文档库 最新最全的文档下载
当前位置:文档库 › 背靠背直流输电系统

背靠背直流输电系统

背靠背直流输电系统
背靠背直流输电系统

背靠背直流输电系统

背靠背直流输电系统(back to back DC transmission system)是输电线路长度为零的直流输电系统。这种类型的直流输电主要用于两个非同步运行(不同频率或相同频率但非同步)的交流电力系统之间的联网或送电,也称为非同步联络站。背靠背直流输电的整流站设备和逆变站设备通常装在一个换流站内,也称为背靠背换流站。在背靠背换流站内,整流器和逆变器的直流侧通过平波电抗器相连,构成直流侧的闭环回路;而其交流侧则分别与联接电网的连接点相连,从而形成两个电力系统的非同步联网。被联电网之间交换功率的大小和方向均由控制系统快速方便地进行控制。为了降低换流站产生的谐波,通常选择12脉动换流器作为基本换流单元。

系统的特点

①背靠背直流输电的直流侧可以选择低电压大电流(因无直流输电线路,直

流侧的损耗较小),可充分利用大截面晶闸管的电流值,同时与直流电压有关的设备(如换流变压器,换流阀,平波电抗器等)绝缘也相应较低,从而使这些设备的造价明显降低。②由于整流器和逆变器均装设在一个阀厅内,直流侧谐波可全部控制在阀厅内,而不会产生对通信的干扰,从而可降低直流侧滤波的要求。

通常可省去直流滤波器,同时平波电抗器值也可选择的较小。③利用背靠背直流输电系统,除可方便快速地调节有功功率以外,还可比利用远距离直流输电更加方便地进行无功功率的调节,从而更有利于改善被联交流电网的电压稳定性。

因此,背靠背直流输电的造价低,设备制造难度小,运行的灵活性好,是进行非同步联网的最佳选择。

系统的现状

背靠背直流输电工程近期的发展较快,到1998年世界上已有24项背靠背直流输电工程投入运行,在美国、加拿大、日本、印度、俄罗斯,西欧地区等均有应用。灵宝工程是我国建设的第一个背靠背直流工程,用于华中电网和西北电网联接,额定容量为360MW,额定直流电压120kV,额定直流电流3000A,所有设备完全自主设计制造。高岭背靠背换流站实现了东北和华北两大电网之间的直流互联,工程2008年投入运行。其主要作用是相互提供调峰容量和互为备用容量。

东北—华北背靠背现在规模为1500 MW,随着电网规模的扩大,远期规模为3000MW。

中俄500kV跨国输电线路目前是中国从境外购电电压等级最高的跨国输电线路,是黑龙江电力公司及黑河地区电网继110kV布黑线(布拉戈维申斯克至黑河一次变)、220kV布爱线(布拉戈维申斯克至爱辉变)后的第3条跨国输电线路。中俄500kV跨国输电线路黑龙江大跨越工程,从俄罗斯侧1号塔至中国侧4号塔止,档距分别为501m、1276m和568m,全部采用耐张杆塔设计。跨江塔为俄方2号

塔和中方3号塔。中方施工从黑龙江主航道国境线至4号塔,回长1351m,由黑龙江省送变电工程公司承建。跨江段导线为AC500/336型钢芯铝、绞线,双分裂水平排列,水平线距600mm,架空地线为24芯OPGW20型复合光缆。黑龙江大跨越工程由俄方提供设计方案,并向中方提供光缆和导线以及部分金具,中方侧的导线绝缘子和金具等,由东北电力设计院负责设计,采用国产材料。中俄500kV 跨国输电线路工程计划于2011年投产送电,届时,俄罗斯远东电网将向黑龙江电网送电,年供电量将达43亿kW。换流站容量750MW,额定直流电压为:±125kV,额定直流电流为3kA。工程安装6+1台换流变压器,交流滤波器20组,容量1000MW,500kV主变压器1台360MW,220kV出线至黑河一次变2回,通过与俄方相接的1回500kV线路接入,中方侧线路亘长10.774km。

背靠背直流工程

背靠背工程 1 灵宝背靠背换流站(我国第一个联网背靠背直流输电工程) 灵宝背靠背高压直流输电BTB-HVDC(Back To Back-High V oltage Direct Current transmission)工程是直流设备国产化的试验示范工程,从成套设计和设备制造,以及系统调试完全自主完成。 工程额定直流功率360 MW,直流额定电压为±120kV,直流额定电流为3kA,功率可双向传输。交流系统电压等级分别为华中侧220 kV、西北侧330 kV,换流站电气主接线如图1所示。220 kV交流场包括:1组电抗器、2组HP3滤波器、3组HP12/24滤波器、2组并联电容器、进线1回、换流变压器支路1回。330 kV交流场包括:1组电抗器、1组HP3滤波器、3组HP12/24滤波器、3组并联电容器、进线1回、换流变压器支路1回。换流变压器采用单相三绕组形式,单台容量均为143.6 MV A,每侧的3台换流变压器通过外部连线实现Yy12、Yd11接线,和换流阀一起构成12脉动桥。直流系统额定电压120 kV,两侧阀通过直流母线串接平波电抗器相连。 图1 灵宝换流站主接线 另外该工程在世界上首次实现了两侧换流阀分别采用光触法和电触发晶闸管阀,首次采用南瑞继保PCS9500和许继DPS2000这两套直流控制保护系统轮流进行的工作模式。

2 高岭背靠背换流站 高岭背靠背换流站实现了东北和华北两大电网之间的直流互联,工程2008年投入运行。其主要作用是相互提供调峰容量和互为备用容量。东北—华北背靠背现在规模为1500 MW,随着电网规模的扩大,远期规模为3000MW。 东北—华北背靠背工程站址选在高岭变电站,换流站与东北主网的电气联系比较薄弱。工程接线方式具有2个独立的单元,每个单元输送750 MW功率,直流电压为±125 kV,直流电流为3 000 A,选用单相三绕组变压器每台变压器容量为300 MVA。背靠背工程东北侧4回500 kV交流线路,分别为沙河营变电所2回,绥中电厂两台800MW发电机组通过2回500kV交流线路接入换流站。华北侧2回500 kV交流线路接入500 kV姜家营变电所。其输电线路模型如图2所示。 图2 高岭背靠背直流输电系统模型 3 中俄500kV直流背靠背联网跨国输电线路 中俄500kV跨国输电线路目前是中国从境外购电电压等级最高的跨国输电线路,是黑龙江电力公司及黑河地区电网继110kV布黑线(布拉戈维申斯克至黑河一次变)、220kV布爱线(布拉戈维申斯克至爱辉变)后的第3条跨国输电线路。

高压直流输电复习题及答案

一、 1.两端直流输电系统怎样构成的,有哪些主要部分? 主要构成:整流站,逆变站和直流输电线路三部分。 2.两端直流输电系统的类型有哪些,系统接线方式如何? 单极系统 双极系统 背靠背系统 3.直流输电的优点是什么? ●直流输电架空线路只需正负两极导线、杆塔结构简单、线路造价低、损耗小; ●直流电缆线路输送容量大、造价低、损耗小、不易老化、寿命长,且输送举例不受限制; ●直流输电不在交流输电的稳定问题,有利于远距离大容量送电; ●采用直流输电实现电力系统之间的非同步联网; ●直流输电输送的有功功率和换流器消耗的无功功率均可由控制系统进行控制,可以改善 交流系统的运行性能; ●在直流电的作用下,只有电阻起作用,电感电容均不起作用,可很好的利用大地这个良 好的导电体; ●直流输电可方便进行分期建设、增容扩建,有利于发挥投资效益; ●输送的有功、无功功率可以手动或自动方式进行快速控制,有利于电网的经济运行合现 代化管理。 4.直流输电的缺点是什么? ●直流输电换流站比交流变电所的设备多、结构复杂、造价高、损害大、运行费用高、可 靠性也差; ●换流器对交流侧来说,除了负荷(在整流站)或电源(在逆变站)是一个谐波电流源以 外,还是一个谐波电流源,会畸变交流电流波形,需装设交流滤波器;换流器对至直流侧来说,除了是电源(在整流站)或负荷(在逆变站)以外,它还是一个谐波电压源,它会畸变电压波形,在直流侧需装设平波电抗器合直流滤波器; ●晶闸管换流器在就进行换流时需消耗大量的无功功率,在换流站需装设无功补偿设备; ●直流输电利用大地(海水)为回路而带来一些技术问题; ●直流断路器没有电流过零可以利用,灭弧问题难以解决。 5.直流输电的应用有哪些? ●远距离大容量输电 ●电力系统联网 ●直流电缆送电 ●现有交流输电线路的增容改造 ●轻型直流输电 6.直流输电的工程目前有哪些?其输送距离、输送电压等级、输送容量各为多少?两端换流站各为哪里? 舟山直流输电工程输送距离54km,输送电压等级±100kv,输送容量为100MW,整流站在浙江省宁波附近的大碶镇,逆变站在舟山本岛的鳌头浦; 葛洲坝——南桥直流输电工程,距离1045km,电压等级±500kv,容量1200MW,整流站在葛洲坝水电站附近的葛洲坝换流站,逆变站在上海南桥换流站; 天生桥——广州直流输电工程,距离960km,电压等级±500kv,容量1800MW,整流站在天生桥水电站附近的马窝换流站,逆变站在广州的北郊换流站; 嵊泗直流输电工程,距离66.2km,电压等级±50kv,容量6MW,可以双向送电,整流站在

高压直流输电情况总结

高压直流输电总结 一、高压直流输电概述: 1.高压直流输电概念: 高压直流输电是交流-直流-交流形式的电力电子换流电路,由将交流电变换为直流电的整流器、高压直流输电线路及将直流电变换为交流电的逆变器三部分组成。 注意:高压输电好处是在输送相同的视在功率S的前提下,高压输电能够降低输电线路流过的电流,减少线路损耗,提高输送效率(,)。 2.高压直流输电的特点: (1)换流器控制复杂,造价高; (2)直流输电线路造价低,输电距离越远越经济; (3)没有交流输电系统的功角稳定问题; (4)适合海底电缆(海岛供电、海上风电)和城市地下电缆输电; (5)能够非同步(同频不同相位,或不同频)连接两个交流电网,且不增加短路容量; (6)传输功率的可控性强,可有效支援交流系统; (7)换流器大量消耗无功,且产生谐波; (8)双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题; (9)不能向无源系统供电,构成多端直流系统困难。 3.对直流输电的基本要求: (1)能够灵活控制输送的(直流)电功率(大小可调;一般情况下,应能够正反双向传送电功率(功率方向可变);

(2)维持直流线路电压在额定值附近; (3)尽可能降低对交流系统的谐波污染; (4)尽可能少地吸收交流系统中的无功功率; (5)尽可能降低流入大地的电流。 注意:大地电流的不利影响包括①不同接地点之间存在电位差,形成电解池,造成电化学腐蚀;②变压器接地中性点流过直流电流,造成变压器直流偏磁,使变压器噪声增加、损耗加大、振动加剧。 4.高压直流输电的适用范围: 答:1.远距离大功率输电;2.海底电缆送电;3.不同频率或同频率非周期运行的交流系统之间的联络;4.用地下电缆向大城市供电;5.交流系统互联或配电网增容时,作为限制短路电流的措施之一;6.配合新能源供电。 二、高压直流输电系统的基本构成: 1.双端直流输电的基本构成: (1)单极大地回线(相对于大地只有一个正极或者负极): 图2- 1 (2)单极金属回线: 图2- 2 (3)双极大地回线(最常用): 图2- 3 (4)双极单端接地(很少用): 图2- 4 (5)双极金属回线(较少用): 图2- 5 (6)并联式背靠背: 图2- 6 (7)串联式背靠背:

直流输电技术课程报告

Harbin Institute of Technology 直流输电技术课程报告题目柔性直流输电在城市配电网中的应用 课程名称:直流输电技术 院系:电气工程系 姓名: 学号: 哈尔滨工业大学 2015年4 月17日

柔性直流输电在城市配电网中的应用 摘要:柔性直流输电技术的出现为城市高压电网的构建及微电网接入大电网提拱了新的技术手段和解决方案, 因此研究柔性直流输电技术在城市电网中的应用具有重要意义。本文简述了柔性直流输电技术的基本原理、应用领域、相比于传统输电技术的优势以及在城市电网应用的可行性条件分析,并给出了家庭和办公直流输电的两种方案。 关键词:柔性直流输电,城市电网,应用领域,运行条件,方案 1.引言 随着社会的不断发展和科学技术的不断进步,电力传输系统经过直流、交流和交直流混合输电三个阶段。由于直流电不能直接升压,这使得直流输电距离受到较大的限制,不能满足输送容量增长和输电距离增加的要求。19 世纪80年代末发明了三相交流发电机和变压器,交流输电就普遍地代替了直流输电,并得到迅速发展, 逐渐形成现代交流电网的雏形。大功率换流器的研究成功,为高压直流输电突破了技术上的障碍[1]。 直流输电相比交流输电在某些方面具有一定的优势。自从1954年第一个商业化高压直流输电(HVDC)工程投入运行以来,HVDC在远距离大功率输电、海底电缆送电、不同额定频率或相同额定频率交流系统之间的非同步联接等场合得到了广泛应用。常规HVDC采用相控换流器技术,存在一些固有的缺陷。例如需要安装大量的无功补偿以及滤波设备,不能向无源网络供电以及只有应用于远距离、大容量输电才能发挥其经济上的优势等。 1990年MeGill大学的BoonTeCk001提出用PWM控制的电压源型换流器进行直流输电。由于采用了IGBT、GTO等全控型器件,基于电压源换流器的直流输电(VSC-HVDC)系统具有可独立调节有功和无功功率的优点,可以向无源网络送电,克服了常规HVDC的本质缺陷,把HVDC的优势扩展到配电网,拓宽了HVDC的应用范围,具有广阔的应用前景。1997年3月世界上第一个采用IGBT 构成电压源换流器的直流输电工业性试验工程---赫尔斯杨工程在瑞典中部投入运行,输送功率3MW,直流电压10kV,输送距离10km。从运行情况来看,不论是暂态还是稳态,该工程电力输送稳定,换流器能够满足噪声水平、谐波畸变、电话干扰和电磁场等方面的技术要求。由于这种换流器的功能强,体积小,可以减少换流器的滤波装置,省去换流变压器,简化换流器结构,ABB公司将其称之为轻型直流输电(HVDCLight),Siemens则将基于VSC换流器的直流输电称为HVDCplus,“plus”表示电力连接系统(PowerLink universalsystem),并分别注册表明其专利权,siemens没有实际的VSC型直流输电工程。截至目前世界上已有10座基于VSC的HVDC工程,输电容量己达350Mw。ABB公司HVDCLight 输电工程输送容量电缆可达久1200MW,架空线可达2400MW,电压等级达320kV。我国国家电网公司和南方电网公司正在规划建设VSC-HVDC的工业示范工程。上海南汇风电场将成为我国首个基于VSC-HVDC的风电接入工程[2]。 2.柔性直流输电概述 传统直流输电采用自然换相技术的电流源型换流器,与之相比,VSC-HVDC 是一种以电压源换流器、可控关断器件和脉宽调制(PWM技术)为基础的新型直

背靠背直流输电系统

背靠背直流输电系统 背靠背直流输电系统(back to back DC transmission system)是输电线路长度为零的直流输电系统。这种类型的直流输电主要用于两个非同步运行(不同频率或相同频率但非同步)的交流电力系统之间的联网或送电,也称为非同步联络站。背靠背直流输电的整流站设备和逆变站设备通常装在一个换流站内,也称为背靠背换流站。在背靠背换流站内,整流器和逆变器的直流侧通过平波电抗器相连,构成直流侧的闭环回路;而其交流侧则分别与联接电网的连接点相连,从而形成两个电力系统的非同步联网。被联电网之间交换功率的大小和方向均由控制系统快速方便地进行控制。为了降低换流站产生的谐波,通常选择12脉动换流器作为基本换流单元。 系统的特点 ①背靠背直流输电的直流侧可以选择低电压大电流(因无直流输电线路,直 流侧的损耗较小),可充分利用大截面晶闸管的电流值,同时与直流电压有关的设备(如换流变压器,换流阀,平波电抗器等)绝缘也相应较低,从而使这些设备的造价明显降低。②由于整流器和逆变器均装设在一个阀厅内,直流侧谐波可全部控制在阀厅内,而不会产生对通信的干扰,从而可降低直流侧滤波的要求。 通常可省去直流滤波器,同时平波电抗器值也可选择的较小。③利用背靠背直流输电系统,除可方便快速地调节有功功率以外,还可比利用远距离直流输电更加方便地进行无功功率的调节,从而更有利于改善被联交流电网的电压稳定性。 因此,背靠背直流输电的造价低,设备制造难度小,运行的灵活性好,是进行非同步联网的最佳选择。 系统的现状 背靠背直流输电工程近期的发展较快,到1998年世界上已有24项背靠背直流输电工程投入运行,在美国、加拿大、日本、印度、俄罗斯,西欧地区等均有应用。灵宝工程是我国建设的第一个背靠背直流工程,用于华中电网和西北电网联接,额定容量为360MW,额定直流电压120kV,额定直流电流3000A,所有设备完全自主设计制造。高岭背靠背换流站实现了东北和华北两大电网之间的直流互联,工程2008年投入运行。其主要作用是相互提供调峰容量和互为备用容量。 东北—华北背靠背现在规模为1500 MW,随着电网规模的扩大,远期规模为3000MW。 中俄500kV跨国输电线路目前是中国从境外购电电压等级最高的跨国输电线路,是黑龙江电力公司及黑河地区电网继110kV布黑线(布拉戈维申斯克至黑河一次变)、220kV布爱线(布拉戈维申斯克至爱辉变)后的第3条跨国输电线路。中俄500kV跨国输电线路黑龙江大跨越工程,从俄罗斯侧1号塔至中国侧4号塔止,档距分别为501m、1276m和568m,全部采用耐张杆塔设计。跨江塔为俄方2号

直流输电系统可靠性统计填报及指标计算的规定(试行)_2012

直流输电系统可靠性统计填报 及指标计算的规定(试行) 第一章总则 第一条根据《直流输电系统可靠性评价规程》(DL/T989-2005),制定本管理规定。 第二条本管理规定对《直流输电系统可靠性评价规程》(以下简称《规程》)的有关条款作了详细解释,对执行《规程》的一些要求作了明确规定,补充制定了特高压直流输电系统、背靠背直流输电系统的可靠性统计评价的具体办法。 第三条本规定自2012年1月1日起执行,适用于我国境内的所有直流输电系统可靠性统计、分析、评价工作。 第二章《规程》中有关术语和定义的解释及补充第四条直流输电系统可靠性统计对象是指《规程》定义的统计范围内的直流输电系统的元件设备或者元件设备的组合。例如单个系统、单个换流站、单极、一个单元、一个阀组等可以作为统计对象,多个系统、多个换流站、多个单元、多个阀组等也可以作为统计对象。 第五条第2.1条对于直流输电系统统计对象的使用状态,定义新(改、扩)建直流输电系统或系统的一部分自正式商业投运之日起,作为可靠性的统计对象,即进入使用状态,直流输电系统在改、扩建期间不计入使用状态(不参加可靠性统计与指标计

算,这里的改扩建指对直流输电系统原有设施、工艺条件进行大规模改造或扩充性建设)。若改(扩)建后直流输电系统基本参数发生变化,需要修改直流系统注册信息,“投运日期”相应改为改、扩建后投运之日,改、扩建时间和前后参数变化在“系统信息”中备注清楚。 第六条第2.1.2.3条双极停运,定义对于双极系统中系统两个极在同一时间由同一原因引起的停运。只有一极的系统不适用此类状态。双极停运可分为双极计划停运、双极强迫停运、双极备用停运。 第七条对于单极停运,定义为双极系统中其中一极的单独停运,两个极由不同原因引起的重叠停运或者由于之前的故障导致另外一极停运的情况计为两个单极停运,单极具有多个阀组的直流输电系统同一级的阀组由相同的原因引起的同时停运计为单极停运。单极停运可分为单极计划停运、单极强迫停运、单极备用停运。 第八条对于阀组停运,定义为单极具有多个阀组的直流输电系统单个阀组的单独停运,多个阀组由不同原因引起的重叠停运或者由于之前的故障导致其它阀组停运的情况计为多个单独的阀组停运。由单阀组构成单极的系统不适用此类状态。阀组停运可分为阀组计划停运、阀组强迫停运、阀组备用停运。 第九条对于全部单元停运,定义为背靠背系统全部单元在同一时间由同一原因引起的停运。只有一个单元或多个单元间在直流系统控制上没有联系的背靠背直流输电系统不适用此类状态。全部单元停运可分为全部单元计划停运、全部单元强迫停运、全

柔性直流输电技术概述

柔性直流输电技术概述 1柔性直流输电技术简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。 2. 技术特点 柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点: (1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性; (2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构

高压直流输电

高压直流输电 一、高压直流输电系统(HVDC)概述 众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。 HVDC技术是从20世纪50年代开始得到应用的。经过半个世纪的发展,HVDC技术的应用取得了长足的进步。据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。 HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。我国已投运的HVDC工程见表1。 表1我国已投运的HVDC工程 另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。 我国关于直流输电技术的研究工作,50年代就开始起步。目前,我国己经有多条直流线路投入运行,这些直流输电工程的投运标志着我国的直流输电技术有了显著的提高和发展。随着三峡工程的兴建和贯彻中央“西电东送”的发展战我国将陆续兴建一批超高压、大容量、远距离直流输电工程和交直流并联输电工程。此外,在这些新建工程中还将采用直流输电的新技术。随着我国直流输电技术的日益完善,输电设备价格的下降和可靠性的提高,以及运行管理经验的不断积累,直流输电必将得到更快的发展和大量的应用标志着我国的直

高压直流输电课后习题答案

《高压直流输电技术》思考题及答案 一.高压直流输电发展三个阶段的特点? 答:1 1954年以前——试验阶段; 参数低;采用低参数汞弧阀;发展速度慢。 2 1954年~1972年——发展阶段; 技术提高很大;直流输电具有多方面的目的(如水下传输;系统互联;远距离、大容量传输)。 3 1972年~现在——大力发展阶段; 采用可控硅阀;几乎全是超高压;单回线路的输电能力比前一阶段有了很大的增加;发展速度快。 二.高压直流输电的基本原理是什么? 答:直流输电线路的基本原理图见图1.3所示。从交流系统 向系统 输电能时,换流站CS1把送 端系统送来的三相交流电流换成直流电流,通过直流输电线路把直流电流(功率)输送到换流站CS2,再由CS2把直流电流变换成三相交流电流 三.高压直流输电如何分类? 答:分两大类: 1 单极线路方式; A.单极线路方式; 采用一根导线或电缆线,以大地或海水作为返回线路组成的直流输电系统。 B.单极两线制线路方式; 将返回线路用一根导线代替的单极线路方式。 2 双极线路方式; A. 双极两线中性点两端接地方式; B. 双极两线中性点单端接地方式; C. 双极中性点线方式; D. “背靠背”(back- to- back)换流方式。 四.高压直流输电的优缺点有哪些? 答:优点:1 输送相同功率时,线路造价低; 2 线路有功损耗小; 3 适宜海下输电; 4 没有系统的稳定问题; 5 能限制系统的短路电流; 6 调节速度快,运行可靠 缺点:1 换流站的设备较昂贵; 2 换流装置要消耗大量的无功; 3 换流装置是一个谐波源,在运行中要产生谐波,影响系统运行,所以需在直流系统的交流侧和直 流侧分别装设交流滤波器和直流滤波器,从而使直流输电的投资增大; 4换流装置几乎没有过载能力,所以对直流系统的运行不利。 5 由于目前高压直流断路器还处于研制阶段,所以阻碍了多端直流系统的发展。 6 以大地作为回路的直流系统,运行时会对沿途的金属构件和管道有腐蚀作用;以海水作为回路时, 会对航海导航仪产生影响。 五.为什么输送相同功率时,直流输电线路比交流输电线路造价低? 答:因为(1)对于架空线路,交流输电通常采用了三根导线而直流只需一根或二根导线,在输送

高压直流输电系统概述

高压直流输电系统概述 院系:电气工程学院 班级:1113班 学号:xxxxxxxxxxx 姓名:xxxxxxxxxx 专业:电工理论新技术

一、高压直流输电系统发展概况 高压直流输电作为一种新兴的输电方法,有很多优于交流输电地方,比如它可以实现不同额定频率或相同额定频率交流系统之间的非同期联络,特别适合高电压、远距离、大容量输电,尤其适合大区电网间的互联,线路功耗小、对环境的危害小,线路故障时的自防护能力强等等。 1954年,世界上第一个基于汞弧阀的高压直输电系统在瑞典投入商业运行.随着电力系统的需求和电力电子技术的发展,高压直流输电技术取得了快速发展. 1972年,基于可控硅阀的新一代高压直流输电系统在加拿大伊尔河流域的背靠背直流工程中使用; 1979年,第一个基于微处理器控制技术的高压直流输电系统投入运行; 1984年,巴西伊泰普水电站建造了电压等级最高(±600 kV)的高压直流输电工程. 我国高压直流输电起步相对较晚,但近年来发展很快. 1987年底我国投运了自行建成的舟山100 kV海底电缆直流输电工程,随后葛洲坝-上海500 kV、1 200MW的大功率直流输电投运,大大促进了我国高压直流输电水平的提高. 2000年以后,我国又相继建成了天生桥-广州、三峡-常州、三峡-广州、贵州-广州等500 kV容量达3 000MW的直流输电工程.此外,海南与台湾等海岛与大陆的联网、各大区电网的互联等等,都给我国直流输电的发展开辟了动人的前景. 近年来,直流输电技术又获得了一次历史性的突破,即基于电压源换流器(Voltage Source Converter,VSC)技术和全控型电力电子功率器件,门极可关断晶闸管(GTO)及绝缘栅双极型晶体管(IGBT)为基础的新一代高压直流输电技术已发展起来,也就是轻型直流输电(HVDC light)技术. 现有的直流输电主要是两端系统.随着直流断路器研制的进展和成功以及直流输电技术的进一步成熟完善,直流输电必将向着多端系统发展.同时许多其他科学技术领域的新成就将使输电技术的用途得到广泛的扩展.光纤与计算机技术的发展也使得直流输电系统的控制、调节与保护更趋完善,运行可靠性进一步提高;高温超导材料及其在强电方面的应用研究正方兴未艾,在直流下运行时,超导电缆无附加损耗,可节省制冷费用,因此在超导输电方面直流输电也很适宜. 一、高压直流输电系统构成 高压直流输电系统的结构按联络线大致可分为单极联络线、双极联络线、同极联络线三大类。 单极联络线的基本结构如图1所示,通常采用一根负极性的导线,由大地或海水提供回路,采用负极性的导线,是因为负极的电晕引起的无线电干扰和受雷击的几率比正极性导线小得多,但当功率反送时,导线的极性反转,则变为负极接地。由于它只需要一根联络线,故出于降低造价的目的,常采用这类系统,对电缆

背靠背直流工程

背靠背直流工程 背靠背工程 1 灵宝背靠背换流站(我国第一个联网背靠背直流输电工程) 灵宝背靠背高压直流输电BTB-HVDC(Back To Back-High V oltage Direct Current transmission)工程是直流设备国产化的试验示范工程,从成套设计和设备制造,以及系 统调试完全自主完成。 工程额定直流功率360 MW ,直流额定电压为±120kV ,直流额定电流为3kA ,功率 可双向传输。交流系统电压等级分别为华中侧220 kV、西北侧330 kV,换流站电气主接 线如图1所示。220 kV交流场包括:1组电抗器、2组HP3滤波器、3组HP12/24滤波器、2组并联电容器、进线1回、换流变压器支路1回。330 kV交流场包括:1组电抗器、1 组HP3滤波器、3组HP12/24滤波器、3组并联电容器、进线1回、换流变压器支路1回。换流变压器采用单相三绕组形式,单台容量均为143.6 MVA, 每侧的3台换流变压器通过 外部连线实现Yy12、Yd11接线,和换流阀一起构成12脉动桥。直流系统额定电压120 kV,两侧阀通过直流母线串接平波电抗器相连。 图1 灵宝换流站主接线 另外该工程在世界上首次实现了两侧换流阀分别采用光触法和电触发晶闸管阀,首次 采用南瑞继保PCS9500和许继DPS2000这两套直流控制保护系统轮流进行的工作模式。 2 高岭背靠背换流站 高岭背靠背换流站实现了东北和华北两大电网之间的直流互联,工程2019年投入运行。其主要作用是相互提供调峰容量和互为备用容量。东北—华北背靠背现在规模为1500 MW,随着电网规模的扩大,远期规模为3000MW 。 东北—华北背靠背工程站址选在高岭变电站,换流站与东北主网的电气联系比较薄弱。工程接线方式具有2个独立的单元,每个单元输送750 MW功率,直流电压为±125 kV, 直流电流为3 000 A,选用单相三绕组变压器每台变压器容量为300 MVA。背靠背工程东 北侧4回500 kV交流线路,分别为沙河营变电所2回,绥中电厂两台800MW 发电机组通 过2回500kV 交流线路接入换流站。华北侧2回500 kV交流线路接入500 kV姜家营变电所。其输电线路模型如图2 所示。 图2 高岭背靠背直流输电系统模型 3 中俄500kV 直流背靠背联网跨国输电线路

高压直流输电—概况

第1章导论 1.1高压直流输电概况 1.1.1 交流输电还是直流输电? 关于电能的输送方式,是采用直流输电还是交流输电,在历史上曾引起过很大的争论。美国发明家爱迪生、英国物理学家开尔文都极力主张采用直流输电,而美国发明家威斯汀豪斯和英国物理学家费朗蒂则主张采用交流输电。 在早期,工程师们主要致力于研究直流电,发电站的供电范围也很有限,而且主要用于照明,还未用作工业动力。例如,1882年爱迪生电气照明公司(创建于1878年)在伦敦建立了第一座发电站,安装了三台110伏“巨汉”号直流发电机,这是爱迪生于1880年研制的,这种发电机可以为1500个16瓦的白炽灯供电。这一阶段发电、输电和用电均为直流电。如1882年在德国建成的57km向慕尼黑国际展览会送电的直流输电线路(2kV,1.5kW);1889年在法国用直流发电机串联而得到高电压,从毛梯埃斯(Moutiers)到里昂(Lyon)的230km直流输电线路(125kV,20MW)等,均为此种类型。 但是随着科学技术和工业生产发展的需要,电力技术在通信、运输、动力等方面逐渐得到广泛应用,社会对电力的需求也急剧增大。由于用户的电压不能太高,因此要输送一定的功率,就要加大电流(P=IU)。而电流愈大,输电线路发热就愈厉害,损失的功率就愈多;而且电流大,损失在输电导线上的电压也大,使用户得到的电压降低,离发电站愈远的用户,得到的电压也就愈低。直流输电的弊端,限制了电力的应用,促使人们探讨用交流输电的问题。爱迪生虽然是一个伟大的发明家,但是他没有受过正规教育,缺乏理论知识,难以解决交流电涉及到的数学运算,阻碍了他对交流电的理解,所以在交、直流输电的争论中,成了保守势力的代表。爱迪生认为交流电危险,不如直流电安全。他还打比方说,沿街道敷设交流电缆,简直等于埋下地雷。并且邀请人们和新闻记者,观看用高压交流电击死野狗、野猫的实验。那时纽约州法院通过了一项法令,用电刑来执行死刑。行刑用的电椅就是通以高压交流电,这正好帮了爱迪生的大忙。在他的反对下,交流电遇到了很大的阻碍。 但是为了减少输电线路中电能的损失,只能提高电压。在发电站将电压升高,到用户地区再把电压降下来,这样就能在低损耗的情况下,达到远距离送电的目的。而要改变电压,只有采用交流输电才行。1888年,由费朗蒂设计的伦敦泰晤士河畔的大型交流电站开始输电。他用钢皮铜心电缆将1万伏的交流电送往相距10公里外的市区变电站,在这里降为2500伏,再分送到各街区的二级变压器,降为100伏供用户照明。以后,俄国的多利沃──多布罗沃斯基又于1889年最先制出了功率为100瓦的三相交流发电机,并被德国、美国推广应用。事实成功地证实了高压交流输电的优越性。并在全世界范围内迅速推广。随着三相交流发电机,感应电动机和变压器的迅速发展,发电和用电领域很快被交流电所取代。同时变压器又可方便地改变交流电压,从而使交流输电和交流电网得到迅速的发展,并很快占据了统治地位。 随着科学的发展,为了解决交流输电存在的问题,寻求更合理的输电方式。由于直流输电具有远距离海底电缆或地下电缆输电,不同频率电网之间的联网或送电等优点,人们现在又开始采用直流超高压输电。但这并不是简单地恢复到爱迪生时代的那种直流输电。发电站发出的电和用户用的电仍然是交流电,只是在远距离输电中,采用换流设备,把交流高压变成直流高压。这样做可以把交流输电用的3条电线减为2条,大大地节约了输电导线。如莫桑比克的卡布拉巴萨水电站至阿扎尼亚的线路架空直流输电线路,长1414公里,输电电压

1两端直流输电系统怎样构成的

1两端直流输电系统怎样构成的,有哪些主要部分? 主要构成:整流站,逆变站和直流输电线路三部分。 2.两端直流输电系统的类型有哪些,系统接线方式如何? 双极系统 背靠背系统 3.直流输电的优点是什么? 直流输电架空线路只需正负两极导线、杆塔结构简单、线路造价低、损耗小;直流电缆线路输送容量大、造价低、损耗小、不易老化、寿命长,且输送举例不受限制;直流输电不在交流输电的稳定问题,有利于远距离大容量送电;采用直流输电实现电力系统之间的非同步联网;直流输电输送的有功功率和换流器消耗的无功功率均可由控制系统进行控制,可以改善交流系统的运行性能;在直流电的作用下,只有电阻起作用,电感电容均不起作用,可很好的利用大地这个良好的导电体;直流输电可方便进行分期建设、增容扩建,有利于发挥投资效益;输送的有功、无功功率可以手动或自动方式进行快速控制,有利于电网的经济运行合现代化管理。 4.直流输电的缺点是什么? 直流输电换流站比交流变电所的设备多、结构复杂、造价高、损害大、运行费用高、可靠性也差;换流器对交流侧来说,除了负荷(在整流站)或电源(在逆变站)是一个谐波电流源以外,还是一个谐波电流源,会畸变交流电流波形,需装设交流滤波器;换流器对至直流侧来说,除了是电源(在整流站)或负荷(在逆变站)以外,它还是一个谐波电压源,它会畸变电压波形,在直流侧需装设平波电抗器合直流滤波器;晶闸管换流器在就进行换流时需消耗大量的无功功率,在换流站需装设无功补偿设备;直流输电利用大地(海水)为回路而带来一些技术问题;直流断路器没有电流过零可以利用,灭弧问题难以解决。 5.直流输电的应用有哪些? 远距离大容量输电电力系统联网直流电缆送电现有交流输电线路的增容改造轻型直流输电 6直流输电的工程目前有哪些?其输送距离、输送电压等级、输送容量各为多少?两端换流站各为哪里? 舟山直流输电工程输送距离54km输送电压等级±100kv,输送容量为100MW,整流站在浙江省宁波附近的大碶镇,逆变站在舟山本岛的鳌头浦;葛洲坝——南桥直流输电工程,距离1045km,电压等级±500kv,容量1200MW,整流站在葛洲坝水电站附近的葛洲坝换流站,逆变站在上海南桥换流站;天生桥——广州直流输电工程,距离960km,电压等级±500kv,容量1800MW,整流站在天生桥水电站附近的马窝换流站,逆变站在广州的北郊换流站;嵊泗直流输电工程,距离66.2km,电压等级±50kv,容量6MW,可以双向送电,整流站在上海的芦潮港换流站,逆变站在嵊泗换流站;三峡——常州直流输电工程,距离860km,电压等级±500kv,容量3000MW,整流站在三峡电站附近的龙泉换流站,逆变站在江苏常州的政平换流站;三峡——广东直流输电工程,距离880km,电压等级±500kv,容量3000MW,整流站在湖北荆州换流站,逆变站在广东的惠州换流站;贵州——广东直流输电工程,距离960km,电压等级±500kv,容量3000MW,整流站在贵州安顺换流站,逆变站在广东的肇庆换流站; 灵宝背靠背直流输电工程,电压等级120kv,容量360MW

高压直流输电技术

高压直流输电技术 学院(系):电气工程学院班级:1113班 学生姓名:高玲 学号:21113043 大连理工大学 Dalian University of Technology

摘要 本文综述了高压直流输电工程的应用领域及研究现状,并从稳态模型出发分析了其控制方式和运行原理,最后介绍了新型高压直流输电系统基本情况,达到了实际的研究意义。 关键词:高压直流输电;稳态模型;控制;新型

目录 摘要....................................................................................................................................II 1 高压直流输电发展概况 (1) 1.1 高压直流输电工程的应用现状 (1) 1.2 高压直流输电的发展趋势 (1) 1.3 高压直流输电的特点 (2) 2 高压直流输电系统控制与运行 (4) 2.1 概述 (4) 2.2 直流输电系统的控制特性 (5) 2.2.1 理想控制特性 (5) 2.2.2 实际控制特性 (6) 2.3 HVDC系统的基本控制 (7) 2.4 HVDC系统的附加控制 (10) 2.4.1 HVDC系统附加控制的原理 (10) 2.4.2 HVDC系统常见的附加控制 (10) 3 新型直流高压输电系统 (12) 3.1 概述 (12) 3.2 基本结构 (12) 参考文献 (13)

1 高压直流输电发展概况 1.1 高压直流输电工程的应用现状 直流输电起步于20世纪50年代,20世纪80年代随着晶闸管应用技术的成熟、可靠性的提高,直流输电得到大的发展。到目前为止,已建成高压直流输电项目60多项,其中以20世纪80年代为之最,占30项。表1.1列出世界上长距离高压直流输电项目,表1.2列出我国直流工程项目。 表2.1 世界上长距离高压直流输电项目 项目额定电压/kV 额定功率/万kW 输电距离/km 投运年份安装地点及供货商卡布拉-巴萨±533 192 1360 1978 莫桑比克2南非因加-沙巴±500 112 1700 1981 扎伊尔 纳尔逊河二期±500 200 940 1985 加拿大 I.P.P ±500 192 784 1986 美国 伊泰普一期±600 315 796 1986 巴西 伊泰普二期±600 315 796 1986 巴西 太平洋联络线±500 310 1361 1989 美国 魁北克多端±500 225 1500 1986/90/92 加拿大-美国 亨德-德里±500 150 814 1992 印度东南联接±500 200 1420 2002 印度 表2.2 我国已投运的高压直流工程项目 项目额定电压/kV 额定功率/万kW 输电距离/km 单极投运年份双极投运年份葛洲坝-上海±500 120 1052 1989 1990 天生桥-广州±500 180 960 2000 2001 三峡-常州±500 300 890 2003 2003 三峡-广州±500 300 956 2003 2004 贵州-广东1回±500 300 900 2004 2004 三峡右岸-上海±500 300 950 2007 2007 贵州-广东2回±500 300 900 2007 2007 1.2 高压直流输电的发展趋势 目前HVDC输电的换流阀仍然是由半控器件晶闸管组成,使用电网换相的相控换流(Phase Control Converter,PCC)技术,因此存在以下一些固有的缺陷:

2016年电网工程变电部分-96分

2016年电网工程变电部分-96分一、单选题【本题型共3道题】 1. 电力行业标准代号为()。 A.DL B.GB C.JB D.DB 用户答案:[A] 得分:12.00 2. 目前已投运的±800kV直流输电容量最高可达()。 A.2000MVA B.3000MVA C.5000MVA D.8000MVA 用户答案:[D] 得分:12.00 3. 1000kV交流变电站中单组主变压器容量一般为()。A.3×240MVA

B.3×334MVA C.3×1000MVA D.3×250MVA 用户答案:[C] 得分:12.00 二、多选题【本题型共8道题】 1. 公司推广的“三通一标”指()。 A.通用设计 B.通用设备 C.通用造价 D.标准化施工 E.标准化设计 用户答案:[ABCD] 得分:4.00 2. 设备属于轻型直流换流站设备()。 A.联络变压器 B.相控电抗器 C.IGBT D.直流电容器 E.直流侧串联平波电抗器 用户答案:[ABCD] 得分:4.00

3. 公司推广的”两型一化”变电站中“两型”:指()。 A.资源节约型 B.城市型 C.环境友好型 D.工业型 E.智能坚强型 用户答案:[AC] 得分:4.00 4. 直流输电的优点()。 A.输送容量大 B.电压分布均匀 C.无谐波电流 D.损耗小 E.直流灭弧容易 用户答案:[AC] 得分:0.00 5. 属于两端直流输电系统工程的是()。 A.单极直流工程

B.双极直流工程 C.背靠背直流工程 D.一个送端、两个受端直流工程 E.多端直流输电 用户答案:[ABC] 得分:4.00 6. 换流站工程采用的基本换流单元有()动换流单元。 A.6脉 B.12脉 C.18脉 D.24脉 E.36脉 用户答案:[AB] 得分:4.00 7. 国家标准可分为()。 A.强制性标准 B.推荐性标准 C.指导性标准 D.建设标准 E.运行性标准 用户答案:[AB] 得分:4.00

新型高压直流输电系统

基于新型换流变压器的特高压直流输电系统的瞬态响应摘要:新型特高压直流输电系统采用了新型电力变换器和一致的感应滤波方法,它的拓扑结构完全不同于已经存在的高压直流输电系统。对于受控系统的变化,也就是说传统高压直流输电系统采用的是一种标准的控制模型,那么新型高压直流输电系统的瞬态响应特征将要相应的改变。参考国际大电网会议上关于高压直流输电的第一个基准模型的主电路参数。这篇论文设计了一个相似的高压直流输电标准模型,该模型是基于换流变压器和一致感应滤波方法的专门特征的,包括了换流变压器和一致感应滤波装置的参数。而且,高压直流输电系统的典型瞬态响应已经通过计算机辅助仿真和电磁暂态仿真,结果表明,采用了标准控制模型的新型高压直流输电系统,有一个很好的瞬态响应特征。而且在外界干扰较大时也能够平稳的运行。 索引词:感应滤波方法,新型换流变压器,新型高压直流输电系统。瞬态响应特征。 1.说明 高压直流输电系统有很高的可控制性。它的有效运行依靠于它的可控制特征的合理运用,给电力系统的期望运行指明了一个方向。总之,新型高压直流输电系统采用了多种等级模型,这种模型为电力系统的控制提供了高效,稳定运行,灵活操作的方法。 新型高压直流输电系统采用了新的电气连接结构,以感应滤波方法取代了传统的被动式反应方法,他可以有效地提高传统高压直流输电中谐波抑制和无功补偿问题的普适性。文章研究了新型换流变压器和感应滤波方法的线路模型和技术特点,工作机制,最终引出了感应滤波的综合优化设计。同时研究了新型高压直流输电系统的稳定运行特征和无功补偿特点。基于以上这些,本篇论文将分析新型高压直流输电系统的典型瞬态响应。 2.新型高压直流输电系统的典型测试系统 新型换流变压器的参数设计: 图一,新型换流变压器的接线图和电压相位图。 在传统的12脉冲高压直流输电系统中,传统的换流变压器经常采用接线方法。它可以为12脉冲的直流系统提供12个相位源。而对与新型的换流变换器,为了达到与传统的换流器的相同效果,它将采用图一所示的接线图。在这种情况下,它不仅能够满足相位变换的要求,而且能够满足感应滤波方法的必要先决条件。他应当满足初次级线圈延长线和公共绕组的限制关系。为了简单讨论,我们选择了新型换流变压器的单相线圈来讨论。依据图

柔性直流输电技术概述

电力电子技术专题大作业 ——柔性直流输电技术概述0.前言 学习电力电子技术专题一学期以来,我感觉受益良多,我收获的不仅仅是各位老师讲座上所教授的内容,更有他们对于电网行业的深入分析以及未来发展方向的预测。在诸多讲座中,我对宋强老师所讲的柔性直流输电技术最感兴趣,下面我就以此为主题,对柔输技术进行一些简要的概括与探究。 1.背景介绍 我们都知道历史上交直流输电之争由来已久,电机系的许多老师都经常提到这个话题,而目前普遍的输电方式仍是交流输电。交流输电线路中,除了有导线的电阻损耗外还有交流感抗的损耗,为了解决交流输电电阻的损耗,还可以采用高压和超高压输电来减小电流来减小损耗,但是交流电感损耗不能减小,因此交流输电不能做太远距离输电。如果线路过长输送的电能就会全部消耗在输电线路上。交流输电并网还要考虑相位的一致。如果相位不一致两组发电机并网会互相抵消。这时人们又想起了直流输电的方式。 一直以来,直流输电的发展与换流技术(特别是高电压、大功率换流设备)的发展有密切的关系。但是近年来,除了有电力电子技术的进步推动外,由于大量直流工程的投入运行,直流输电的控制、保护、故障、可靠性等多种问题也越发显得重要。因此多种新技术的综合应用使得直流输电技术有了新进展。 输电技术的发展经历了从直流到交流,再到交直流共存的技术演变。随着电力电子技术的进步,柔性直流作为新一代直流输电技术,可使当前交直流输电技术面临的诸多问题迎刃而解,为输电方式变革和构建未来电网提供了崭新的解决方案。 基于电压源型换流器的高压直流输电概念最早是由加拿大McGill大学Boon-Teck等学者于1990年提出的。通过控制电压源换流器中全控型电力电子器件的开通和关断,改变输出电压的相角和幅值,可实现对交流侧有功功率和无功功率的控制,达到功率输送和稳定电网等目的,从而有效地克服了此前输电技术

相关文档