文档库 最新最全的文档下载
当前位置:文档库 › 结构设计中各种比的定义及调整方法

结构设计中各种比的定义及调整方法

结构设计中各种比的定义及调整方法
结构设计中各种比的定义及调整方法

1、轴压比:结构形式和抗震等级是直接影响轴压比限值的主要因素。

在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,与柱子的不一样。

主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.2,.高规6.4.2和7.2.13及相应的条文说明

轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积

轴压比不满足时的调整方法:

增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

2、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长结构的安全,见抗规5.2.5,高规4.3.12及相应的条文说明。

这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。

剪重比不满足时的调整方法:

1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数

直接乘以该层及以上重力重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。

2、人工调整:如果还需人工干预,可按下列三种情况进行调整:

1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙,柱截面,提高刚度。

2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。

3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放人系数”中输入大于l的系数增人地震作用,以满足剪重比要求。

3、侧向刚度比:主要为限制结构竖向布置的不则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.3,高规3.5.2及相应的条文说明;对于形成的薄弱层则

按高规3.5.8予以加强。

刚度比小满足时的调整力法:。

1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规3.5.8将该楼层地震剪力放大1.25倍。

2、人工调整:如果还需人工干预,可按以下方法调整:

1)适当降低本层层高,或适当提高上部相关楼层的层高。

2)适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。

位移比:主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。见抗规3.4.3 ,高规3.4.5及相应的条文说明。

位移比不满足时的调整方法:

1、程序调整:SA TWE程序不能实现。

2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下:

1)由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时

在设计中,应在构造措施上对楼板的刚度予以保证。

2)利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点

对应的墙、柱等构件的刚度;也可找出位移最小的节点削弱其刚度;直到位移比满足要求。

4、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5。主要为限制结构的抗扭刚度不能太弱,使结构具有必要的抗扭刚度,减小扭转对结构产生的不利影响,见高规3.4.5及相应的条文说明。周期比不满

足要求,说明结构的抗扭刚度相对于侧移刚度较小,扭转效应过大,结构抗侧力构件布置不合理。

周期比不满足时的调整方法:

1、程序调整:SATWE程序不能实现。

2、人工调整:只能通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱

的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大

周期方向的刚度。当结构的第一或第二振型为扭转时可按以下方法调整:

1)SAWTE程序中的振型是以其周期的长短排序的。

2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。结构在两个主轴方向的动力特性(周期和振型)宜相近。

3)当第一振型为扭转时,说明结构的抗扭刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的抗侧移刚

度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。

4)当第二振型为扭转时,说明结构沿两个主轴方向的抗侧移刚度相差较大,结构的抗扭刚度相对其中一主轴(第一振型转角方向)的抗侧移刚度

是合理的;但相对于另一主轴(第三振型转角方向)的抗侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加

强结构外围(主要是沿第一振型转角方向)的刚度。

5)在进行上述调整的同时,应注意使周期比满足规范的要求。

6)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。

5、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。

主要是控制在风荷载或水平地震作用下,重力荷载产生的二阶效应不致过大,避免结构的失稳倒塌,见高规5.4.1和5.4.4及相应的条文说明。

刚重比不满足要求,说明结构的刚度相对于重力荷载过小;但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。

刚重比小满足时的调整方法:

1、程序调整:SA TWE程序不能实现。

2、人工调整:只能通过人工调整增强竖向构件,加强墙、柱等竖向构件的刚度。

6、层间受剪承载力比:主要为限制结构竖向布置的不规则性,避免楼层抗侧力结构的受剪

承载能力沿竖向突变,形成薄弱层,见抗规3.4.3,高规3.5.3及相应的条文说明;

对于形成的薄弱层应按高规3.5.8将该楼层地震剪力放大1.25倍。

层间受剪承载力比不满足时的调整方法:

1、程序调整:在SATWE的“调整信息”中的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,SATWE按高规3.5.8将该楼层

地震剪力放大1.25倍。

2、人工调整:如果还需人工干预,可适当提高本层构件强度(如增大柱箍筋和墙水平分布筋、提高混凝上强度或加大截面)以提高本层墙、柱等抗

侧力构件的抗剪承载力,或适当降低上部相关楼层墙、柱等抗侧力构件的抗剪承载力。

如果结构竖向较规则,第一次试算时可只建一个结构标准层,待结构的周期比、位移比、剪重比、刚度比等满足之后再添加其它标准层;这样可

以减少建模过程中的重复修改,加快建模速度。

上述几个参数的调整涉及构件截面、刚度及平面位置的改变,在调整过程中可能相互关联,应注意不要顾此失彼。

上述调整方法针对的是一般的高层结构,对于复杂的高层结构还需要更多的经验和专业知识才能解决问题。

7、层间位移角:主要为限制结构在正常使用状态,水平荷载作用下水平位移过大,使人产生不舒适感。见高规3.7相关要求。

1、程序调整:SATWE程序不能实现。

2、人工调整:只能通过人工调整改变结构平面布置,整体增大抗侧刚度,或者调整抗侧构件布置,方法如下:

当抗侧构件较少时,可整体增大抗侧刚度,增加墙柱或者增大框架梁和连梁高度。

当抗侧构件较多时,可调整抗侧构件布置,增加外围抗侧刚度,减少中部抗侧刚度。

6、剪跨比:梁的剪跨比,剪力的位置a与h0的比值。剪跨比影响了剪应力和正应力之间的相对关系,因此也决定了主应力的大小和方向,也影响着梁的斜截面受剪承载力和破坏的方式;同时也反映在受剪承载力的公式上。柱的剪跨比:,若反弯点在柱子层高范围内,可取柱子的剪跨比小于2时,需要全长加密,见混凝土规范11.4.12、11.4.17。

7、剪压比(梁柱截面上的名义剪应力V/bh0与混凝土轴心抗压强度设计值的比值):梁塑性铰区的截面剪压比对梁的延性、耗能能力及保持梁的强度、刚度有明显的影响,当剪压比大于0.15的时候,梁的强度和刚度有明显的退化现象,此时再增加箍筋用量,也不能发挥作用,因此对梁柱的截面尺寸有所要求。

8、轴压比:轴压比是指有地震作用组合的柱组合轴压力设计值与柱的全截面面积和砼轴心受压抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之一。轴压比限值的依据是理论分析和试验研究并参照国外的类似条件确定的,其基准值是对称配筋柱大小偏心受压状态的轴压比分界值。

9、跨高比:梁的跨高比(梁的净跨与梁截面高度的比值)对梁的抗震性能有明显的影响。梁(非剪力墙的连梁)的跨高比小于5和深梁都按照深受弯构件进行计算的。

10、延性比:延性比即为弹塑性位移增大系数。延性是指材料、构件、结构在初始强度没有明显退化的情况下的非弹性变形能力。延性比主要分为三个层面,即截面的延性比、构件的延性比和结构的延性比。结构的延性比多指框架或者剪力墙等结构的水平荷载-顶层水平位移(P-delta)、水平荷载-层间位移等曲线。结构的屈服位移有等能量方法、几何做图法等。

建筑结构设计的优化方法及应用分析 (2)

建筑结构设计的优化方法及应用分析 在建筑造价中,结构造价的比例非常大。因此,研究建筑结构设计的优化方法并将其应用于实践具有非常积极的现实意义。文章分析了建筑结构设计的优化方法和应用。 标签:建筑结构设计;优化;方法;应用 引言:伴随我国建筑业的快速发展,对建筑设计进行优化也是设计者的一个重要研究课题。为了解决建筑面积与土地面积的矛盾,建筑本身的性质与理论知识与实际情况之间的矛盾,优化了建筑结构。 1、建筑结构设计优化的内容及意义 建筑结构的优化主要体现在两个方面。一是建筑工程整体结构的优化设计;二是建筑工程局部结构的优化设计。其中,局部结构优化设计的目标主要包括以下几个方面:基本结构方案、屋面系统方案、围护结构方案、结构细节等。当对上述目标进行优化时,往往涉及到选择、受力分析和成本分析。总之,在优化建筑结构设计过程中,不仅要严格执行设计规范,而且要充分结合施工项目的具体情况,从而最终提高建筑工程的综合经济效益。建筑结构优化的重要性主要是两点,一是提高建筑工程的安全性和可靠性,二是降低建筑工程的总造价。通过对比分析发现,在适当的应用下,建筑结构设计优化方法能最大限度地降低建筑工程总造价30%。通过优化方法的有效应用,一方面可以最大限度地提高材料的性能,另一方面可以为实际的规划执行提供一系列有用的工作。 2、建筑结构设计的优化方法 2.1概念设计优化 建筑结构的概念设计是设计者将自己的理论知识和设计要求和建筑环境结合起来设计建筑结构。在设计时,应考虑许多非唯一的数值和不可预测的不可抗拒因素。例如,在设计建筑物时,需要考虑其抗震性能。地震不能通过预测和针对性的设计发生,所以在设计中,应加强地震多发区域内每一栋建筑物的抗震性能,尤其要注意建筑物的抗震性能,是设计优化的这些因素的设计优化的概念。 2.2模型设计优化 在优化设计概念后,还应优化模型的结构。首先,在设计变量的选择中,需要选择的变化内容越来越少,但作为参考标准的基本价值,减少了优化设计的难度,提高了设计的可靠性;其次,针对较大的接触因素,建立相应的功能结构设计和分析,降低建筑成本,减少错误概率的设计,加强建筑整体性优化,减少设计和施工工作的工作量;第三是衡量建筑结构的工作条件,工作环境通常是复杂多变的,具体的建设需要考虑的各个部分稳定、结构应力极限,整体结构刚性和

建筑工程结构设计的优化措施

试论建筑工程结构设计的优化措施摘要: 现如今,现代化建设普遍应用于城市建设中,这推动了我国高层建筑发展前进的步伐,由于人们对建筑施工的要求不断提高,使得建筑技术将面临更高的挑战。因此,从建筑工程结构设计方面入手,进行改进,从而扩大建筑工程的发挥空间。基于此,本文主要对建筑工程结构设计的优化措施进行了探讨。 关键词:建筑工程;结构设计;优化措施 abstract: nowadays, modernization is generally applied to the city construction, this drives forward the country’s high building development progress, as people have the requirement of building construction continues to improve, construction technology that could face higher challenge. therefore, from building engineering structure design aspects, to improve and expand the construction engineering play space. based on this, this paper focuses on the construction engineering structure design of the measures are discussed. keywords: building engineering; structure design; optimization measures 中图分类号:tb482.2文献标识码:a 文章编号: 城市高层建筑的高度在不断的进行增加,这就使得高层建筑向

概念结构设计和逻辑结构设计

概念结构设计和逻辑结构设计 一.系统概述 本系统通过调查从事医药产品的零售,批发等工作的企业,根据其具体情况设计医药销售管理系统。医药管理系统的设计和制作需要建立在调查的数据基础上,系统完成后预期希望实现药品基本信息的处理,辅助个部门工作人员工作并记录一些信息,一便于药品的销售和管理。通过此系统的功能,从事药品零售和批发等部门可以实现一些功能,如:基础信息管理,进货管理,库房管理,销售管理,财务统计,系统维护等。 二.概念结构设计 1.员工属性 2.药品属性 3.客户属性 4.供应商属性 5.医药销售管理系统E--R 图 三.逻辑结构设计 该设计概念以概念结构设计中的E--R 图为主要依据,设计出相关的整体逻辑结构,具体关系模型如下:(加下划线的表示为主码) 药品信息(药品编号,药品名称,药品类别,规格,售价,进价,有效期,生产日期,产地,备注) 供应商信息(供应商编号,供应商名称,负责人,) 员工 姓名 家庭地址 E-maill 电话 员工 编号 年龄 帐号

四.系统各功能模块如何现(数据流实图);1.基本信息管理子系统 基本信息管理子系统 药品信息员工信息客户信息供应商信息2.库存管理子系统 库存管理子系 统 库存查询库存信息出入库登记库存报表3.销售管理子系统 销售管理 销售登记销售退货销售查询 4.信息预警子系统 信息预警 报废预警库存预警 5.财务统计子系统 财务统计 统计销售额打印报表 6.系统管理子系统

系统管理 权限管理修改密码系统帮助 五.数据库设计(E-R图,数据库表结构) 1.药品基本信息表 列名字段数据类型可否为空说明药品编号 药品名称 药品类别 规格 进价 有效期 生产日期 售价 产地 备注 2.员工基本信息表 列名字段数据类型可否为空说明员工编号 性别 身份证号 员工年龄

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

钢结构计算题-答案完整

《钢结构设计原理计算题》 【练习1】两块钢板采用对接焊缝(直缝)连接。钢板宽度L= 250mm厚度t=10mm。 根据公式f t w移项得: l w t N l w t f t w (250 2 10) 10 185 425500N 425.5kN 【变化】若有引弧板,问N ? 解:上题中l w取实际长度250,得N 462.5kN 解:端焊缝所能承担的内力为: N30.7h f l w3 f f f w2 0.7 6 300 1.22 160 491904N 侧焊缝所能承担的内力为: N10.7h f l w1f f w4 0.7 6 (200 6) 160 521472N 最大承载力N 491904 521472 1013376N 1013.4kN 【变化】若取消端焊缝,问N ? 解:上题中令N30 , l w1200 2 6,得N 弘505.344 kN 2t,即250-2*10mm。 300mm 长 6mm。求最大承载力N 钢材米用Q 235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准, 2 185N /mm。试求连接所能承受的最大拉力N 解:无引弧板时,焊缝的计算长度l w取实际长度减去 【练习2】两截面为450 14mm的钢板,采用双盖板焊接连接,连接盖板宽度 410mm中间留空10mm),厚度8mm 钢材Q 235,手工焊,焊条为E43, f f w160N / mm2,静态荷载,h f

【练习3】钢材为Q 235,手工焊,焊条为E43, f f 160N/mm",静态荷载。双角钢2L125X8采用三面围焊和节点板连接,h f 6mm,肢尖和肢背实际焊缝长度 均为250mm等边角钢的内力分配系数0.7,k20.3。求最大承载力N —}心}\2LI25x8 解: 端焊缝所能承担的内力为: N30.7h f l w3 f f f" 2 0.7 6 125 1.22 160 204960N 肢背焊缝所能承担的内力为: N10.7h f l w1f f w20.7 6 (2506) 160327936N 根据N1 N3 k1N —3 2 1N31204960 得: N(N13)(3279360 960 )614880N K120.72【变化】若取消端焊缝,问 解:上题中令N3614.88kN N ? 0,l w1 250 2 6,得N 456.96kN 【练习4】钢材为Q 235,手工焊,焊条为E43, f f w 已知F 120kN,求焊脚尺寸h f (焊缝有绕角,焊缝长度可以不减去 2 160N / mm,静态荷载。 2h f ) 解:设焊脚尺寸为h f,焊缝有效厚度为h e 0.7h f 将偏心力移 到焊缝形心处,等效为剪力V= F及弯矩在剪力作用下: 3 120 10 342.9 M=Fe h e l w 在弯矩作用下: M M f W f , 2 0.7h f 250 120 103150 2 h f 1234 2 (N / mm ) IK W f 1 代入基本公式 h f 2 (N /mm ) 得: (1234 )2 (342.9)2 (1.22h f)( h f) 1068 160 h f 可以解得:h f6.68mm,取h f h f mi n 1.5 14 5.6mm h f 【变化】上题条件如改为已知h 7 mm。 h 12 f max 14.4mm,可以。 f 8mm,试求该连接能承受的最大荷载N 12

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

建筑工程结构设计优化措施探讨

建筑工程结构设计优化措施探讨 摘要:建筑工程是我国基础设施建设中的重要组成部分之一,房屋建筑建设质量的优劣,与人们的生活质量息息相关。房屋建筑结构设计中,结构设计优化是保障房屋建筑的质量及提高建筑物安全性、稳定性、美观性的有效手段。基于此,文章对房屋建筑结构设计中结构设计优化的应用情况进行了分析,并探讨了房屋建筑结构设计优化的关键点,希望可以为房屋建筑结构设计及施工的开展提供有效参考。 关键词:结构设计优化;建筑工程;结构设计 随着社会经济的飞速发展,经济条件,生活质量和人民生活水平得到了明显改善,人们对生活环境的要求也越来越高。基于时间进度和社会发展需求,在当今住宅建筑的结构设计中,基于质量和安全保证,通常会进行结构优化设计,以实现降低成本,节能减排和改善建筑功能的目的。 1 建筑物结构设计中结构设计的优化 建筑结构模型的优化 在房屋建筑结构设计中,在实施结构设计优化时应优化建筑结构模型。在优化建筑结构模型时,可以从三个方面确定约束条件,计算功能并选择变量。在构建和使用构建模型的过程中,应该非常重视选择不同的变量。在定义和选择不同的变量时,应充分考虑实际的建筑状况,并将其与当地情况结合起来,并彻底分析可能影响建筑结构设计和使用的所有因素。表示这些因素的预定参数。在房屋建筑的结构设计中显示。有些因素可能会对建筑结构设计的总体影响产生非常重大的影响,因此,无论设计人员是多因素还是单一因素,设计人员都应充分考虑到这一点。' 警告。另外,在优化建筑结构设计的过程中,体现功能中的各个要素可以有效减少人员工作量,并有助于提高工作效率。 优化建筑物的主要结构 在设计建筑物结构的主要部分时,应考虑建筑物的质量,并且优化设计应基于确保建筑物的质量和安全性。在此基础上,建筑结构设计中首先要考虑的问题是确保建筑物的安全,在随后的优化设计中,确定要加强主体结构的承载能力。对于建筑物来说,增加主体的稳定性是增加建筑物安全性的有效方法,可以使建筑物在一定范围内承受恶劣环境的能力,从而使建筑物能够经受地震,强风等侵袭。在环境中是安全的。防止建筑物在恶劣的室外环境下倒塌。在优化建筑物的主要结构时,关键是优化幕墙的设计,以确保幕墙的整体稳定性。关键是使幕墙的质量相等,并使结构重心与刚性中心重合。因此,它增加了建筑物的整体稳定性。设计人员可以通过减少幕墙的数量和增加幕墙的程度来优化幕墙的结构。在住宅建筑结构的设计中,许多钢结构经常放置在幕墙内,因此幕墙可以支撑更大的重量并增加幕墙的稳定性。但是,由于节能,应该对该部分进行优化和设计,并且确保幕墙稳定性的原则应该是尽可能少的钢结构建筑材料。 优化建筑细节 随着市场经济的飞速发展,建筑业蓬勃发展,但市场竞争日趋激烈。在这一点上,许多公司开始吸引消费者,从细节开始,以提高建筑物的质量和美观性。在此基础上,在建筑物结构设计中优化结构设计的同时,还应特别注意细节的优化。根据客户的需求,应该优化和

机械优化设计——复合形方法及源程序

机械优化设计——复合形方法及源程序 (一) 题目:用复合形法求约束优化问题 ()()()2221645min -+-=x x x f ;0642 2211≤--=x x g ;01013≤-=x g 的最优解。 基本思路:在可行域中构造一个具有K 个顶点的初始复合形。对该复合形各顶点的目标函数值进行比较,找到目标函数值最大的顶点(即最坏点),然后按一定的法则求出目标函数值有所下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点。 (二) 复合形法的计算步骤 1)选择复合形的顶点数k ,一般取n k n 21≤≤+,在可行域内构成具有k 个顶点的初始复合形。 2)计算复合形个顶点的目标函数值,比较其大小,找出最好点x L 、最坏点x H 、及此坏点x G .. 3)计算除去最坏点x H 以外的(k-1)个顶点的中心x C 。判别x C 是否可行,若x C 为可行点,则转步骤4);若x C 为非可行点,则重新确定设计变量的下限和上限值,即令C L x b x a ==,,然后转步骤1),重新构造初始复合形。 4)按式()H C C R x x x x -+=α计算反射点x R,必要时改变反射系数α的值,直至反射成功,即满足式()()()()H R R j x f x f m j x g

混凝土结构设计原理试题与答案

一、概念选择题(均为单选题,答案请填写在答题卡上,每小题1分,总共40分) 1.如果混凝土的强度等级为C50,则以下说法正确的是:()A.抗压强度设计值f c=50MP a;B.抗压强度标准值f ck=50MP a; C.立方体抗压强度标准值f cu,k=50MP a;D.抗拉强度标准值f tk=50MP a。2.混凝土强度等级是根据150mm×150 mm×150 mm的立方体抗压试验,按:( ) A.平均值μf cu确定;B.μf cu-1.645σ确定;C.μf cu-2σ确定;D.μf cu-σ确定。3.减少混凝土徐变可采用的措施有:()A.增加水泥用量; B 蒸汽养护混凝土; C 提早混凝土的加荷龄期; D 增加水用量。4.以下关于混凝土收缩,正确的说法是:()(1)收缩随时间而增长(2)水泥用量愈小,水灰比愈大,收缩愈大 (3)骨料弹性模量大级配好,收缩愈小(4)环境湿度愈小,收缩也愈小 (5)混凝土收缩会导致应力重分布 A.(1)、(3)、(5);B.(1)、(4);C.(1)~(5);D.(1)、(5)。 5. 高碳钢筋采用条件屈服强度,以σ0.2表示,即:() A.取极限强度的20 %;B.取应变为0.002 时的应力; C.取应变为0.2 时的应力;D.取残余应变为0.002 时的应力。 6.检验软钢性能的指标有:()(1)屈服强度(2)抗拉强度(3)伸长率(4)冷弯性能 A.(1)~(4);B.(1)~(3);C.(2)~(3);D.(2)~(4)。7.对于热轧钢筋(如HRB335),其强度标准值取值的依据是:()A.弹性极限强度;B.屈服极限强度;C.极限抗拉强度;D.断裂强度。8.钢筋与混凝土这两种性质不同的材料能有效共同工作的主要原因是:()A.混凝土能够承受压力,钢筋能够承受拉力; B.两者温度线膨系数接近; C.混凝土对钢筋的保护; D.混凝土硬化后,钢筋与混凝土之间产生了良好的粘结力,且两者温度线膨系数接近 9.关于设计值和标准值,以下说法正确的是:()A.材料强度设计值大于其标准值,荷载设计值小于其标准值; B.材料强度设计值小于其标准值,荷载设计值大于其标准值; C.材料强度设计值等于其标准值,荷载设计值等于其标准值;

最新钢结构设计练习题

钢结构设计练习题一、填空题 1、门式刚架轻型房屋屋面坡度宜取(20 8),在雨水较多的地区取其中的较大值。 2、在设置柱间支撑的开间,应同时设置(屋盖横向支撑),以构成几何不变体系。 3、当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置(刚性)系杆。 4、冷弯薄壁构件设计时,为了节省钢材,允许板件(受压屈曲),并利用其(屈曲后)强度进行设计。 5、当实腹式刚架斜梁的下翼缘受压时,必须在受压翼缘两侧布置(隅撑) 6、螺栓排列应符合构造要求,通常螺栓端距不应小于(2)倍螺栓孔径,两排螺栓之间的最小距离为(3 )倍螺栓直径。 7、垂直于屋面坡度放置的檩条,按(双向受弯)构件设计计算。 8、屋架节点板上,腹杆与弦杆以及腹杆与腹杆之间的间隙应不小于(20mm)。 9、拉条的作用是(防止檩条侧向变形和扭转并且提供x轴方向的中间支点)。 10、实腹式檩条可通过檩托与刚架斜梁连接,设置檩托的目的是(防止檩条端部截面的扭转,以增强其整体稳定性)。

11、屋架的中央竖杆常和垂直支撑相连,一般做成十字形截面,这时它的计算长度是(0.9L)。 12、设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用(焊透的k形)焊缝。13、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 14、屋盖支撑可以分为(上弦横向支撑)、(下弦横向支撑)、(下弦竖 向支撑)、(垂直支撑)、(系杆)五类。 15、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 16、屋架上弦杆为压杆,其承载能力由(稳定)控制;下弦杆为拉杆,其截面尺寸由(强度)确定。 17、梯形钢屋架,除端腹杆以外的一般腹杆,在屋架平面内的计算长度Lox=(0.8 )L,在屋架平面外的计算长度Loy=(1.0)L,其中L 为杆件的几何长度。 18、吊车梁承受桥式吊车产生的三个方向荷载作用,即(吊车的竖向荷载P ),(横向水平荷载T)和(纵向水平荷载Tl)。 19、能承受压力的系杆是(刚性)系杆,只能承受拉力而不能承受压力的系杆是(柔性)系杆。 20、根据吊车梁所受荷载作用,对于吊车额定起重量Q≤30t,跨度l ≤6m,工作级别为Al~A5的吊车梁,可采用(加强上翼缘)的办法,

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

浅析房建工程结构优化设计

浅析房建工程结构优化设计 发表时间:2019-07-12T09:47:04.203Z 来源:《建筑学研究前沿》2019年7期作者:王志鹏 [导读] 房屋建筑是现代城市中的重要空间,为居民的日常工作与生活创造室内环境。 摘要:本文以房屋建筑工程结构设计为研究对象,对其在时代科技化、智能化领域中的应用优化策略进行分析。通过对房屋建筑结构设计基本原则的阐述,从数字技术、创新理念、细部结构、仿真环境、数据模型这五个方面,细化论证房屋建筑结构的设计优化策略,为相关研究与应用提供参考。 关键词:房屋建筑;结构设计;智能化;计算机技术 引言 房屋建筑是现代城市中的重要空间,为居民的日常工作与生活创造室内环境。在生活质量不断提升的背景环境下,对于房屋建筑的要求也日益提升,这就需要建筑工程设计人员,在进行结构设计的过程中,坚守建筑设计基本原则,并在时代科技化背景环境下,利用行业的发展优势,对工作内容进行创新管理,增强房物建筑结构设计优化的实用价值。 1房屋建筑结构设计原则 房屋建筑结构设计中,功能性是其基本属性。尤其在社会经济环境高速发展的背景下,人们需要建筑结构设计的功能性,作为正常生产生活的支撑条件。而在设计过程中,还需建筑空间中的协调性、美观性以及舒适性,形成完整的室内环境。 同时,由于房屋建筑的使用与居住需要,必须在进行结构设计的过程中,重点关注建筑空间的安全性内容。安全性设计内容,不仅在建筑结构施工过程中起到关键作用,也会在房屋建筑投入使用的过程中,成为保证使用者生命财产安全的重要依据[1]。因此,在进行设计时,材料选择、用量分析、结构科学性等内容,都需要得到建筑结构设计者的高度重视,并作为设计的核心内容,进行完善与优化。 另外,房屋建筑工程结构设计,是指导工程项目施工的重要组成部分。在进行设计优化的同时,需要从经济成本的角度对设计内容进行评估,并在合理优化调整的基础上,降低建设单位在成本投入中的消耗。这一内容,在当前竞争十分激烈的建筑行业中,显得尤为重要,是保证建筑公司市场竞争力的关键,也是实现建设单位良好发展的基础。所以,必须在设计环节上进行调节,在控制成本的基础上,对投入成本消耗与建筑使用节能性提供基础保障条件。 2房屋建筑结构设计优化策略 2.1引入数字化技术手段 房屋建筑结构设计内容有较为悠久的历史,在不同文化环境中形成了风格各异功能明显的建筑空间。在时代资讯条件与技术水平的影响下,通过交流与创新,形成了多种类型的结构设计方案[2]。在对特定建筑项目展开设计工作的过程中,可以尝试通过数字化技术手段,完成结构设计方式的选择与应用。尤其是在数字化程序软件的应用中,对于房屋建筑结构设计,产生了典型的积极影响,是提高设计质量的主要途径与关键手段。 例如,北京奥运会的主体育馆“鸟巢”(如图 1 所示),在进行设计的过程中,其设计师赫尔左德、德梅隆引入了数字化的技术方法,通过计算机软件程序与硬件系统的计算能力,对结构中的细化参数进行分析与计算,并在完成设计数据计算的基础上,对系统使用中的合理性作出全面的辩证分析,以此保证“鸟巢”在结构设计的合理性,为其在结构稳定性的基础上,增添了美观表现效果,提高了应用价值。 图 1 鸟巢 对此,为了保证数字化技术手段的应用条件,需对房屋建筑结构设计的业务能力进行优化升级,使其能够适应计算机程序的使用,并在合理利用先进辅助软件程序的基础上,保证设计内容的科学性。 2.2增加创新性设计理念 房屋建筑项目的施工阶段中,有些具体内容无法用数据信息进行表达,而为了保证此类内容能够正常的在现实环境中构建出来,需要在设计内容上,通过理念思想的内容表达,对工程施工工作形成指导。方法上,需借助信息化时代的背景优势,将计算机程序作为辅助建筑结构设计的有效工具,并在与设计师工作经验相结合的基础上,形成人性化的设计判断,并最终达到开发创新的效果。 实际设计应用中,需以建设条件为基础,在熟练掌握电脑程序软件的基础上,增加其在设计中的功能应用深度。由此,使计算机程序软件的应用条件能够适应设计师的应用需要,并在构成最终设计方案时,可充分表达创新设计理念。 从设计师的角度出发,其经验丰富程度,会对创新性的设计内容产生明显的影响。拥有丰富经验的设计师,可以在房屋建筑结构设计中,更好地对数据条件进行分析与判断,并从中整理出精确的数据内容,为创新型的设计工作提供指导。 例如,在“水立方”的建筑结构设计中,设计师在对 ETFE 膜材料的了解下,发挥其特性优势,并在构筑建筑空间的过程中,形成了外形近似于水泡的建筑结构。在这种创新型设计理念的指导下,使国家游泳中心展现出了独具特色的建筑形式(如图 2 所示),增加观赏性的同时,发挥出了创新理念的应用优势。 2.3保证细化结构完整性 房屋建筑的安全性,是设计工作的核心内容,在保证安全的基础上,还需尽可能地提升家住空间的耐久性,并在保证设计耐久度的同时,实现建筑设计优化的工作目标。尤其在细节化内容的控制上,对于此类内容的设计工作,直接影响到建筑结构的稳定性与连接状态。

结构设计师试题

1、结构设计师材料选用的主要依据是什么? 答:在设计和制造工程结构和机构零件时,考虑材料的使用性能、材料的工艺性能和经济性。 (1) 根据材料的使用性能选材:使用性能是零件工作过程中所应具备的性能(包括力学性能、物理性能、化学性能),它是选材最主要的依据。在选材时,首先必须准确地判断零件所要求的使用性能,然后再确定所选材料的主要性能指标及具体数值并进行选材。具体方法如下: a. 分析零件的工作条件,确定使用性能 b. 进行失效分析,确定零件的主要使用性能 c. 根据零件使用性能要求提出对材料性能(力学性能、物理性能、化学性能)的要求。通过分析、计算转化成某此可测量的实验室性能指标和具体数值,按这些性能指标数据查找手册中各类材料的性能数据和大致应用范围进行选材。 (2)根据材料的工艺性能选材:工艺性能表示材料加工的难易程序。所以材料应具有良好的工艺性能,即工艺简单,加工成形容易,能源消耗少,材料利用率高,产品质量好。主要应考虑以下工艺性: a. 金属铸造性能 b. 金属压力加工性能 c. 金属机械加工性能 d. 金属焊接性能 e. 金属热处理工艺性能 (3)根据材料的经济性选材:选材必须考虑经济性,使生产零件的总成本降低。零件的总成本包括制造成本(材料价格、零件自重、零件的加工费、试验研究费)和附加成本(零件寿命,即更换零件和停机损失费及维修费等)。 2.什么是陶瓷材料?陶瓷材料有哪此特点? 答:陶瓷是无机非金属材料,是用粉状氧化物,碳化物等,通过成型和高温烧结而制成。陶瓷材料是多相多晶材料,结构中同进存在着晶体相、玻璃相和气相,各组成相的结构、数量、形态、大小和颁均对陶瓷性能有显著影响。陶瓷材料具有高硬度(>1500HV)、耐高温(溶点>2000℃)、抗氧化(在1000℃高温下不氧化)、耐腐蚀(对酸、碱、盐有良好的耐蚀性)以主其他优良的物理、化学性能(优于金属的高温强度和高温蠕变能力,热膨胀系数小。热导率低,电阻率高,是良好的绝缘体,化学稳定性高等)。陶瓷材料是脆性材料,故其抗冲击韧度和断裂韧度都很低。陶瓷材料的抗压强度比其抗拉强度大得多(约为抗拉强度的10~40倍),大多数工序陶瓷材料的弹性模量都比金属高。由于工程陶瓷材料硬度高,常采用洛式硬度HRA、HT45N、小负荷维氏硬度或洛氏硬度表示。

钢结构设计原理练习题参考答案

钢结构原理与设计练习题 第1章 绪论 一、选择题 1、在结构设计中,失效概率P f 与可靠指标β的关系为( B )。 A 、P f 越大,β越大,结构可靠性越差 B 、P f 越大,β越小,结构可靠性越差 C 、P f 越大,β越小,结构越可靠 D 、P f 越大,β越大,结构越可靠 2、若结构是失效的,则结构的功能函数应满足( A ) A 、0Z C 、0≥Z D 、0=Z 3、钢结构具有塑性韧性好的特点,则主要用于( A )。 A .直接承受动力荷载作用的结构 B .大跨度结构 C .高耸结构和高层建筑 D .轻型钢结构 4、在重型工业厂房中,采用钢结构是因为它具有( C )的特点。 A .匀质等向体、塑性和韧性好 B .匀质等向体、轻质高强 C .轻质高强、塑性和韧性好 D .可焊性、耐热性好 5、当结构所受荷载的标准值为:永久荷载k G q ,且只有一个可变荷载k Q q ,则荷载的设 计值为( D )。 A .k G q +k Q q B .1.2(k G q +k Q q ) C .1.4(k G q +k Q q ) D .1.2k G q +1.4k Q q 6、钢结构一般不会因偶然超载或局部荷载而突然断裂破坏,这是由于钢材具有( A )。 A .良好的塑性 B .良好的韧性 C .均匀的内部组织 D .良好的弹性 7、钢结构的主要缺点是( C )。 A 、结构的重量大 B 、造价高 C 、易腐蚀、不耐火 D 、施工困难多

8、大跨度结构常采用钢结构的主要原因是钢结构(B) A.密封性好 B.自重轻 C.制造工厂化 D.便于拆装 二、填空题 1、结构的可靠度是指结构在规定的时间内,在规定的条件下,完成预定功能的概率。 2、承载能力极限状态是对应于结构或构件达到了最大承载力而发生破坏、结构或构件达到了不适于继续承受荷载的最大塑性变形的情况。 3、建筑机械采用钢结构是因为钢结构具有以下特点:1)______强度高、自重轻__________、2)_____塑性、韧性好_______________,3)______材质均匀、工作可靠性高______________。 4、正常使用极限状态的设计内容包括控制钢结构变形、控制钢结构挠曲 5、根据功能要求,结构的极限状态可分为下列两类:__承载力极限状态____ ______正常使用极限状态_____、 6、某构件当其可靠指标β减小时,相应失效概率将随之增大。 三、简答题 1、钢结构与其它材料的结构相比,具有哪些特点? 2、钢结构采用什么设计方法?其原则是什么? 3、两种极限状态指的是什么?其内容有哪些? 4、可靠性设计理论和分项系数设计公式中,各符号的意义? 第2章钢结构材料 一、选择题 1、钢材在低温下,强度(A),塑性(B),冲击韧性(B)。 (A)提高(B)下降(C)不变(D)可能提高也可能下降 2、钢材应力应变关系的理想弹塑性模型是(A)。

基于OptiStruct的结构优化设计方法

基于OptiStruct的结构优化设计方法 作者:张胜兰 优化设计是以数学规划为理论基础,将设计问题的物理模型转化为数学模型,运用最优化数学理论,以计算机和应用软件为工具,在充分考虑多种设计约束的前提下寻求满足预定目标的最佳设计。有限元法(FEM)被广泛应用于结构分析中,采用这种方法,任意复杂的问题都可以通过它们的结构响应进行研究。最优化技术与有限元法结合产生的结构优化技术逐渐发展成熟并成功地应用于产品设计的各个阶段。 一、OptiStruct结构优化方法简介 OptiStruct是以有限元法为基础的结构优化设计工具。它提供拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化,这些方法被广泛应用于产品开发过程的各个阶段。概念设计优化――用于概念设计阶段,采用拓扑(Topology)、形貌(Topography)和自由尺寸(Free Sizing)优化技术得到结构的基本形状。详细设计优化――用于详细设计阶段,在满足产品性能的前提下采用尺寸(Size)、形状(Shape)和自由形状(Free Shape)优化技术改进结构。拓扑、形貌、自由尺寸优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。经过设计人员修改过的设计方案可以再经过更为细致的形状、尺寸以及自由形状优化得到更好的方案。最优的设计往往比概念设计的方案结构更轻,而性能更佳。表1简单介绍各种方法的特点和应用。

OptiStruct提供的优化方法可以对静力、模态、屈曲、频响等分析过程进行优化,其稳健高效的优化算法允许在模型中定义成千上万个设计变量。设计变量可取单元密度、节点坐标、属性(如厚度、形状尺寸、面积、惯性矩等)。此外,用户也可以根据设计要求和优化目标,方便地自定义变量。 在进行结构优化过程中,OptiStruct允许在有限元计算分析时使用多个结构响应,用来定义优化的目标或约束条件。OptiStruct支持常见的结构响应,包括:位移、速度、加速度、应力、应变、特征值、屈曲载荷因子、结构应变能、以及各响应量的组合等。 OptiStruct提供丰富的参数设置,便于用户对整个优化过程及优化结果的实用性进行控制。这些参数包括优化求解参数和制造加工工艺参数等。用户可以设定迭代次数、目标容差、初始步长和惩罚因子等优化求解参数,也可以根据零件的具体制造过程添加工艺约束,从而得到正确的优化结果并方便制造。此外,利用OptiStruct软件包中的OSSmooth工具,可以将拓扑优化结果生成为IGES等格式的文件,然后输入到CAD系统中进行二次设计。

工程结构优化设计理论

工程结构优化设计理论 摘要:与传统的建筑结构设计相比较,结构设计优化不仅能够降低建筑造价,而且通过优化结构投资方向,提高关键结构部位或构件的安全度、延性和韧性,从而提高整个建筑物的安全度。通过这种有的放矢的优化设计,使整个建筑物的土建投资有效利用率大大提高关键词:结构优化设计理念 结构优化设计,能大大减少建筑造价并提高结构的安全度。设计单位在进行结构设计的时候,在建筑功能需求得到满足和遵循相关规范和规程的前提下,应综合考虑施工的可行性、施工进度和投资造价以及结构安全性等诸多要素,合理优化结构投资方向,使结构设计成为一项系统工程,做到设计成果既安全可靠,又经济合理。 一、建筑结构优化设计的意义 进行结构设计优化的原因概括起来有以下几方面: 1、钢筋混凝土和砌体等常用建筑材料的费用构成了结构成本的绝大部分,而这一部分成本通长占到结构主体造价的40%以上,通过结构优化设计能够将建筑工程的总造价减少10%~35%。对于一个大型的工程来说,这将是一笔不菲的费用,并且结构的安全度也得到了提高,因此结构优化有助于建设方减少投资,增加利润和提高资金周转率,其经济价值巨大。 2、据统计设计责任是造成建筑工程质量事故的主要原因,占据

了大约40%的比例。现阶段各设计单位设计水平良莠不齐,设计质量差导致施工停工或返工的现象时有发生。有些设计单位缺乏成本意识,算不清就多配钢筋,造成有些关键构件的设计反倒偏于不安全,这些现象有的造成了资源和成本的浪费,有的对建筑工程留下了潜在的危险。因此进行合理的结构优化设计,能够帮助业主提高设计质量并消除不必要的质量缺陷和工程风险,同时在减少不必要投资的前提下获得高品质的建筑,也符合创建节能、安定型社会的宗旨。 3、随着国家宏观调控力度的加大和原材料价格的上涨,通过销 售获得利润的空间被大大压缩,从内部挖掘潜力,节约成本成为企业赢利的重要手段,科学合理的节约成本能够提高企业的盈利率和生存能力。在这方面一些意识超前的业内知名企业,如万科、金地以及诸多国际公司已经率先垂范。 二、建筑结构设计优化方法的应用及实践价值 1、结构设计优化方法的应用 结构设计的优化主要在两个方面进行应用,一方面是在建筑工程的结构总体上的优化设计,这主要包括结构体系和结构选型,具体是指房屋的结构类型、房屋的高宽比、长宽比、房屋的结构材料等。另一方面就是结构工程分项部分的优化设计,这主要包括基础结构方案的优化设计、屋盖系统方案的优化设计、围护结构方案的优化设计和结构细部设计的优化设计。对于这些方面的设计我们需要在结构选型、受力分析、造价分析上进行研究,并在满足整个设计规范以及建筑实用需求的前提下,对整个建筑的实际情况进行优化,以降低建筑成本,

钢结构设计 练习题及答案(试题学习)

钢结构设计练习题及答案 1~5题条件:为增加使用面积,在现有一个单层单跨建筑内加建一个全钢结构夹层,该夹层与原建筑结构脱开,可不考虑抗震设防。新加夹层结构选用钢材为Q235B ,焊接使用 E43型焊条。楼板为SP10D 板型,面层做法20mm 厚,SP 板板端预埋件与次梁焊接。荷载标准值:永久荷载为2.5kN/m 2(包括SP10D 板自重、板缝灌缝及楼面面层做法),可变荷载为4.0 kN/m 2。夹层平台结构如图所示。 立柱:H228x220x8x14 焊接H 型钢 A=77.6×102mm 2 I x =7585.9×104mm 4,i x =98.9mm I y =2485.4×104mm 4,i y =56.6mm 主梁:H900x300x8x16 焊接H 型钢 I x =231147.6×104mm 4W nx =5136.6×103mm 3 A=165.44×102mm 2主梁自重标准值g=1.56kN/m a) 柱网平面布置立柱 次梁 主梁 1 2 H900x300x8x16 H300x150x4.5x6 次梁:H300x150x4.5x6 焊接H 型钢 I x =4785.96×104mm 4W nx =319.06×103mm 3 A=30.96×102mm 2次梁自重标准值0.243kN/m M16高强度螺栓加劲肋 -868x90x63030 40 6 n 个 b) 主次梁连接 1. 在竖向荷载作用下,次梁承受的线荷载设计值为m kN 8.25(不包括次梁自重)。试问, 强度计算时,次梁的弯曲应力值?(20分) 解:考虑次梁自重后的均布荷载设计值: 25.8+1.2×0.243=26.09kN /m 次梁跨中弯矩设计值: M =04.665.409.268 1 8122=??=ql kN ·m 根据《钢结构设计规范》GB 50017-2003第4.1.1条; 4.1.1在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其 抗弯强度应按下列规定计算: ny y y nx x x W M W M γγ+ ≤f (4.1.1) 式中 M x 、M y —同一截面处绕x 轴和y 轴的弯矩(对工字形截面:x 轴为强轴,y 轴 为弱轴): W nx 、W ny —对x 轴和y 轴的净截面模量;γx 、γy —截面塑性发展系数;对工字形截面, γx =1.05,γy =1.20:对箱形截面,γx =γy =1.05;对其他截面.可按表5.2.1采用; f —钢材的抗弯强度设计值。 当梁受压翼缘的自由外伸宽度与其厚度之比大于13y f 235/ 而不超15 y f 235/时, 应取γx =1.0。f y 为钢材牌号所指屈服点。 对需要计算疲劳的梁,宜取γx =γy =1.0。 受压翼缘的宽厚比小于13;承受静力荷载 γx =1.05 1.19710 06.31905.11004.6636=???=nx x W M γN/mm 2

相关文档
相关文档 最新文档