态性能的影响,巩固了理论知识。其次我们了解了一个简单的系统是如何用电路方式实现的,如何根据一个

--二阶系统的阶跃响应实验报告

--二阶系统的阶跃响应实验报告

实验二 二阶系统的阶跃响应实验报告 1.实验的目的和要求 1)掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术; 2)定量分析二阶控制系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响; 3)加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质; 4)了解与学习二阶控制系统及其阶跃响应的MATLAB 仿真。 2.实验内容 1)分析典型二阶系统2 2 2 2)(n n n s s s G ωξωω ++=的ξ(ξ 取值为0、0.25、0.5、1、1.2……)和n ω(n ω取值 10、100……)变化时,对系统阶跃响应的影响。 2)典型二阶系统,若0.707ξ=,1 10n s ω-=,确定系统单位阶跃响应的特征量%σ、r t 和s t 。 3.需用的仪器 计算机、Matlab6.5编程软件 4.实验步骤 1)利用MATLAB 分析n ω=10时ξ变化对系统单位阶跃响应的影响。 观察并记录响应曲线,根据实验结果分析ξ 变化对系统单位阶跃响应的影响。 2)利用MATLAB 分析ξ=0时n ω变化对系统单位阶跃响应的影响。 观察并记录响应曲线,根据实验结果分析n ω 变化对系统单位阶跃响应的影响。 3)利用MATLAB 计算特征量%σ、r t 和s t 。 5.教学方式 讲授与指导相结合 6.考核要求 以实验报告和实际操作能力为依据 7.实验记录及分析 1)程序:

》t=[0:0.01:10]; y1=step([100],[1 0 100],t); y2=step([100],[1 5 100],t); y3=step([100],[1 10 100],t); y4=step([100],[1 20 100],t); y5=step([100],[1 80 100],t); subplot(3,2,1); plot(t,y1,'-'); grid xlabel('time t');ylabel('y1'); title('李山 1206074118'); legend('\xi=0 单位阶跃响应曲线'); subplot(3,2,2); plot(t,y2,'-'); grid xlabel('time t');ylabel('y2'); title('李山 1206074118'); legend('\xi=0.25 单位阶跃响应曲线'); subplot(3,2,3); plot(t,y3,'-'); grid xlabel('time t');ylabel('y3'); title('李山 1206074118'); legend('\xi=0.5 单位阶跃响应曲线'); subplot(3,2,4); plot(t,y4,'-'); grid xlabel('time t');ylabel('y4'); title('李山 1206074118'); legend('\xi=1 单位阶跃响应曲线'); subplot(3,2,5); plot(t,y5,'-'); grid xlabel('time t');ylabel('y5'); title('李山 1206074118'); legend('\xi=4 单位阶跃响应曲线');

典型环节与及其阶跃响应

实验一: 典型环节与及其阶跃响应 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-III 型自动控制系统实验箱一台 2、计算机一台 三、实验原理 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输 入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起 来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测 量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数, 还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应 1、比例环节的模拟电路及其传递函数 G(S)= ?R2/R1

2、惯性环节的模拟电路及其传递函数 G(S)= ?K/TS+1 K=R2/R1 T=R2C 3、积分环节的模拟电路及传递函数 G(S)=1/TS T=RC 4、微分环节的模拟电路及传递函数 G(S)= ?RCS 5、比例+微分环节的模拟电路及传递函数 G(S)= ?K(TS+1) K=R2/R1 T=R1C 五、实验结果及分析 (注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节 (1)模拟电路图:

(2)响应曲线: 2、惯性环节 (1)模拟电路图:

(2)响应曲线: (3)传递函数计算: 实验值:X1=1029ms=1.029s=4T T=0.257s K=Y2/1000=2.017 G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1) 结论:实验值与理论值相近。 3、积分环节 (1)模拟电路图:

(整理)二阶系统的阶跃响应.

实验一 一、二阶系统的阶跃响应 实验报告 ___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的 1、学习实验系统的使用方法。 2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。了解电路参数对环节特性的影响。 3、研究一阶系统的时间常数T 对系统动态性能的影响。 4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。 二、实验仪器 1、EL-AT-II 型自动控制系统实验箱一台 2、计算机一台 三、实验内容 (一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。 惯性环节的模拟电路及其传递函数如图1-1。 (二)构成下述二阶系统的模拟电路,并测量其阶跃响应。 典型二阶系统的闭环传递函数为 ()2222n n n s s s ωζωω?++= (1) 其中ζ和n ω对系统的动态品质有决定的影响。 图1-1 一阶系统模拟电路图 R1 R2

构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应: 电路的结构图如图 1-3 系统闭环传递函数为 ()()()()2 2 2/1//11/2T S T K s T s U S U s ++==? 式中 T=RC ,K=R2/R1。 比较(1)、(2)二式,可得 n ω=1/T=1/RC ξ=K/2=R2/2R1 (3) 由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC 值可以改变无阻尼自然频率n ω。 今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。图1-2 二阶系统模拟电路图 图1-3 二阶系统结构图 R2

实验报告1典型环节及其阶跃响应分析

实验一典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-Ⅱ型自动控制系统试验箱一台 2、计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节 和比例积分微分环节。 2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关 系。 3、在运算放大器上实现各环节的参数变化。 五、实验步骤 六、实验步骤 1. 启动计算机,在桌面“信号、自控文件夹”中双击图 标,运行软件。 2. 测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使 通信正常后才可以继续进行实验。 3. 连接典型环节的模拟电路,电路的输入U1接A/D、D/A卡的DA1输出,电路的输 出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4. 在实验项目的下拉列表中选择[一、典型环节及其阶跃响应] ,鼠标单击按 钮,弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数 后用鼠标单击确定,等待屏幕的显示区显示实验结果. 5. 观测计算机屏幕显示出的响应曲线及数据,记录波形及数 七、实验结果 1、比例环节 K=2

典型系统的阶跃响应分析

自动控制理论实验报告 姓名 焦皓阳 学号 201423010319 班级 电气F1402 同组人 周宗耀 赵博 刘景瑜 张凯 实验一 典型系统的阶跃响应分析 一、实验目的 1. 熟悉一阶系统、二阶系统的阶跃响应特性及模拟电路; 2. 测量一阶系统、二阶系统的阶跃响应曲线,并了解参数变化对其动态特性的影响; 3. 掌握二阶系统动态性能的测试方法。 二、实验内容 1. 设计并搭建一阶系统、二阶系统的模拟电路; 2. 测量一阶系统的阶跃响应,并研究参数变化对其输出响应的影响; 3. 观测二阶系统的阻尼比分别在0<ξ<1,ξ>1两种情况下的单位阶跃响应曲线;测量二阶系统的阻尼比为2 1=ξ时系统的超调量%σ、调节时间t s (Δ= ±0.05); 4. 观测系统在ξ为定值n ω不同时的响应曲线。 三、实验结果【】 1、一阶系统 电路:

传递函数 2o(s) 1()21 R U R Ui s R CS =+ T=1结果:

T=0.1结果: 当T=1时:可以看出此时的稳态值为ΔY=4.4293,到达稳态的时间为ΔX=5.2664,调节时间为图二的ΔX=ts=2.757 当T=0.1时:由于此时的波形的起点没有在零点,所以存在着误差,此时的误差Δ=0-Y2=0.085,此时到达稳态时间为ΔX*13/21=0.5556,调节时间为X2在ΔY*0.95-Δ时的X2-X1=ts=0.375

结论:(参数变化对系统动态特性的影响分析) 参数的变化对系统动态性能的影响:T(周期)决定系统达到稳态时间的长短。在其他变量保持不变的情况下,当T 越小,该系统到达稳定状态所需时间就越少,系统对信号的响应也就越快。 2、二阶系统 电路: 传递函数 2 22221 ()1 ()Uo s C R S Ui s S RxC C R =++ (1)10n ω=,2.0=ξ结果:

闭环零点对二阶系统单位阶跃响应的影响

闭环零点对二阶系统单位阶跃响应的影响作者: 单位: 邮编: 摘要 在工程上电路中出现两个储能元件时便构成了二阶系统。由于欠阻尼二阶系统最具有实际意义,并且二阶系统往往需要满足工程最佳参数的要求,然而仅仅通过改变开环放大系数从而满足工程要求则可能会出现系统稳态误差增大的现象,设置具有闭环零点的二阶系统既可以达到满足工程所需的阻尼比,又可保证系统稳态精度。 在全面的分析了二阶系统之后,得出二阶系统的动态变化,由此引入带有零点的二阶系统,并分析了在欠阻尼状态下二阶系统的单位阶跃响应,并分析了其上升时间、峰值时间、调节时间、最大超调量,与没有零点的二阶系统进行了动态特性的对比。在此基础上分析了零点位置变化对二阶系统的影响。得到了重要结论。 关键字:二阶系统上升时间峰值时间调节时间最大超调量

0 引言 在已经知道了二阶系统的动态特性的基础之上,进一步研究具有闭环零点的二阶系统。并通过对比二阶系统和具有闭环零点的二阶系统,得出一定的结论。讨论当零点移动时对动态特性的影响。对满足工程所需的阻尼比,保证系统稳态精度具有重要作用。 1 二阶系统 用二阶微分方程描述的系统成为二阶系统。 等效开环传递函数方框图: 其闭环传递函数方框图: 其中n ω无阻尼自然振荡角频率,ξ为阻尼比。 W B (s )=2n 22n 2n s s +ωξω+ω (1-1) 二阶系统的特征方程为: 2n 22n s s +ωξω+=0 两根为S 1,2=12n n -ξω-ξω 二阶系统极点分布图:

1、当ξ>1时,(过阻尼) 2、当0<ξ<1时,(欠阻尼) 3、当ξ=1时,(临界阻尼) 4、当ξ=0时,(无阻尼) 5、当ξ<0时,(发散振荡) 在不同的阻尼比时,二阶系统的动态响应有很大的差别,因此阻尼比ξ是二阶系统的重要参数,当ξ<0时系统不可以正常工作,而在ξ>1时,系统动态响应进行得太慢,所以对二阶系统来说欠阻尼是最有实际意义的。

典型环节的单位阶跃响应

实验二 典型环节的单位阶跃响应 一、实验目的 1、根据对象的单位阶跃响应特性,掌握和深刻理解几种典型环节的特性以及它们特性参数的含义。 2、研究对象传递函数的零极点对系统动态特性的影响。 3、学习Matlab 的基本用法 ――求取阶跃响应、脉冲响应(step, impulse) ――基本做图方法(hold, plot) 二、实验内容 1、比例环节 求取K s G )(在不同比例系数K 下的单位阶跃响应,说明比例系数对系统动态过程的影响。 0.10.20.30.40.50.60.70.80.91 G(s)=K,在不同比例系数K 下的单位阶跃响应 Time (sec) A m p l i t u d e 由上图可以看出: 因为G (s )=K ,所以被控对象是一个单纯的比例系统。随着K 的增加,系统的终值是输入信号的K 倍。 2、一阶惯性环节

(1) 求取1 )(+= Ts K s G 的单位阶跃响应,其中放大倍数K =2,时间常数T =2。 1)(+= Ts K s G 的单位阶跃响应如下图: 0.20.40.60.811.2 1.41.61.82G(s)=2/(2s+1)的单位阶跃响应 Time (sec) A m p l i t u d e

(2) 求取1 22 )(+= s s G 的单位脉冲响应,可否用step 命令求取它的脉冲响应? 122 )(+= s s G 的单位脉冲响应如下图: 0.10.20.30.40.50.6 0.70.80.91G(s)=2/(2s+1)的单位m 脉冲响应 Time (sec) A m p l i t u d e 把传递函数乘以s 再求其单位阶跃响应,就可获得乘s 前的传递函数的脉冲响应。如下图: 0.10.20.30.40.50.6 0.70.80.91G(s)=2*s/(2s+1)的单位m 阶跃响应 Tim e (sec) A m p l i t u d e

二阶系统的阶跃响应

第3章辅导 控制系统典型的输入信号 1. 阶跃函数 阶跃函数的定义是 , 00 ,) (t t A r t x 式中A 为常数。A 等于1的阶跃函数称为单位阶跃函数,如图所示。它表示为 x r (t)=l(t),或x r (t)=u(t) 单位阶跃函数的拉氏变换为 X r (s)=L[1(t)]=1/s 在t =0处的阶跃信号,相当于一个不变的信号突然加到系统上;对于恒值系统,相当于给定值突然变化或者突然变化的扰动量; 对于随动系统,相当于加一突变的给定位置信号。 2. 斜坡函数 这种函数的定义是 0,00 ,) (t t t A t x r 式中A 为常数。该函数的拉氏变换是 X r (s)=L[At]=A/s 2 这种函数相当于随动系统中加入一按恒速变化的位置信号,该恒速度为A 。当A =l 时, 称为单位斜坡函数,如图所示。

3. 抛物线函数 如图所示,这种函数的定义是 0, 00 , t ) (2 t t A t x r 式中A 为常数。这种函数相当于随动系统中加入一按照恒加速变化的位置信号,该恒加速度为A 。抛物线函数的拉氏变换是 X r (s)=L[At 2 ]=2A/s 3 当A =1/2时,称为单位抛物线函数,即X r (s)=1/s 3。 4. 脉冲函数 这种函数的定义是 0)(0,) 0( ,0,0) (t A t t t x r 式中A 为常数,ε为趋于零的正数。脉冲函数的拉氏变换是 A A L s X r lim ) (当A =1,ε→0时,称为单位脉冲函数δ(t),如图 所示。单位脉冲函数的面积等于 l , 即

1 )(dt t 在t =t 0处的单位脉冲函数用 δ(t-t 0)来表示,它满足如下条件 幅值为无穷大、持续时间为零的脉冲纯属数学上的假设,但在系统分析中却很有用处。单位脉冲函数δ(t)可认为是在间断点上单位阶跃函数对时间的导数,即 反之,单位脉冲函数 δ(t)的积分就是单位阶跃函数。 控制系统的时域性能指标 对控制系统的一般要求归纳为稳、准、快。工程上为了定量评价系统性能好坏,必须给出控制系统的性能指标的准确定义和定量计算方法。 1 动态性能指标 动态性能指标通常有如下几项:延迟时间d t 阶跃响应第一次达到终值)(h 的50%所需的时间。 上升时间r t 阶跃响应从终值的 10%上升到终值的 90%所需的时间;对有振荡的系统, 也可定义为从 0到第一次达到终值所需的时间。 峰值时间p t 阶跃响应越过稳态值 )(h 达到第一个峰值所需的时间。 调节时间s t 阶跃响到达并保持在终值 ) (h 5%误差带内所需的最短时间;有时也用 终值的 2%误差带来定义调节时间。 超调量 % 峰值 )(p t h 超出终值)(h 的百分比,即 % 100) () ()(h h t h p % 在上述动态性能指标中,工程上最常用的是调节时间 s t (描述“快”),超调量 %(描 述“匀”)以及峰值时间 p t 。 2 稳态性能指标 稳态误差是时间趋于无穷时系统实际输出与理想输出之间的误差,是系统控制精度或抗 干扰能力的一种度量。稳态误差有不同定义,通常在典型输入下进行测定或计算。

相关文档
相关文档 最新文档