文档库 最新最全的文档下载
当前位置:文档库 › 脱硫塔喷淋

脱硫塔喷淋

脱硫塔喷淋
脱硫塔喷淋

2.7.2 喷淋层

喷淋层又可以称为液体分布器,它是由喷淋管和喷嘴组成,将夜通过喷淋管的分配作用达到均匀分布的每个喷嘴,由喷嘴喷出,与逆向流动的烟气充分接污染气体即在此吸收。

触,SO

2

1 喷淋层中喷淋管及管网的设计

①喷淋层中的喷淋管目前主要有2种材质和结构形式:(1)全玻璃钢(FRP)材质,由于玻璃钢的材料特性,这种结构需要在喷淋管底部设置支撑梁。(2)主管用碳钢,内外衬胶,支管用FRP管,主管和支管之间用法兰连接,主采用等径钢管,管径大、壁厚,自身起到支撑梁的作用,FRP支管底部可以不设支撑梁。据了解国外支管都用柔性接头,而我国只能做插管手糊加强性连接,考虑此连接部受弯和喷浆时可能由颤抖现象而引起疲劳开裂(因为喷头处压力为0.07MPa,喷头质量有8kg,支管呈悬臂梁状态工作而且浆液流动也没有柔性连接畅通)。欧洲大部分用FRP(玻璃纤维增强塑料)材料制作,质量较轻。而日本、台湾则有用钢管内外衬橡胶的,质量较重。签于国内制造厂商不能保证欧洲国家那样制作的FRP管的质量,而国内引进的这些装置在我国刚运行不久,还需经过较长时间的观察、考核。国内初次设计,为了保证安全起见,暂按钢管内外衬橡胶设计,但用FRP管肯定是今后国内发展的方向。在实际运行中,全玻璃钢喷淋层底部的支撑梁有被上部喷嘴喷出的浆液击穿破坏的现象。为避免由此带来的隐患,本工程喷淋层采用第2种形式,喷淋FRP支管底部不设支撑梁。吸收塔喷淋区域塔径,喷淋FRP支管较长,要求喷淋层供应商利用管道分析软件对喷淋层进行受力分析,选择合理管壁厚,通过在支管上加筋提高FRP支管的强度和刚度,并对其各个生产环节进行认真监督检验。最上层喷浆管至第一段除雾器高差。根据喷浆后雾滴大小及烟气上升流速考虑,一般在3m~3.5 m左右。

②喷淋层中管网的作用是浆液通过分布在喷淋管上的喷嘴喷出雾状液以吸收烟气中的S02。要求管内外均耐磨蚀,管内同时要求耐浆液腐蚀,管表面要求耐浆液冲刷。其设计,首先要考虑喷头的布置,应保证塔内喷出浆液匀称,避免疏密不均。喷头的数量根据液/气比需要的浆液量而定。为保证浆液与烟气的接触充分,一般喷浆管分成3~4层(极个别厂有用2层的,但用的是锥尾式单向喷头),喷淋层间距通常为lm~2m,一般按1.5~1.7m计。

2喷嘴的设计

喷嘴的性能对脱硫率有重要影响。目前在湿法喷淋层脱硫塔内通常采用空心锥切线型、实心锥切线型、双空心锥切线型、实心锥、螺旋型5种喷嘴。常用的脱硫喷嘴有2种形式:螺旋型实心锥喷嘴和空心锥切线型喷嘴。螺旋型实心锥喷嘴的特点是喷淋量大,所以喷嘴个数少,缺点是结构易碎,且液滴均匀性也有待提高。在湿法脱硫吸收塔上,空心锥切线型喷嘴是螺旋型实心喷嘴的替代产品,其自由畅通直径大,具有自清洗功能,应用最为普遍,因此选用该型式喷嘴。脱硫喷嘴采用的材料主要有反应烧结碳化硅(RBSC)和氮化硅结合碳化硅(SNBSC)。RB-SC属于精细陶瓷,显气孔率小,弯曲强度大,适用于制作精细的螺旋型喷嘴。SNBSC主要制造空心锥类喷嘴。目前,脱硫喷嘴的国产化率仍然很低,有的厂家正在开拓脱硫喷嘴业务,但是目前的制作还处于粗旷型模型仿制阶段。从国外公司的供货情况看SNBSC是喷嘴的主导材料。各喷淋层喷嘴错开布置,保证浆液重叠覆盖率至少达170%~250%,最外层喷嘴与塔壁要保持合理距离,防止塔壁穿孔漏浆。

1)喷嘴的选择

浆液本身要求喷头能耐腐蚀。但由于喷嘴处压力较高,流速较大,内部要求能耐磨蚀,表面要求能耐冲刷(因为有上层浆液喷下)。故喷头材料要求全部用碳化硅制成。这种大流量的漩流雾化喷头国内制造质量还达不到要求,国外已有专业工厂生产。该喷头最上一层是单喷,下面2~3层均采用上

下同时喷的形式,一般是上喷角度为20℃.流量占该喷头总量的70%,下喷角度是90度,流量占30%,近塔壁的均用上下喷角为90度的喷头。这种喷头有法兰连接和丝扣连接,承插连接三种,如喷浆管用FRP材料,则应用后两者连接方式,如用钢管内外橡胶,则只能用前者。

2)喷嘴特性参数

喷嘴的特性参数主要有喷嘴压降、喷雾角、喷嘴流量等。

(1)喷嘴压降是指浆液通过喷嘴通道时所产生的压力损失,主要与结构参数和浆液粘度等因素有关。压降越大,系统能耗也越大。一般WFGD 喷淋系统喷嘴压降典型值为0.05-0.1MPa 。

(2)喷雾角是指浆液离开喷嘴口后形成的液膜锥的锥角,主要受喷嘴孔半径、旋转室半径和浆液入口半径等因素影响。选择喷雾角时,必须与喷嘴在塔内布置相结合,保证塔内覆盖均匀度与覆盖率,通常要求喷淋角为90~120。。

(3)喷嘴流量是指单位时间内通过喷嘴的体积流量,主要与压降、喷嘴结构参数等因素有关。喷嘴流量根据系统布置与工艺计算确定“唧。喷嘴流量与喷嘴压降一般有以下关系: Q=P K ?

其中:Q 为喷嘴流量,L /min ;K 为特性系数,由喷嘴具体型号确定; △P 为喷嘴压降,bar ;

由式可知,对于给定喷嘴,确定了喷嘴流量也就确定了喷嘴工作压力。

3)喷嘴在塔内布置设计

喷嘴在塔内布置是非常重要的,只有进行合理、优化的喷嘴布置设计,才能达到系统设计要求,使脱硫系统达到高脱硫率。其中喷嘴在塔内布置的方法有两种:一种是同心圆布置,另一种是矩阵式布置。

进行喷嘴在塔内布置设计中应该注意以下问题:

(1)选择合理的喷嘴覆盖高度,通常根据喷嘴特性及两层喷淋之间距离来确定。

(2)选择合理的单层喷嘴个数。一般来说,喷嘴个数根据工艺计算来确定。通常每层布置一个喷淋管网,每层应装有足够多的喷嘴,尽量减少连接喷嘴的管道长度。喷嘴数量选择按如下公式计算:

n *=ψ×Do/d2

其中 ψ--200%或220%(覆盖率;多取220%)

Do--吸收塔喷淋区直径(米)

d2--喷嘴在喷射距离l 米处的喷射直径(米)

(3)当喷嘴覆盖高度确定以后,则就可以计算单个喷嘴的覆盖面积,

()2/220θtg H A ∏=

式中,θ为喷雾角。A 0为单个喷嘴的覆盖面积,m 2。喷嘴覆盖高度,m 。

(4)当在脱硫塔内布置喷嘴时,选择合适的喷嘴之间的距离。通常根据喷嘴个数和脱硫塔直径来选择喷嘴间距,并要与连接喷嘴的喷管布置方案整体考虑。

(5)选择合理的经济流速,并根据喷管产品的标准来确定石灰石浆液母管和支管直径。

(6)当检验喷淋层在脱硫塔覆盖率时,不仅要考虑喷嘴液流与母管、支管和支撑

的碰撞对覆盖率的影响,还要考虑所有喷嘴在脱硫塔内覆盖均匀度。喷淋层在脱硫塔内覆盖率为

%1000?=

A nA α 式中 а为覆盖率,%;n 为单层喷嘴个数;A 0为单个喷嘴的覆盖面积,m 2; A 为吸收塔的截面积,m 2。

工程设计时通常要求塔内喷淋覆盖率为200%~300%,且覆盖比较均匀。进行喷淋层间距选择时还必须要考虑喷嘴液流与母管、支管和支撑的碰撞对覆盖率的影响。

在本次设计中喷嘴采用矩阵式布置方法,其喷淋盘母管和支管管径的布置如下图

电厂脱硫吸收塔喷淋灭火装置研究

电厂脱硫吸收塔喷淋灭火装置研究 发表时间:2019-07-30T15:30:00.497Z 来源:《电力设备》2018年第33期作者:朱世见谢典健 [导读] 摘要:随着我国政府在环境保护方面的力度不断增加,电厂的废气排放也受到了一定的限制,其中,电厂所排放的废气中,以SO2和NOx为主,且目前二氧化硫的去除以湿法脱硫为主,湿法脱硫最重要的设备是吸收塔,在吸收塔新建、扩建及检修过程中,近年因防火措施不当导致吸收塔着火事件频频发生。 华电潍坊发电有限公司山东省潍坊市 261200 摘要:随着我国政府在环境保护方面的力度不断增加,电厂的废气排放也受到了一定的限制,其中,电厂所排放的废气中,以SO2和NOx为主,且目前二氧化硫的去除以湿法脱硫为主,湿法脱硫最重要的设备是吸收塔,在吸收塔新建、扩建及检修过程中,近年因防火措施不当导致吸收塔着火事件频频发生。本文以电厂脱硫吸收塔喷淋灭火装置为研究对象,着重介绍了喷淋灭火装置的安装方案,该装置有效解决了吸收塔着火时消防水瞬间一键开启,消防水可将吸收塔内全面覆盖,有效防范了吸收塔着火事件,并指明这一技术在实际应用中所要注意的事项。 关键词:电厂;脱硫吸收塔;喷淋灭火装置 脱硫吸收塔的设计、建造与使用,大大减少了火力发电厂在发电过程中所产生的硫化烟气对环境的污染。然而,由于吸收塔内改造检修期间,因动火作业防火措施不到位,经常发生的着火事件引起了发电单位的高度重视。本文介绍的喷淋灭火装置可实现一键启停,开启本装置后吸收塔内消防水全面覆盖塔内区域,可有效地对吸收塔着火区域进行灭火,降低脱硫吸收塔新建、扩建及检修过程中着火事件的发生概率。目前,在脱硫吸收塔的加装喷淋灭火装置成为吸收塔灭火的主要的手段之一。 一、脱硫吸收塔的作用概述 在传统火力发电过程中,尽管对煤炭中硫化物的含量有着明确的标准,但是,在燃烧过程中,不可避免的会向空气中排放硫化烟尘,不仅对周边环境造成了破坏,还威胁着电厂周围居民的生命健康安全。 为有效降低电厂SO2气体的排放量,五大发电集团火力电厂均已经按照国家环保部及地方环保部门要求扩改建吸收塔、新建串联吸收塔,有效提高了二氧化硫的去除效率,确保出口二氧化硫浓度排放指标满足国家和地方环保部门要求。 二、脱硫吸收塔着火原因分析 脱硫吸收塔内部从上至下一般为除雾器层、喷淋层、氧化风管及搅拌设施,其中除雾器材质为聚丙烯PP、FRP材质,聚丙烯极易着火,大部分吸收塔着火是由除雾器先着火所导致。除此之外,吸收塔的防腐层为衬胶和鳞片,二者在防腐过程中、与动火作业交叉时极易着火,也是引发火灾的重要因素之一。 在吸收塔新建、扩改建和机组检修过程中,动火作业在所难免,在焊接过程中焊渣、焊火星会导致除雾器着火,吸收塔设计为圆筒状,着火后浓烟滚滚,时常伴有明火,且火势难以控制。据国家电力系统数据统计,在2015~2016年间,因除雾器着火的吸收塔火灾事故共计19次,直接和间接经济损失达8.5亿元。 三、脱硫吸收塔中喷淋灭火装置的设计 喷淋灭火装置的设计思想是能在吸收塔着火初期,对吸收塔内进行消防水的全覆盖,并且水量足以对吸收塔区域进行有效灭火。结合现有脱硫吸收塔喷淋系统,增加灭火功能设计,在理论上可以确保脱硫系统、湿式除尘器系统在新建、扩改建、检修及试运期间的消防安全,预防火灾或减少火灾危害,保障人身和财产安全。 1. 水源设计 脱硫吸收塔喷淋水源设计为两路,一路为消防水水源,直接连通消防水管道,另一路水源来自脱硫循环水,作为备用水源,可有效解决吸收塔内喷淋水系统的用水问题。 2. 管路设计 每台机组供水管路共分两路水源,水源供给一级吸收塔喷淋灭火系统、二级吸收塔及湿式电除尘器喷淋灭火系统。供水主路采用电动门进行启停,启停电路接入公司脱硫集控室DCS系统,可确保着火瞬间开启喷淋灭火装置。喷淋灭火装置管路设置旁路手动门,便于在电动门故障时手动操作开启阀门,且控制喷淋的手动阀门安装在两台机组的脱硫浆液循环泵之间的综合管架下方零米地面上,远离吸收塔、湿式除尘器本体的区域,以便于故障情况下手动操作。 管路布置充分考虑防冻的因素,消防水主路水源采用保温岩棉进行保温;备用水源为脱硫循环水,在正常情况下管道排空,不采用保温措施。喷淋灭火装置水平管道设置0.5%的坡度,便于管道放空,在管道低位设置放水门。 在材料的选择上,应当采用无缝钢管,壁厚不小于4毫米。并且,为了保证喷淋灭火装置供水管道的正常工作,避免流速过快对管道造成的破坏,管内水速应不大于2m/s。 3. 喷头的位置设计 在脱硫吸收塔喷淋灭火装置的喷头选择上,应考虑到喷淋面积、喷头位置等一系列因素,通过对比,喷头采用螺旋式垂直喷头和水平式喷头两种,可确保吸收塔、湿除及烟道区域消防水全面覆盖,根据吸收塔顶部、湿除顶部和烟道的具体情况,合理科学科学设计两种喷头在吸收塔中的位置。 在一级吸收塔中,根据吸收塔出口形状,在除雾器上方环绕塔壁水平安装16只喷枪,在吸收塔出口烟道垂直安装6个喷枪。距喷头3米处,喷淋保护半径为3米。喷淋满足全覆盖的要求,即达到100%的覆盖率。 对于二级吸收塔的喷淋灭火装置设计,在塔侧安装12个喷枪,喷淋满足全覆盖的要求,即达到100%的覆盖率,具体设计如图1所示。

脱硫事故喷淋

脱硫吸收塔入口烟气事故喷淋装置 一、概述 1.事故喷水装置是为了保证脱硫吸收塔旁路挡板取消后,脱硫系统在吸收塔浆液循环泵停 运等事故工况下,避免吸收塔内除雾器因温度过高导致设备损毁而新增的系统。 2.事故喷水装置布置在两台吸风机出口烟道汇合后地面水平段;事故喷水装置水源分为两 路,分别为消防栓系统来水及除雾器冲洗水泵来水;两路水源管上各设置一道气动门,为防止气动门自动开启时拒动,在消防供水管上设置手动旁路。 3.为保证正常运行工况,事故喷水装置备用时,喷嘴不被烟气中灰尘堵塞,在事故喷水装 置入口处接入氧化风,用来对事故喷水喷嘴进行吹扫。 4.事故喷淋装置需定期试验,为避免定期试验后喷淋装置底部管道内存水酸化及水灰混合 结垢,事故喷水母管下部安装排放门;为避免烟道内积水,在喷淋装置所处烟道底部设有排水槽。 二、事故喷淋装置顺控 1.若除雾器冲洗水泵运行,联锁关闭除雾器冲洗水各阀,开启除雾器冲洗水至喷淋气动门、 1A喷淋气动门、1B喷淋气动门为吸收塔提供事故喷水降温,若喷水压力低于0.4MPa(暂定),延时10s联锁启动消防水至喷淋气动阀; 2.若除雾器冲洗水泵未运行,开启消防水至喷淋气动门、1A喷淋气动门、1B喷淋气动门, 为吸收塔提供事故喷水降温;若喷水压力低于0.4MPa(暂定),延时5s联锁启动除雾器冲洗水泵,联锁开除雾器冲洗水至喷淋气动门。 三、保护及联锁 1.吸收塔入口烟气温度(喷淋装置前)高于150℃报警。 2.吸收塔入口烟气温度(喷淋装置前)高于160℃,三取二,或者烟囱入口温度高于70℃, 三取二,延时1秒,联锁启动事故喷水。 3.四台浆液循环泵全停且吸收塔入口烟气温度(喷淋装置前)高于80℃,联锁启动事故 喷水。 4.吸收塔入口烟气温度(喷淋装置前)高于180℃,三取二,同时四台浆液循环泵全停, 延时1秒,触发MFT。 5.烟囱入口温度(喷淋装置前)高于70℃报警。

1号机脱硫吸收塔喷淋层改造

1号机脱硫吸收塔喷淋层改造施工方 案 生产厂长: 检修副总: 设备部专业: 除灰分场主任: 编制: 设备管理部

一、设备简介: 1号机脱硫吸收塔是按一炉一塔布置,吸收塔采用喷淋塔,吸收塔浆液喷淋层系统是由北京朗瑞达科技发展有限公司安装,设有四层喷淋装置,喷淋层间距1.8米,每层喷淋层都布置了170个喷嘴。吸收塔总高度34.7米,吸收塔直径17.5米。 二、施工原因: 1号机组运行期间,每次停机开塔检修,均有浆液喷淋支管脱落,由于浆液喷淋管路分为四层,每层对应1台浆液循环泵,从A-D浆液循环泵对应的喷淋层自21.4m起间隔1.8m,到26.8m止。每层布置一条Φ1200衬胶喷淋母管,母管两侧垂直均布7条不同长度的喷淋支管,每条支管有若干喷头。各支管均只有两个承力点,且跨距较长最长8.15m,加之浆液循环泵起停管道振动,长时间运转粘结接口老化松脱,易脱落,如喷头或支管脱落,首先影响浆液循环泵正常运行,其次如果脱落喷淋支管上层脱落,由于各层支管喷头吸收塔界面全覆盖,可能砸坏下层喷淋层。另外如果脱落支管或喷头断口角度向着塔壁或烟道,会损坏塔壁防腐层,造成漏泄或者浆液喷入吸收塔入口烟道,造成浆液外流,损坏烟道,更严重者浆液流入增压风机,造成机组非停。为解决上述问题,决定对吸收塔喷淋层进行加固。 三、施工方案: 1.沿A浆液循环泵喷淋母管中心线穿过吸收塔的水平断面,在距离喷淋母管中心线3m与吸收塔塔内相交处下方0.2m处,焊接1条200的槽钢(槽钢槽口与喷淋管平行)。

2.焊接前将对应2焊接点处塔壁防腐打磨掉,打磨面积0.25㎡。防止焊接过程中造成火灾。 3.同样的方式在A浆液循环泵喷淋母管对侧焊接1条200的槽钢。保证2条槽钢平行对称。 4.在焊接完毕的槽钢的1/3位置垂直焊接高度为650的200槽钢,再在喷淋母管对侧焊接好的槽钢上垂直焊接高度为650的200槽钢。然后用200槽钢将2条刚焊接好的650高度的槽钢焊接起来。 5.在喷淋母管两侧水平槽钢另一端1/3位置,采取同样的方式焊接。 6.在水平方向槽钢与个喷淋支管接触面上间隙处,垫上适当厚度的防腐材料,并安装白钢关卡。 7.焊接前各焊接接口打磨好坡口,所有焊口均要求满焊。 8.将施工中各破损处防腐及新焊接槽钢,重新做防腐,若使用树脂鳞片,厚度3-5mm,若衬胶,要求厚度5-8mm。 9.按上述方法将其余三层喷淋层按此法加固。 施工方式如下图

脱硫塔喷淋

2.7.2 喷淋层 喷淋层又可以称为液体分布器,它是由喷淋管和喷嘴组成,将夜通过喷淋管的分配作用达到均匀分布的每个喷嘴,由喷嘴喷出,与逆向流动的烟气充分接污染气体即在此吸收。 触,SO 2 1 喷淋层中喷淋管及管网的设计 ①喷淋层中的喷淋管目前主要有2种材质和结构形式:(1)全玻璃钢(FRP)材质,由于玻璃钢的材料特性,这种结构需要在喷淋管底部设置支撑梁。(2)主管用碳钢,内外衬胶,支管用FRP管,主管和支管之间用法兰连接,主采用等径钢管,管径大、壁厚,自身起到支撑梁的作用,FRP支管底部可以不设支撑梁。据了解国外支管都用柔性接头,而我国只能做插管手糊加强性连接,考虑此连接部受弯和喷浆时可能由颤抖现象而引起疲劳开裂(因为喷头处压力为0.07MPa,喷头质量有8kg,支管呈悬臂梁状态工作而且浆液流动也没有柔性连接畅通)。欧洲大部分用FRP(玻璃纤维增强塑料)材料制作,质量较轻。而日本、台湾则有用钢管内外衬橡胶的,质量较重。签于国内制造厂商不能保证欧洲国家那样制作的FRP管的质量,而国内引进的这些装置在我国刚运行不久,还需经过较长时间的观察、考核。国内初次设计,为了保证安全起见,暂按钢管内外衬橡胶设计,但用FRP管肯定是今后国内发展的方向。在实际运行中,全玻璃钢喷淋层底部的支撑梁有被上部喷嘴喷出的浆液击穿破坏的现象。为避免由此带来的隐患,本工程喷淋层采用第2种形式,喷淋FRP支管底部不设支撑梁。吸收塔喷淋区域塔径,喷淋FRP支管较长,要求喷淋层供应商利用管道分析软件对喷淋层进行受力分析,选择合理管壁厚,通过在支管上加筋提高FRP支管的强度和刚度,并对其各个生产环节进行认真监督检验。最上层喷浆管至第一段除雾器高差。根据喷浆后雾滴大小及烟气上升流速考虑,一般在3m~3.5 m左右。 ②喷淋层中管网的作用是浆液通过分布在喷淋管上的喷嘴喷出雾状液以吸收烟气中的S02。要求管内外均耐磨蚀,管内同时要求耐浆液腐蚀,管表面要求耐浆液冲刷。其设计,首先要考虑喷头的布置,应保证塔内喷出浆液匀称,避免疏密不均。喷头的数量根据液/气比需要的浆液量而定。为保证浆液与烟气的接触充分,一般喷浆管分成3~4层(极个别厂有用2层的,但用的是锥尾式单向喷头),喷淋层间距通常为lm~2m,一般按1.5~1.7m计。

脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计 脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU=)ln() ()(***2 2*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[ 82.0W a k L ?=]4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)

相关文档