文档库 最新最全的文档下载
当前位置:文档库 › 变性淀粉论文

变性淀粉论文

变性淀粉论文
变性淀粉论文

变性淀粉在食品中的应用

班级:

姓名:

学号:

变性淀粉在食品中的应用

摘要:随着食品科学技术的不断发展,食品加工工艺有了很大的改变,对淀粉性质的要求越来越高,天然淀粉已不能满足一些特殊食品的加工产品的要求,通过选择淀粉的类型或改性方法可以得到满足各种特殊用途需要的淀粉制品。本文简单介绍了变性淀粉的分类及特性,详细阐述了变性淀粉在食品工业中的应用以及变性淀粉的发展前景。

关键词:变性淀粉,性质,作用食品工业应用

一前言

淀粉作为一种绿色可再生资源,取之不尽、用之不竭]1[,已成为工业领域重要的廉价有机原料。淀粉及其深加工产品广泛应用于食品、纺织、造纸、医药、饲料、石油钻井、铸造、建筑涂料等工业之中。随着工业的迅速发展,因淀粉的某些特性缺陷,原淀粉很难满足现代新型工业的要求。其主要缺陷表现在]2[:口感差、粘度不一致,易变稀、易老化、冷水不溶性,乳化能力和凝胶能力低。为改善淀粉的性能扩大应用范围,将淀粉通过物理、化学、酶法的变性和复合处理,改变了淀粉的天然理化性质(某些葡萄糖单位的化学结构改变),使其原有性能得到改良,增加了一些新功能或引进新的特性,使得变性淀粉性质各异、适用于不同的应用领域]3[。变性淀粉目前广泛应用于食品行业,在食品业,变性淀粉可作为多种功能性助剂改善食品质量或开发新品种、降低生产成本和优化生产工艺。我国是农业大国,玉米、小麦、土豆、甘薯、木薯等资源十分丰富,具有明显资源优势,变性淀粉开发利用前景非常广阔。

二正文

2.1 变性淀粉的分类及性质

淀粉按处理方式不同可分为以下几类:(1)物理变性淀粉:包括预糊化淀粉、油脂变性淀粉、烟熏变性淀粉、挤压变性淀粉、金属离子变性淀粉、超高压辐射变性淀粉]4[等。(2)化学变性淀粉:极限糊精、酸变性淀粉、氧化淀粉酯化淀粉、醚化淀粉、交联淀粉、阳离子淀粉、淀粉接枝共聚物等。(3)酶法变性淀粉:抗消化淀粉、糊精等。(4)天然变性淀粉:应用遗传技术和精选技术,培育出具有特殊用途变性淀粉。根据变性反应机理,淀粉变性所得产物可分为淀粉分解产物、淀粉衍生物和交联淀粉三大类。淀粉分解产物包括各种酸解、酶解、氧化、高温降解产物,如各种糊精、α–淀粉和氧化淀粉。淀粉衍生物是淀粉分子中羟基被各种官能团取代后所得产物,如羧甲基淀粉、羟甲基淀粉、阳离子淀粉等。醚类键或二酯键,使两个以上淀粉分子之间“架桥”在一起而得交联淀

粉,如磷酸二淀粉酯、乙酰化二淀粉磷酸酯及羟丙基甘油双淀粉等。通过适当改性处理而得变性淀粉大多具有糊透明度高、糊化温度低、淀粉糊粘度大且稳定性好、凝沉性小、成膜性优、抗冻性能强及耐酸、耐碱和耐机械性强等许多优良特性。

2.2 在食品中的应用

变性淀粉在食品工业中被广泛用于饮料、冷食、面制品、调味品、罐头食

品、色拉调料、糖果、微胶囊粉末制品、面粉改良剂等的生产中。

1、在面制品中的应用

变性淀粉在新鲜面中的应用研究证明,加入面粉量%L的脂化糯玉米淀粉或羟丙基玉米淀粉,可降低淀粉的回生程度,使经贮藏的湿面仍具较柔软的口感,面条的品质、溶出率等都得到改善。因变性淀粉的亲水性比小麦淀粉大,易吸水膨胀,能与面筋蛋白、小麦淀粉相互结合形成均匀致密的网络结构。但加入过量会对面团有不利的影响。在油炸方便面中,一般面粉中马铃薯交联淀粉醋酸酯或木薯交联淀粉醋酸酯用量为10%-15%,从而提高成品面条和产品的复水性,使其耐泡而不糊汤;生产中可降低断条率,提高成品率;另外还可降低油炸方便面2%-4%的油耗]5[。

2、在焙烤食品中的应用

抗性淀粉的膳食纤维含量大于M"L,且耐热性能高,吸水能力仅有%NM8水/8淀粉,颗粒细小,适用于中等含水量的焙烤食品、低含水量的谷物制品和休闲食品中。在华夫饼干、发面饼干和曲奇饼干中,能产生酥脆的质构、优异的色泽和良好的口感。在面制食品和面条中也能增加制品的坚实性和耐煮性。薄脆饼干、米果等产品要求淀粉具有一定的膨胀性,预糊化淀粉即是很好的原料,它优于普通淀粉。用预糊化淀粉制成的混合料坯因这部分淀粉已经吸水,烘烤时,大量的水从淀粉颗粒中跑出来,使料坯产生膨胀。相反,如用普通淀粉,当其烘烤时才开始吸水,不易达到松脆的目的。有时,为获得更佳的效果,还使用经变性的预糊化淀粉。

3、在甜品中的应用

在冰淇淋中使用变性淀粉可代替部分脂肪提高结合水量并稳定气泡,使产品具有类似脂肪的组织结构,降低生产成本。这种变性淀粉主要是淀粉基脂肪替代品。果冻的特点是具有很好的透明性,且其组分经加热溶化再冷却后,能形成很好的凝胶。实践中,使用羟丙基交联淀粉取代25%卡拉胶制作果冻,能很好地满足这一要求。近些年来乳制甜品在全世界各地愈来愈流行,从水果蛋糕、胶凝乳、奶油甜品到液态布丁,数不胜数。甜品质构的形成主要与淀粉和胶凝剂的结合及所采用的工艺技术有关。加热温度、时间和均质的剪切速率是选择理想淀粉所要考虑的主要因素。为保证甜品产品的粘性和耐贮存性,所选淀粉的颗粒在产品加工和包装后应能维持高的膨胀度和完整性。一般变性淀粉在92℃下蒸煮15min便可

达最佳膨胀度,而在超高温的140℃下则只需加热4-20s。在均质处理阶段中的加工剪切速率对淀粉浆最终粘度的影响很大。若在淀粉膨胀前进行均质,由于未发生糊化的淀粉颗粒能抵御高的剪切力,其组织不会受到破坏。相反,如在淀粉糊化后才进行均质,所用淀粉必须具有较高的稳定性,以免出现过多膨胀淀粉颗粒被破坏。变性木薯淀粉和糯玉米淀粉能够为乳制甜品提供优异的奶油状组织、中性的口味及较长的保质期;使其在加工中具有高剪切稳定性;淀粉用量可减少5%-10%使产品的粘稠度不受加热的影响。

4、在冷冻食品中的应用

淀粉经交联化和羧甲基化等变性处理后,在低温冷冻条件下,一定程度上避免了淀粉糊分子间经氢键结合成不溶的结晶结构而产生的凝沉作用。随着交联化和羧甲基化程度的提高,其冷冻稳定性和冻融稳定性不断提高。在反复冷冻的条件下,食品仍能保持原来的组织结构,无显著的变化。羧甲基淀粉町以提高冰淇淋的膨胀率,改善其抗融稳定性。降低成本。在国际上,冰淇淋生产的一个趋势是在不影响产品口感的前提下,降低奶油的含量,减少产品的热值,使冰淇淋适于肥胖人群的食用。用麦芽糊精代替部分奶油,达到了上述目的。

5、在饮料中的应用

变性淀粉(如纯胶)在软饮料生产中使用,能起增稠、稳定作用,增加口感。如生产类似可乐的碳酸饮料,添加纯胶可提高饮料l:l感的厚度和润滑感,赋予饮料有光泽的感觉。酸奶是以牛奶或奶粉分散在水中,加乳酸菌发酵而成的,无论制作凝固型酸奶还是饮料型酸奶,都要加入稳定剂,以增加酸奶的粘稠性,改善其质地和口感,防止内容物脱水收缩和乳清的分离。交联酯化或醚化淀粉具有抗酸性环境和杀菌时高温的能力,且其粘稠性好,不易回生,比较合适。

6、在调味品、馅料中的应用

淀粉基脂肪代用品已经成功地应用于各种低脂肪食品中,这类物质对脂肪的替代率限制在50%-70%之间,大多被人体吸收不会带来不良的生理效果。调味料包括辣椒酱、草莓酱、番茄酱等,该类酱需要使用增稠剂。使用变性淀粉后,一方面成本比原来使用胶类大大下降;同时,酱稳定,长时间存放不分层,酱的外观有光泽,口感细腻。这类增稠剂可选用氧化淀粉,但交联酯化淀粉更为合适。颗粒冷水溶胀淀粉能赋予食品“浆状”或“粒状”质构,不论在高酸性或低酸性的食品中均适用,使产品在外观和口感上都得到改进。由于这种淀粉能在加工食品中模拟番茄和果浆的特性,特别适合于开发番茄产品,制造具有“真番茄”特征和高度“浆状”外观的产品。此外,颗粒冷水溶胀淀粉与果汁一起蒸煮而成的浆汁,质构与利用真正破碎水果蒸煮而成的浆汁非常相似,可作为焙烤食品理想的水果馅料。

7、在糖果中的应用

糖果中使用的变性淀粉主要有两大类:一类是凝胶剂,如牛皮糖中用的酸解淀粉;另一类是填充料并起着黏结剂的作用,如口香糖中使用的预糊化淀粉或变性预糊化淀粉。酸变性淀粉具有粘度降低、粘合力强、水溶性增强、糊液的透明性和热糊稳定性提高、凝胶能力增强、形成薄膜性能好的特点。这类淀粉主要用于糖果、胶冻软糖和胶姆糖生产。

8 在方便食品中的应用]7[

变性淀粉已经广泛地应用于方便食t铬,在方便面、米粉、火腿、香肠等食品中均有应用。其中方便面中使用较多的是醋酸酯化淀粉、磷酸酯淀粉、交联淀粉,这些变性淀粉的糊化温度低、糊丝长、透明度高、成膜性好,可赋予面条光洁,平滑的外表,使其[J感爽滑筋道,缩短蒸煮时间,防止混汤、断条.降低了吸油量;在米粉生产中使用较多的是预糊化淀粉.添加5%的预糊化淀粉不仅町以使米粉外脱好、表面光滑、透明感强、口感筋道滑爽,还可以使米粉组织结构细腻,贮存时间延长。在午餐肉生产中使用具有对高温、酸性、剪切力及冷冻稳定的木薯变性淀粉,不仅提高r产品的品质,还非常适合于新工艺生产。醋酸酯化淀粉、磷酸酯淀粉应用于肠类生产,利用其较强的持水性和良好的冻融稳定性,可使产品具有良好的切片性,增强制品的弹性、韧性及结着性,提高保水、保油性等。

9、在肉制品中的应用

在肉制品中,变性淀粉的性能具体表现在耐强加工过程(高温,低pH)、吸水性、粘着性和凝胶性等,使肉制品的质构、切片性、口感、持水性提高。

10 在微胶囊化技术中的应用]8[

在微胶囊的制备中,要求壁材浓度大,包埋的效果就好,形成的外胶囊膜就厚。因而要求使用的壁材是高浓度低粘度的,而典型的原料如阿拉伯胶粘度太大,需要用麦芽糊精来降低粘度。为此,低粘度的酯类变性淀粉--纯胶,由于其粘度低,可以增加使用量,所得的产品的乳化性能强,所形成的乳液乳化状态好,芯材的粒子分散得很小,均匀地分布在乳液中。乳液的纯胶分子大都吸附在油/水界面上,在乳液进行喷雾干燥时,可立即在芯材的表面凝聚固化,其包埋效率很高。在粉末香精中,纯胶作为壁材除具上述优点外,对香精香料还具有缓释的作用。三结语

我国对改性淀粉的认识和研究虽然起步比较晚,但是发展速度比较快,特别是有关改性淀粉在各行业领域的应用愈来愈受到人们的关注和重视,生产规模、生产种类也在不断扩大。变性淀粉可以为食品更新换代、方便化、多能化创造优越条件。它不仅是发展食品工业所必需,而且也是造纸工业、纺织工业以及制药行业

9[ 。通过综合利用变性淀粉,使资源得到合理分配,不仅使企业的经所需要的]10

济效益有较大的提高,而且还为人民生活提供丰富的饮食。因此它具有非常广阔

的应用前景。

四参考资料

[1] 吴玉凯颗粒状冷水可溶淀粉 1998(05)

[2] P.J.Frazier Starch structure and functionality 1997

[3] 张燕萍变性淀粉制造与应用 2001

[4] 丁纯孝. 日本粮油食品加工技术[M]. 北京:中国商业情报中

心,1985.

[5] 白速逸,吴素芬,张香香,王文香,王树林,王立巧,变性淀粉在食品工业中的应用,粮食与食品工业,(2006)01-0027-03

[6] 张力田,变性淀粉[M],广州:华南理工大学出版社,2000

[7] 刘晶,李桂琴,韩清波,变性淀粉及其在食品工业中的应用,西部粮油科技,2003年第2期

[8] 徐晓斌,变性淀粉在食品工业中的应用及展望,中国科技信息2006年第1 2期

[9] G.M.A.Van Beynum,J.A.Roels.Starch conversation technology[M]. New York and Basel:Marcel Dekker,INC.1985

[10] 姚献平,淀粉衍生物及其在造纸中的应用技术[M],北京:中国轻工业,1999

玉米淀粉基本知识

淀粉基本知识 1、淀粉合成、结构、成份 淀粉是纯碳水化合物,分子式可简写为(C6H10O5)n 淀粉颗粒按结构可分为: 支链淀粉:70~80% 支杈状结构粘性分子量32000~16000 直链淀粉:20~30% 直链状结构易和有机物或碘生成化合物,10~100万。 2、物理性质 ①外观:白色粉末(或微带浅黄色阴影)淀粉密度1.61 偏光十字:在偏光显微镜下观察,淀粉颗粒具有双折射性,在淀粉粒面上可以看到以粒径为中心的黑心十字形。 ②淀粉水份含量: 平衡水份:淀粉在不同温度和湿度的空气中含有的水份。 一般水份12~13%,受空气的温度和湿度影响较大。 ③糊化: 若将淀粉的悬浮液加热,达到一定温度时,淀粉颗粒突然膨胀,因膨胀的体积达到原来的数百倍之大,所以悬浮液变为粘稠的胶体溶液这种现象称为淀粉的糊化。 玉米淀粉在55℃开始膨胀,64℃开始糊化,72℃糊化完成。 淀粉糊化的本质(宏观): 三个阶段: A、吸水,淀粉粒内层膨胀,外形未变→可逆的润胀。 B、水温升高至糊化温度时突然膨胀,大量吸水,偏光十字消失,晶体解体→不可逆的溶胀。 C、温度升高,溶胀的淀粉粒继续分解,溶液黏度增高。晶体结构解体,无法恢复成原有的晶体结构。 (微观)本质:水分子进入淀粉颗粒的微晶体结构,拆散淀粉间的缔合状态,淀粉分子或其它集聚体经高度水化形成胶体体系。 ④淀粉遇碘变兰: 鉴别淀粉的存在:加热到70℃时兰色消失,故中和应冷却至70℃以下。 本质:这种反应不是化学反应,而是由于直链淀粉“吸附”碘形成的络合结构。 ⑤淀粉的凝沉作用: 淀粉的衡溶液在低温下静置一定时间后,溶液变浑浊,溶解度降低,而沉淀析出,如果浓度大时间长,则沉淀物可形成硬块不再溶解,也不易被酶作用,这种现象称为淀粉的凝沉作用,也叫老化作用。 凝沉本质:在温度逐渐降低的情况下,溶液中淀粉分子的运动减弱后,

变性淀粉基础

变性淀粉基础知识 神洲淀粉科技公司 1、直链淀粉 直链淀粉经熬煮不易成糊,冷却后呈凝胶体,易回生,热可逆性差。其大分子结构上,葡萄糖分子排列整齐。工业上直链淀粉的用途较多,如可制成强度很高的纤维和透明薄膜,它无味、无臭、无毒,具有抗水和抗油性能,是一种良好的食品包装材料。 直链淀粉具有抗润胀性,水溶性较差,不溶于脂肪; 直链淀粉不产生胰岛素抗性; 直链淀粉糊化温度较高,糯淀粉为73℃,而直链淀粉为81.35℃; 直链淀粉的成膜性和强度很好,粘附性和稳定性较支链淀粉差; 直链淀粉具有近似纤维的性能,用直链淀粉制成的薄膜,具有好的透明度、柔韧性、抗

张强度和水不溶性,可应用于密封材料、包装材料和耐水耐压材料的生产。 直链淀粉是由葡萄糖以α-1,4-糖苷键结合而成的链状化合物,能被淀粉酶水解为麦芽糖。在淀粉中的含量约为10~30%。能溶于热水而不成糊状。遇碘显蓝色。 2、支链淀粉 支链淀粉易成糊其粘性较大,但冷却后不能呈凝胶体,不易回生,热可逆性好。结构上,葡萄糖分子排列不整齐,也能制成透明薄膜,但强度很差,遏水立即溶解。 二、淀粉糊化 (一)物化的概念和本质 将淀粉乳加热,则颗粒可逆地吸水膨胀,而后加热至某一温度时,颗粒突然膨胀,晶体结构消失,最后变成粘稠的糊,虽停止搅拌,也不会很快下沉,这种现象称为淀粉的糊化。发生糊化所需的温度称为糊化温度。糊化后的淀粉颗粒称为糊化淀粉(又称为o·化淀粉)。糊化的本质是水分子进入淀粉粒中,结晶相和无定形相的淀粉分子之间的氢键断裂,破坏了淀粉分子间的缔合状态,分散在水中成为亲水性的肢体溶液。 (二)影响糊化的各种因素 1.颗粒大小与直链淀粉含量 破坏分子间的氢键需要外能,分子问结合力大,排列紧密者,拆开微晶束所需的外能就大,因此糊化温度就高。由此可见,不同种类的淀粉,其糊化温度不会相同(如表2—19所示)。一般来说,小颗粒淀粉内部结构紧密,糊化温度比大颗粒高;直链淀粉分子间结合力较强。因此直链淀粉含量高的淀粉比直链淀粉含量低的淀粉难糊化,因此可从糊化温度上初步鉴别淀粉的种类。 2.使糊化温度下降的外界因素 (1)电解质电解质可破坏分子间氢键.因而促进淀粉的糊化。 (2)非质子有机溶剂二甲基亚矾、盐酸肥、腮等在室温或低温下可破坏分子氢键促进淀粉物化。 (3)物理因素如强烈研磨、挤压蒸煮、7射线等物理因素也能使淀粉的糊化温度下降。 (4)化学因素淀粉经酯化、醚化等化学变性处理,在淀粉分子上引入亲水性基团,使淀粉糊化温度下降。 3.使物化温度升高的外界因素’

变性淀粉相关知识

先介绍一下变性淀粉的定义: 淀粉是一种天然高分子碳水化合物,广泛存在与植物的种子,茎杆或根块中。资源充沛,价格低廉.但天然淀粉在高浓度时(如5%以上时)粘度高、流性差、成胶凝状,用水稀释后,会发生沉淀。为解决这种现象,必须对淀粉进行改性,即将原淀粉通过物理或化学或酶法处理,改变淀粉的糊化温度、粘度、透明度、稳定性、成膜性和膜强度等等。以适用各种应用的要求。改性以后的淀粉称为“变性淀粉”或“淀粉衍生物 简要说明一下变性淀粉在中国的情况。天然淀粉已广泛应用于工业、食品等领域。随着新产品的不断推出,产品性能的不断提高,新工艺、新技术的不断开发,淀粉的深加工—变性淀粉的研究、开发、应用得到了有利的推动。追溯变性淀粉的历史可以至十九世纪初,“英国胶”的诞生,我国变性淀粉的生产却是在本世纪60年代,而到了80年代后才有了很大发展,应用面也越来越广:从纺织、造纸,到食品、饲料、医药、建筑、钻井等方面 明一下原淀粉的化学结构和性质: 淀粉是由α-D六环葡萄糖组成,以糖苷键将其连成多聚长链的均一多糖。分为两大类:一类为直链淀粉(Amylose),仅由D-葡萄糖单位以α-1,4-糖苷键连接并成卷曲、呈螺旋形的线状大分子,形成每个环有6~8个葡萄糖基。碘分子极易进入螺旋环内部,形成蓝色的络合物。若加热至70℃,蓝色消失;冷却后蓝色重现。另一类是支链淀粉(Amylopectin),是一种分枝很多的高分子多糖,分子比直链淀粉大,分子量在20万道尔顿以上,相当于1300个以上的葡萄糖单位组成。整个分子由很多较短的α-1,4-糖苷键连接的直链,再以α-1,6-糖苷键为分枝点,相连接成高度分枝状的大分子。其分子中90%为α-1,4-键;还有10%则为α-1,6-键,是分子的分枝处。与碘很难络合,所以遇碘仅呈现红紫色 请问直链淀粉的链部分断裂后,与碘还否有呈色反应? 并不是所有的直链淀粉遇碘都变为蓝色,而是要达到聚合度大于45才可以,所以直链淀粉的链断了以后,要看它的聚合度是否在45以上,如果以下则遇碘不变为蓝色 变性淀粉在肉制品中的应用,可以说是变性淀粉在食品中的应用的最早期领域之一,在高温肠和低低肠中都有用,主要是替代部分大豆蛋白和一些胶。在肉制品中起在乳化,增稠,保水等作用 淀粉的分子式为(C6H10O5)n,是由一薄层蛋白质包裹的存在于植物体的颗粒,颗粒外层为枝链淀粉,内层为直链淀粉。不同来源的淀粉,直链和枝链淀粉的比例各不相同。如玉米淀粉为2:8;粘质玉米淀粉(WaxyCornStarches)为0:10;糯米为0:10;高链玉米淀粉为7.5:2.5;小麦淀粉为2.5:7.5;马铃薯淀粉(Potatostarches)为2:8;红薯淀粉为1.8:8.2;绿豆淀粉为6:4。经显微镜观察,植物品种不同,淀粉颗粒的形态和大小各不相同,其中,马铃薯淀粉的颗粒直径最大,聚合度也最大。 说明一下不同种淀粉的物化性质:供参考。 项目玉米种子大米种子小麦种子木薯块根甜薯块根土豆块根 颗粒形状多面体多面体镜片状铃状铃状卵状 直径(微米)6~212~85~404~352~405~100 平均直径(微米)16420171850 组成水分(%)131313121218 蛋白质(%)0.350.070.380.020.10 脂肪(%)0.040.560.070.10.10.05

变性淀粉辅助成膜综述

变性淀粉辅助成膜综述 谢丽燕2012/1/3 摘要:淀粉由于其可再生性等受到了广泛的关注,但是天然淀粉存在一些缺陷, 如易老化、强亲水性等,限制了其应用范围,因此变性淀粉应运而生。本文主要 介绍变性淀粉的成膜情况及其在可降解材料和可食性膜方面的应用。 关键字:淀粉变性淀粉膜可降解行可食性 Abstract:People have pay wide attention on starch because of its reproducibility, but natural starch has some defects, Such as easy preburning, strong hydrophilic, etc, that limits its application scope, therefore modified starch arises at the historic moment. This paper mainly introduces the modified starch film and its application in degradable materials and edible film. . Key words: starch modified starch film degradable materials edible film 前言 在世界环境污染日益严重,资源日益匮乏的今天,发展“绿色”、可再生的资源产物,已成为了时代发展的需要。对可再生资源的研究和开发也日益成为人们研究的热点。淀粉是一种绿色植物光合作用的产物,是一种可再生的天然高分子碳水化合物。在科学研究和实际生产中,充分发挥其自身优势,并配合一定的改性手段,扩大淀粉基产品的应用范围,对促进经济发展和资源合理利用有着重要意义。目前,世界淀粉产量约4600万吨,其中90%是玉米淀粉,其余为木薯、小麦、马铃薯淀粉[1]。淀粉广泛存在于植物的块根和块茎等组织中,本身价格低廉,易生物降解,产品本身及降解产物均对环境无害,在自然界中可形成良性循环,符合绿色化学的要求,是一种理想的绿色化工材料。在自然界中,淀粉都是由D-葡萄糖单体组成的同聚物,性质基本相似,但由于不同种类淀粉其颗粒大小、形态和组成上的差异,造成淀粉的性质并不完全相同,其可利用性也不相同。具体情况如下[2]: 淀粉糊的主要性质 性质玉米淀粉马铃薯淀粉木薯淀粉小麦淀粉蜡质玉米淀粉老化性能很高低低高很短冷糊稠度短,不凝固长,成丝长,易凝固短长,不凝固凝胶强度强很弱很弱强不凝结冷冻稳定性差好稍差差好 透明度差好稍差模糊不透明透明

淀粉知识

淀粉知识 在农作物籽粒、根、块根重点分是经光合作用合成,具有颗粒结构与蛋白质、纤维、油脂、糖、矿物质等共同存在。淀粉颗粒不溶于水,工业上便是利用这种性质,采用水磨法工艺,将非淀粉杂质除去,得到纯度高的淀粉产品。1、化学组成 淀粉生产工艺和设备发展很快,已达到和高的技术水平,但还不能将淀粉无完全份除去,产品仍含有很少两杂质。 淀粉是在水介质中光合作用合成,颗粒含有水分,一般在10-20%,淀粉颗粒水分是与周围空气中水分呈平衡状态存在的,空气干燥会散出水分,空气潮湿会吸收水分。水分的吸收和散失是可逆的。 表一淀粉化学组成 脂类化合物与链淀粉分子结合成络合结构存在,对淀粉颗粒糊化、膨胀和溶解有强抑制作用。 2、淀粉颗粒 在光学显微镜,篇光显微镜和扫描电子显微镜下观察,玉米淀粉颗粒较小,呈多三角形;马铃薯淀粉颗粒较大,呈椭圆形;木薯淀粉颗粒有的呈凹形。表二不同淀粉颗粒大小 淀粉颗粒具有结晶性结构。颗粒的一部分具有结晶性结构,分子间具有规律性排列。另一部分为无定形结构,分子间排列杂乱,没有规律性。 淀粉分子具有众多的羟基,亲水性很强,但淀粉颗粒球不溶于水,这是因为羟基之间通过清廉结合的缘故。颗粒中水分也参与氢链的结合。 淀粉颗粒具有渗透性,水和水溶液能自由渗入颗粒内部。淀粉与稀碘溶液接触很快便蓝色,表明点溶液和块渗入颗粒内部与其中链淀粉起反应呈现蓝色,蓝色的淀粉颗粒在于硫代硫酸钠溶液相遇时,蓝色有同样很快消失,表明溶液很快渗入颗粒内部。起了反应。这种快速的颜色变化表明,淀粉颗粒具有很高渗透性。工业上采用化学方法生产变性淀粉便是利用颗粒的渗透性,水起到载体作用。淀粉颗粒内部有结合无定形区域,后者具有较高的渗透性,化学反应主要发生在此区域。 3、直链和支链淀粉 淀粉是有葡萄糖组成的多糖高分子化合物,有直链状和支链状两种分子。

变性淀粉知识

淀粉是一种天然高分子碳水化合物,广泛存在与植物的种子,茎杆或根块中。资源充沛,价格低廉.但天然淀粉在高浓度时(如5%以上时)粘度高、流性差、成胶凝状,用水稀释后,会发生沉淀。为解决这种现象,必须对淀粉进行改性,即将原淀粉通过物理或化学或酶法处理,改变淀粉的糊化温度、粘度、透明度、稳定性、成膜性和膜强度等等。以适用各种应用的要求。改性以后的淀粉称为“变性淀粉”或“淀粉衍生物简要说明一下变性淀粉在中国的情况。天然淀粉已广泛应用于工业、食品等领域。随着新产品的不断推出,产品性能的不断提高,新工艺、新技术的不断开发,淀粉的深加工—变性淀粉的研究、开发、应用得到了有利的推动。追溯变性淀粉的历史可以至十九世纪初,“英国胶”的诞生,我国变性淀粉的生产却是在本世纪60年代,而到了80年代后才有了很大发展,应用面也越来越广:从纺织、造纸,到食品、饲料、医药、建筑、钻井等方面。 不同种淀粉的物化性质:供参考。 项目玉米大米小麦木薯块根甜薯块根土豆块根 颗粒形状多面体多面体镜片状铃状铃状卵状 直径(微米) 6~21 2~8 5~40 4~35 2~40 5~100 平均直径(微米)16 4 20 17 18 50 组成水分(%) 13 13 13 12 12 18 蛋白质(%) 0.35 0.07 0.38 0.02 0.10 脂肪(%) 0.04 0.56 0.07 0.1 0.1 0.05 灰分(%) 0.08 0.10 0.17 0.16 0.3 0.57 P2O5(%) 0.045 0.015 0.149 0.0170 0.176 直链淀粉25 19 30 17 19 25 糊化温度(℃) 77~78 75 75 67~78 75 65~66 木薯淀粉特征 颜色: 木薯淀粉呈白色。 没有气味:木薯淀粉无异味,适用于需精调气味的产品,例如食品和化妆品等。 口味平淡:木薯淀粉无味道、无余味(例如玉米),因此较之普通淀粉更适合于需精调味道的产品,例如布丁、蛋糕和馅心西饼馅等。 浆糊清澈: 木薯淀粉蒸煮后形成的浆糊清澈透明,适合于用色素调色。这一特性对木薯淀粉用于高档纸张的施胶也很重要。 粘性:由于木薯原淀粉中支链淀粉与直链淀粉的比率高达80:20,因此具有很高的尖峰粘度。这一特点适合于很多用途。同时,木薯淀粉也可通过改性消除粘性产生疏松结构,这在许多食品加工中相当重要。 冷冻-解冻稳定性高:木薯原淀粉浆糊表现出相对低的逆转性,因而在冷冻解冻循环中可防止水份丢失。这一特性还可通过改性进一步增强。 木薯淀粉用途 木薯淀粉以原淀粉和各种变性淀粉两大类广泛应用于食品工业及非食品工业。 变性淀粉可根据用户提出的具体要求定制,以适用于特殊用途。 食品 木薯原淀粉广泛应用于食品配方中,例如焙烤制品,也应用于制作挤压成形的小食品和木薯粒珠。变性淀粉或淀粉衍生物已用作增稠剂、粘结剂、膨化剂和稳定剂,也是最佳的增量剂、甜味剂、调味剂载体和脂肪替代品。使用泰国木薯淀粉的食品包括罐头食品、冷冻食品、干混食品、焙烤食品、小食品、佐料、汤料、香肠、奶制品、肉及鱼制品和婴儿食品。 饮料

玉米淀粉生产基础知识

玉米淀粉生产基础知识

大宗生物开发股份二零一七年四月

目录 第一章淀粉的生成及结构 一、淀粉的生成 二、淀粉的物理性状 三、淀粉的化学组成和结构 四、淀粉的用途 第二章玉米淀粉及生产方法 一、玉米的性质和组成 二、玉米的生产过程概述及工艺流程 1、亚硫酸的制备 2、玉米的浸泡 3、玉米的破碎及胚芽分离 4、玉米的精磨与纤维分离 5、淀粉与蛋白质的分离 6、淀粉脱水与干燥 第三章副产品的加工 一、玉米浆与菲订

二、玉米胚芽与玉米油 三、蛋白粉 四、纤维粉

第一章 淀粉的生产及结构 一、淀粉的生成 淀粉碳水化合物,它在自然界分布很广,是植物的主要成分。碳水化合物中最多的是纤维素,其次是淀粉,这二种物质是葡萄糖的聚合物。纤维素是构成细胞壁的主要成分,可以说是植物生长中的建筑材料,淀粉则是植物所储存的食粮。 植物叶绿素在照射下,能将二氧化碳和水变成淀粉,同时产生氧气,这个现象称为“光合作用”,可用化学式简单表示如下: 日光 NOC 2+NH 2O-------------------(C 6H 10O 5)n+NO 2 叶绿素 光合作用的变化过程,实际上并不像上面方程式表示的那样简单,叶绿素是复杂的化合物,含有镁,能由日光中吸收红、蓝和少量的绿光,被吸收的光能促进光合作用的进行。 绿叶在白天所生成的淀粉,存在于叶绿素的微粒,可用碘液定性检测:用酒精将叶绿素溶解,然后加几滴稀碘溶液,若颜色变蓝,则表示有淀粉存在。植物生长成熟后,有许多淀粉储藏在植物的种子(玉米、麦、米等),根(如甘薯、木薯)和块茎(马铃薯)中,各种植物含淀粉的量因品种、气候、土质以及其他生产条件的不同而不一样。即使在同一块地里生产的不同植株,其所含淀粉的量也不一定相同。 二、淀粉的物理性状 淀粉是白色的微小颗粒,不溶于水和有机溶剂,颗粒都呈复杂的结晶组织。淀粉乳遇热糊化呈粘稠的液体。这些性质是一般淀粉所共有的,但由于各种原料制造的淀粉不同,其性状不一样,分别说明如下: 1、颗粒的形状与大小

玉米淀粉工艺知识

淀粉概述 一、淀粉的基本特性及形成 1、淀粉的形成 淀粉是植物体内最重要的储藏碳水化合物,它以颗粒形态沉积在植物的种子、块茎、块根和茎髓中,是人类和动植物赖以生存的主要营养成分。淀粉是绿色植物利用空气中的二氧化碳和水进行光合作用的产物,光合作用的总方程式如下: 日光 NCO2+NH2O (C6H10O5)n+NO2 在植物生长过程中,淀粉一般以微粒形式存在于叶绿素之间。植物生长成熟后,则分别贮存在植物的不同部位:根、茎、种子等。适宜作为工业生产淀粉的原料原料必须具备淀粉含量高。易于制造和价格低廉等条件。一般有:甘薯、马铃薯、木薯、玉米、小麦等。 2、淀粉的化学结构: 淀粉是碳水化合物的一种高分子化合物,其分子式可以简单地表示为:(C6H10O5)n,其分子结构有两种:直链淀粉和支链淀粉。 直链淀粉是由多聚葡萄糖分子链状联结组成,为2-1.4糖苷键联结。一个直链淀粉分子约含200~980个葡萄糖基,其分子量为32000~160000。支链淀粉分子结构有所不同,除2-1.4键联结外,还有2-1.6侧链联结。一个支链淀粉分子平均含有600~6000个葡萄糖基,分子量为100000~。 3、淀粉的理化性质: 1)物理性质: A、淀粉的外观: 淀粉为白色的微小颗粒,不溶于冷水和有机溶剂。在显微镜下观察,淀粉颗粒是透明的,具有一定的形状和大小。玉米淀粉的粒径一般在5~26微米,1Kg淀粉约有17000亿个颗粒,淀粉的比重为1.61,粘度1.3左右(恩格式相对粘度)。玉米淀粉的颗粒形状一般有园形和多角形两种。上部软胚体部分为园形,在胚芽两旁硬胚体部分的颗粒为多角形。淀粉的颗粒在偏光显微镜下观察有一黑色十字,称为“偏光十字”。 B、淀粉的水份含量: 淀粉含有大量的水份,但却不潮湿。在一般情况下,玉米淀粉含水约为12~13%。淀粉含水份的多少,因空气温度、湿度而定,当空气的温度和湿度发生变化时,淀粉含水份量也随之变化。淀粉在不同湿度的空气中含有不同的水份,称为平衡水份。由于品种不同的原因,使得用不同原料制成的淀粉平衡水份也不同。淀粉受热,其所含水份被蒸发掉。加热至130℃时,淀粉成为无水物;继续加热至150~160℃时,变成一黄色水溶性物质;温度再升高则焦化。 C、糊化: 淀粉不溶于冷水中。若混入冷水中,经搅拌成乳状悬浮液,称淀粉乳。若停止搅拌,则淀粉颗粒在重力作用下自然沉淀。若将淀粉乳加热至一定温度,淀粉颗粒开始膨胀,这时偏光十字消失,温度继续升高,淀粉颗粒继续膨胀,可达原体积的几倍到几十倍。由于淀粉颗粒的膨胀,晶体结构消失,颗粒体积增大,晶间空隙胀满,晶粒紧紧接触在一起,这时,淀粉乳变成粘稠状液体,虽停止搅拌,淀粉也不会沉淀,这种现象称为糊化。生成的粘稠液体称为淀粉糊,。发生糊化现象的温度称为糊化温度。玉米淀粉在55℃热水中开始膨胀,64℃时开始糊化,72℃糊化完成。 玉米淀粉糊混浊不透明,随着温度的升高,粘度增加得很快,达到最高值时,继续加热,保持一定的温度,则粘度下降;若停止加热,任其冷却,粘度又上升。淀粉糊在机械搅拌下其粘度降低,搅拌速度越快,粘度降低的程度越大。 D、遇碘变蓝: 淀粉遇碘(T)变为蓝色,加热到约70℃,蓝色消失,经冷却后,蓝色又重新出现。利用淀粉的这个性质可鉴定淀粉的存在。这个蓝色反应并不是化学反应,而是由于直链淀粉“吸附”碘形成络合结构。

第五章:淀粉与变性淀粉

第五章:淀粉生产与淀粉制糖 一、名词解释 变性淀粉:用化学、物理、酶处理的方法,改变原淀粉的理化性质,可得到若干类与原淀粉性质不同的淀粉,这些与原淀粉性质不同的淀粉统称为变性淀粉 氧化淀粉:在氧化反应过程中,改变时间、温度、PH值、次氯酸盐的浓度可生产出多种氧化程度不同的产品,达到理想的反应程度时,用酸性亚硫酸钠处理淀粉浆液,终止氧化反应,调节pH值至中性,然后进行过滤、冲洗并干燥,即得到氧化淀粉成品。 酸化淀粉:用稀酸处理淀粉乳,在低于糊化温度的条件下搅拌至所要求的程度。然后用水洗至中性或先用碳酸钠中和后再用水洗,最后干燥,即得到酸变性淀粉。 接枝淀粉:在催化剂硝酸铈铵的作用下,将丙烯腈接枝聚合在糊化淀粉上,生成的淀粉接枝--聚丙烯腈共聚物,经碱皂化,将晴基转化成氨基甲酰基和碱金属羧酸基团的混合体。 葡萄糖值:淀粉的水解过程,在工业生产上称为糖化或转化。淀粉糖化的程度用葡萄糖值,即DE值表示:DE=直接还原糖(以葡萄糖计)/总固形物X100工业上,采用标准碱性铜溶液来测定糖化液的还原性,将测定所得的还原糖量完全当作葡萄糖值来计算,占干物质的百分率称为葡萄糖值。 酶液化:用α-淀粉酶将淀粉水解成糊精和低聚糖程度,使淀粉乳粘度降低,流动性增强的过程。 酶糖化:用葡萄糖淀粉酶将淀粉液化液中的糊精和低聚糖水解成葡萄糖的过程。 二、选择题 1、工业上提取淀粉的原料主要是()。 1、小麦 2、大米 3、玉米 4、大豆 5、马铃薯 6、木薯 2、玉米籽粒是由( 1256 )等几部分构成。 1、皮层 2、糊粉层 3、子叶 4、胚根 5、胚乳 6、胚 3、粗淀粉乳通过旋液分离器后,从上部溢出的是( 4 )。 ①胚乳②胚③淀粉④胚芽 4、淀粉遇碘呈( 1 )。 ①蓝色②紫红色③红色④紫色 5、氧化淀粉制备时可以使用的氧化剂是( 56 )。 ①H ClO②NaOH③Ca(OH) 2④Cacl 2 5、NaClO 6、Ca(ClO) 2 6、淀粉糖可以分为( 1234 )。 ①葡萄糖②果葡糖③淀粉糖浆④饴糖

玉米淀粉生产基础知识

玉米淀粉生产基础知识 山东大宗生物开发股份有限公司 二零一七年四月 ·

目录 第一章淀粉的生成及结构 一、淀粉的生成 二、淀粉的物理性状 三、淀粉的化学组成和结构 四、淀粉的用途 第二章玉米淀粉及生产方法 一、玉米的性质和组成 二、玉米的生产过程概述及工艺流程 1、亚硫酸的制备 2、玉米的浸泡 3、玉米的破碎及胚芽分离 4、玉米的精磨与纤维分离 5、淀粉与蛋白质的分离 6、淀粉脱水与干燥 第三章副产品的加工 一、玉米浆与菲订 二、玉米胚芽与玉米油 三、蛋白粉 四、纤维粉

第一章 淀粉的生产及结构 一、淀粉的生成 淀粉碳水化合物,它在自然界分布很广,是植物的主要成分。碳水化合物中最多的是纤维素,其次是淀粉,这二种物质是葡萄糖的聚合物。纤维素是构成细胞壁的主要成分,可以说是植物生长中的建筑材料,淀粉则是植物所储存的食粮。 植物叶绿素在阳光照射下,能将二氧化碳和水变成淀粉,同时产生氧气,这个现象称为“光合作用”,可用化学式简单表示如下: 日光 NOC 2+NH 2O-------------------(C 6H 10O 5)n+NO 2 叶绿素 光合作用的变化过程,实际上并不像上面方程式表示的那样简单,叶绿素是复杂的化合物,含有镁,能由日光中吸收红、蓝和少量的绿光,被吸收的光能促进光合作用的进行。 绿叶在白天所生成的淀粉,存在于叶绿素的微粒内,可用碘液定性检测:用酒精将叶绿素溶解,然后加几滴稀碘溶液,若颜色变蓝,则表示有淀粉存在。植物生长成熟后,有许多淀粉储藏在植物的种子(玉米、麦、米等),根(如甘薯、木薯)和块茎(马铃薯)中,各种植物含淀粉的量因品种、气候、土质以及其他生产条件的不同而不一样。即使在同一块地里生产的不同植株,其所含淀粉的量也不一定相同。 二、淀粉的物理性状 淀粉是白色的微小颗粒,不溶于水和有机溶剂,颗粒内都呈复杂的结晶组织。淀粉乳遇热糊化呈粘稠的液体。这些性质是一般淀粉所共有的,但由于各种原料制造的淀粉不同,其性状不一样,分别说明如下: 1、颗粒的形状与大小 在显微镜下观察淀粉的颗粒是透明的,不同的淀粉具有不同的形状和大小。淀粉的性状有原型、椭圆形和多角形三种。一般含水分高、蛋白质含量低的植物的淀粉颗粒比较大,多成圆形和椭圆形,如马铃薯、木薯,相反颗粒小的呈多角形,如大米淀粉。淀粉颗粒形状又因生长的部位和生产期间遭受压力的大小而不同。如玉米淀粉有园型和多角形二种。园型的生长在玉米粒的上部,多角形的生长在胚芽两旁。

预糊化淀粉基础知识

预糊化(α-化)淀粉 1、糊化的含义:淀粉在常温下不溶于水,但当水温至53℃以上时,淀粉的物理性能发生明显变化,淀粉在高温下溶胀、分裂形成均匀糊状溶液的特性,称为淀粉的糊化。不同淀粉的糊化温度不一样,同一种淀粉,颗粒大小不一样,糊化温度也不一样,颗粒大的先糊化,颗粒小的后糊化。 2、糊化的过程: 淀粉要完成整个糊化过程,必须要经过三个阶段:即可逆吸水阶段、不可逆吸水阶段和颗粒解体阶段。 2.1 可逆吸水阶段。淀粉处在室温条件下,即使浸泡在冷水中也不会发生任何性质的变化。存在于冷水中的淀粉经搅拌后则成为悬浊液,若停止搅拌淀粉颗粒又会慢慢重新下沉。在冷水浸泡的过程中,淀粉颗粒虽然由于吸收少量的水分使得体积略有膨胀,但却未影响到颗粒中的结晶部分,所以淀粉的基本性质并不改变。处在这一阶段的淀粉颗粒,进入颗粒内的水分子可以随着淀粉的重新干燥而将吸入的水分子排出,干燥后仍完全恢复到原来的状态,故这一阶段称为淀粉的可逆吸水阶段。 2.2不可逆吸水阶段。淀粉与水处在受热加温的条件下,水分子开始逐渐进入淀粉颗粒内的结晶区域,这时便出现了不可逆吸水的现象。这是因为外界的温度升高,淀粉分子内的一些化学键变得很不稳定,从而有利于这些键的断裂。随着这些化学键的断裂,淀粉颗粒内结晶区域则由原来排列紧密的状态变为疏松状态,使得淀粉的吸水量迅速

增加。淀粉颗粒的体积也由此急剧膨胀,其体积可膨胀到原始体积的50~100倍。处在这一阶段的淀粉如果把它重新进行干燥,其水分也不会完全排出而恢复到原来的结构,故称为不可逆吸水阶段。 2.3颗粒解体阶段。淀粉颗粒经过第二阶段的不可逆吸水后,很快进入第三阶段—颗粒解体阶段。因为,这时淀粉所处的环境温度还在继续提高,所以淀粉颗粒仍在继续吸水膨胀。当其体积膨胀到一定限度后,颗粒便出现破裂现象,颗粒内的淀粉分子向各方向伸展扩散,溶出颗粒体外,扩展开来的淀粉分子之间会互相联结、缠绕,形成一个网状的含水胶体。这就是淀粉完成糊化后所表现出来的糊状体。 3、预糊化淀粉的特性:吸水性、保水性、粘性、弹性、分散性、可溶性 4、预糊化淀粉的应用: 4.1在预糊化过程中,水分子破坏了淀粉分子间的氢键,从而破坏了淀粉颗粒的结晶结构,使之润涨溶于水中,因此易被淀粉酶作用,利于人体消化吸收。预糊化淀粉的这一性质,可用于生产老人及婴幼儿代乳食品。 4.2预糊化淀粉吸水性强、保水性强、粘度及粘弹性都比较高。用在烘烤食品,用在蛋糕、面包中添加4%左右的预糊化淀粉,加水时易混成面团,包含水分和空气多,可使产品保持柔软蓬松,延缓老化。另外,可作为西式糕点表面糖霜的保湿剂,可抑制蔗糖结晶。在速冻食品中加入适量预糊化淀粉,可避免产品在速冻过程中裂开,提高成品率,从而降低生产成本。

基础淀粉知识及变性淀粉在酸奶中的应用

基础淀粉知识及变性淀粉 中的应用 在酸奶 酸奶中的应用

Outline 主要内容 ?Starch in Food Systems ?淀粉在食品体系的功能 ?Carbohydrates -Amylose and Amylopectin ?碳水化合物化学-直链淀粉和支链淀粉 ?Native Starch Properties天然淀粉的特性 --不同原料的淀粉糊 --BRABENDER曲线特点 ?Starch Modifications 变性淀粉 --Starch cooking 评估淀粉不同的蒸煮程度 --Crosslink & stabilization 交联淀粉和稳定处理淀粉?变性淀粉在酸奶中的应用

?黏附?耐储存?黏结?乳浊剂稳定?撒粉?助流 ?泡沫保持 FUNCTIONS OF STARCH IN FOODS 淀粉在食品中的功能 ?胶凝?上光?保水?成模?保形?稳定?增稠 ?Adhesion ?Anti-Staling ?Binding ?Clouding ?Dusting ?Flowing Aid ?Foam Strengthening ?Gelling ?Glazing ?Moisture Retention ?Moulding ?Shaping ?Stabilizing ?Thickening

STARCH SOURCES不同淀粉来源

?Maize →Opaque, gel ?玉米→不透明, 凝胶?Waxy Maize →Clear, cohesive ?蜡质玉米→透明, 长丝 ?Tapioca →Clear, cohesive, slight gel ?木薯→透明透明,,长丝, 轻微的凝胶趋势?Potato →Clear, cohesive, slight gel ?马铃薯 →透明透明,,长丝长丝,,弱凝胶 COOK PROPERTIES OF NATIVE STARCHES 不同原料淀粉糊的特性

乳化淀粉知识

有很多厂都用变性淀粉作为乳化剂是因为市场上通俗的说法,非准确的说法,应当是作为增稠剂,乳化剂的本质必须有亲水基团和亲油基团,不是某人是可以当乳化剂就可以的. 国民淀粉的PG1773、N-LOK、capsul,作为单纯的水油体系来讲, 油:淀粉:水=1:1:2经过高速搅拌就可得到稳定的乳化体系,不需要任何的乳化剂。 的确以上三种淀粉都经过了酯化处理,所以说关键还是看你要得到什么样的乳化体系。 什么是乳化剂? 乳化剂就是一类能使互不相溶的液体形成稳定乳状液的有机化合物。乳化时,分散相是以很小的液珠形式(直径在0.1微米至几十微米之间)均匀地分布在连续相中,乳化剂在这些液珠的表面上形成薄膜或双电层,以阻止它们的相互凝聚,保持乳状液的稳定。 从这个层面来讲,部分淀粉也可以称为乳化剂了, 例如:辛烯基琥珀酸淀粉酯钠(SSOS),他是一种酯类变性淀粉,由于有较大的分子量,在油水界面处可形成一层强度很大的薄膜,可以稳定水包油型的乳浊液。他与乳化剂的相比不仅有很好的乳化性,还有良好的稳定性和增稠性,在水包油型的乳液中有着特殊的作用,可用于不同要求粘度的各种乳浊液。 变性淀粉的应用实在是太广了,它在食品、化工、建筑、石油等方面都有很广的应用。根据不同加工工艺淀粉在食品工业中所提供的性能有:增稠性、持水性、凝胶性、老化性、成膜性、乳化性等。乳化性淀粉在食品中的应用用得比较多的是乳化香精、乳化胶蘘食品。如国明淀粉公司PG2000就有这种功能。 辛烯基琥珀酸淀粉酯钠(SSOS),有乳化作用 衡量乳化性能的最常见的指标是亲水、亲油平衡值(HLB值),HLB值高,表示亲水性强,HLB值低,表示亲油性强,但并不表示其具体的乳化能力。 Hlb值: 1~3作消泡剂;: 3~6作W/O型乳化剂; 7~9作润湿剂; 8~18作O/W型乳化剂; 13~15作去污剂; 15~18作增溶剂。 约值编辑 水溶解性法是估计HLB约值的常用方法,十分简便快捷 加入到水中后的性质HLB值范围 不分散1~4 分散不好3~6 激烈震荡后成乳状分散体6~8 稳定的乳白色分散体8~10 半透明至透明分散体10~13 透明溶液>13

变性淀粉在不同行业中的应用

变性淀粉在不同行业中的应用 变性淀粉现在使用越来越多,也在不同的行业中有所应用。今天郑州魏立实业小编给大家介绍变性淀粉在不同行业中的应用。 1、在食品工业中的应用 不同的变性淀粉可以用在同一种食品之中,而同一种变性淀 粉又可用于不同的食品;同一种食品,不同的生产厂家,又有不同的使用习惯;即使是同一种变性淀粉,不同的变性程度,性能相差又很大,这给变性淀粉在食品品质研究中应用开发提供了广阔的发展前景,同时又指出了其历程的艰难。 食品名目繁多,加工贮藏方法多种多样,从传统的作坊式食品加工到现代化的机械、自动化工业生产,对食品辅料中的淀粉要求越来越高。如现代食品加工工艺中的高温杀菌、机械搅拌、泵的输运,便要求辅料淀粉具有耐热、抗剪切稳定性;冷藏食品则要求糊化后的淀粉不易回生凝沉,而具有很强的亲水性;偏酸性食品要求淀粉在酸性环境下有较强的耐酸稳定性;有些需淀粉具有一些特殊的功能,如成膜性、涂布性等等。食品中使用变性淀粉的优点归纳成如下几点: (1)使用变性淀粉,可以使其在高温、高剪切力和低pH条件下保持较高的粘度稳定性,从而保持其增稠能力。大家知道,很多食品均需在较高温度下加工或杀菌,原淀粉分子在高温下易解聚成小分子,粘度下降,使其失去其增稠能力;同样,食品加工中的机械搅拌和泵的输送,均会产生剪切力,有些食品由于存在有机酸(如酸性饮料),使体系偏酸性,高剪切力和酸性环境均能使原淀粉分子降解,失去增稠、稳定食品的能力。必须通过淀粉的变性处理,提高其耐热、 主要生产黄糊精、白糊精、预糊化淀粉、羧甲基纤维素钠CMC、羧 甲基淀粉钠CMS、核桃砂、合脂粉、合脂油、铸造脱模剂、封箱膏、

淀粉基本知识-

玉米淀粉又称粟粉,是玉米中提取出来的淀粉成分,白色,与玉米粒直接磨成的黄色的玉米面不同。 以玉米淀粉为原料生产的工业制品达500多种,大约三分之二用于食品、医疗、饮料等方面;约三分之一用于造纸、包装、纺织、石油等方面。 作为原料可应用于如粉丝、粉条方便面、火腿肠、冰淇淋等食品,奶油布丁馅、菠萝馅等派、塔、馅饼等西点的馅料中起粘稠作用,也是冰淇淋的原料之一还可用于降解塑料制品中。 作为发酵原料用于淀粉糖、氨基酸、酒精、抗菌素、味精等产品的生产。 在医药工业中,玉米淀粉是制作葡萄糖的重要原料,还是生产青霉素、链霉素等多种抗菌素培养基的主要成分,也是一些片状药物的添加剂; 在化工工业中,玉米淀粉用于生产醋酸、丙酮、丁醇等化工产品; 在纺织和造纸工业中,主要用高直链玉米淀粉作上浆剂和产品表面的涂料;淀粉也可以加工成变性淀粉,广泛应用于造纸、纺织、食品、铸造、医药、建筑、石油钻井、选矿等领域。 食用玉米淀粉标准GB/T8885-2008 工业玉米淀粉标准

食用玉米淀粉是指以玉米为主要原料(原料符合食用标准)而生产的食用淀粉,分为优级品、一级品、二级品。

感观要求: 卫生指标: 理化要求: 马铃薯淀粉与其他淀粉相比,马铃薯淀粉有较长的分子结构,较高的支链淀粉含量,淀粉颗粒的尺寸较大,因此,成糊后表现出其他淀粉所不具有的特性。如成糊后粘度高,成糊稳定,且晶莹透明,具有较好的弹性。 所以凭借其具有的优良特性,广泛应用于: 食品加工中良好的增稠剂和保型剂,广泛应用于方便食品、果子羹、浓缩调料汁、香肠、火腿肠、膨化食品的生产中;烹饪菜肴的勾芡和煲汤;可增加面条,水饺,馄饨的外观透亮度,弹性,使之质地柔韧,风味好,不糊汤,爽口耐嚼。冷凍類食品,如貢丸、魚丸類及各種日式冷凍類食品之賦形劑及增量劑。此外在化工,纺织,医药,饲料,造纸等许多方面得到广泛的应用。

马铃薯淀粉基础知识

马铃薯淀粉基础知识 一、马铃薯组分 ㈠马铃薯块茎的形态结构 按球基体积百分比计算,外皮层约占8.5%,内皮层和维管束环占38.29%,外髓约占37.26%,内髓约占15.95%。 1-顶端 2-芽眉 3-芽眼 4-皮孔 5-基部 6-周皮 7-皮层 8-维管束环 9-髓部 10-环髓区 ㈡马铃薯营养成份表(500克马铃薯) 1.碳水化合物 (1)淀粉 淀粉是马铃薯中主要的碳水化合物,约占薯重的10~26%。

(2)糖 马铃薯中的糖主要为葡萄糖、果糖和蔗糖,还含有糖的磷酸酯等衍生物,含量为干重的0-10%。 (3)其它碳水化合物 非淀粉多糖占马铃薯块茎的0.2%~3.0%,主要为纤维素、果胶、半纤维素、木质素等。 2.蛋白质类物质:酶、蛋白质 3.有机酸 马铃薯块茎细胞的胞液里含有多种有机酸,包括柠檬酸、异柠檬酸、苹果酸、草酸等。 4.矿物质 马铃薯块茎中的矿物质约占干物质重量的2.12%~7.48%,平均为4.36%.其中以钾为最多,约占矿物质总量的2/3;磷次之, 约占矿物质总量的1/10。5.抗营养因子和毒素 A.糖苷生物碱:α-茄碱和α-卡茄碱的混合物,又名龙葵素、龙葵苷。 B.蛋白酶抑制剂 6.酚类化合物 马铃薯中的酚类物质主要是绿原酸。酚类化合物与作物的抗病能力具有相关性。 二、马铃薯淀粉基础理论知识 淀粉是碳水化合物的一种,是由葡萄糖经缩合、脱水而组成的多糖, 分子式为(C 6H 10 O 5 )n ,它以颗粒状态广泛存在于许多植物的籽粒、块 茎、根中。 ㈠淀粉颗粒的形态及大小 在显微镜下观察,淀粉颗粒是透明的,具有一定大小和形状,不同植物的淀粉颗粒其形状、大小也有所不同。一般含水分高、蛋白质低的淀粉颗粒较大,形状较整齐;颗粒小的一般形状不规则。马铃薯淀粉颗粒多呈椭圆形和圆形,其粒径范围为15—100μm。 马铃薯淀粉颗粒具有轮纹,在2500倍电镜下观察,轮纹呈蚌壳形。

预糊化淀粉基础知识

预糊化淀粉基础知识 1、糊化的含义:淀粉在常温下不溶于水,但当水温至53℃以上时,淀粉的物理性能发生明显变化,淀粉在高温下溶胀、分裂形成均匀糊状溶液的特性,称为淀粉的糊化。不同淀粉的糊化温度不一样,同一种淀粉,颗粒大小不一样,糊化温度也不一样,颗粒大的先糊化,颗粒小的后糊化。 2、糊化的过程: 淀粉要完成整个糊化过程,必须要经过三个阶段:即可逆吸水阶段、不可逆吸水阶段和颗粒解体阶段。 2.1 可逆吸水阶段。淀粉处在室温条件下,即使浸泡在冷水中也不会发生任何性质的变化。存在于冷水中的淀粉经搅拌后则成为悬浊液,若停止搅拌淀粉颗粒又会慢慢重新下沉。在冷水浸泡的过程中,淀粉颗粒虽然由于吸收少量的水分使得体积略有膨胀,但却未影响到颗粒中的结晶部分,所以淀粉的基本性质并不改变。处在这一阶段的淀粉颗粒,进入颗粒内的水分子可以随着淀粉的重新干燥而将吸入的水分子排出,干燥后仍完全恢复到原来的状态,故这一阶段称为淀粉的可逆吸水阶段。 2.2不可逆吸水阶段。淀粉与水处在受热加温的条件下,水分子开始逐渐进入淀粉颗粒内的结晶区域,这时便出现了不可逆吸水的现象。 主要生产黄糊精、白糊精、预糊化淀粉、羧甲基纤维素钠CMC、羧甲基淀粉钠CMS、核桃砂、合脂粉、合脂油、铸造脱模剂、封箱膏、

这是因为外界的温度升高,淀粉分子内的一些化学键变得很不稳定,从而有利于这些键的断裂。随着这些化学键的断裂,淀粉颗粒内结晶区域则由原来排列紧密的状态变为疏松状态,使得淀粉的吸水量迅速增加。淀粉颗粒的体积也由此急剧膨胀,其体积可膨胀到原始体积的50~100倍。处在这一阶段的淀粉如果把它重新进行干燥,其水分也不会完全排出而恢复到原来的结构,故称为不可逆吸水阶段。2.3颗粒解体阶段。淀粉颗粒经过第二阶段的不可逆吸水后,很快进入第三阶段—颗粒解体阶段。因为,这时淀粉所处的环境温度还在继续提高,所以淀粉颗粒仍在继续吸水膨胀。当其体积膨胀到一定限度后,颗粒便出现破裂现象,颗粒内的淀粉分子向各方向伸展扩散,溶出颗粒体外,扩展开来的淀粉分子之间会互相联结、缠绕,形成一个网状的含水胶体。这就是淀粉完成糊化后所表现出来的糊状体。3、预糊化淀粉的特性:吸水性、保水性、粘性、弹性、分散性、可溶性 4、预糊化淀粉的应用: 4.1在预糊化过程中,水分子破坏了淀粉分子间的氢键,从而破坏了淀粉颗粒的结晶结构,使之润涨溶于水中,因此易被淀粉酶作用,利于人体消化吸收。预糊化淀粉的这一性质,可用于生产老人及婴幼儿代乳食品。 主要生产黄糊精、白糊精、预糊化淀粉、羧甲基纤维素钠CMC、羧甲基淀粉钠CMS、核桃砂、合脂粉、合脂油、铸造脱模剂、封箱膏、

淀粉与变性淀粉

天然变性淀粉? 李伟雄黄立新 (华南理工大学轻工与食品学院,广州 510640) 摘要通过基因工程技术获得变性淀粉是淀粉工业的新增长点,应该引起国内的重视。本文对淀粉的生物合成过程、天然变性淀粉的特性及其应用进行综述,并对其今后发展趋势做出探讨。 关键词淀粉;生物合成;特性;应用 Transgenically Modified Starch Li Wei-xiong*, Huang-Lixin (College of Light Industry and Food, South China University of Technology, Guangzhou 510640) Abstract Gene engineering technology has been used to produced transgenically modified starch, which is new revenue resourse and paid much attention to. Starch biosynthesis, properties and applications of transgenically modified starch were summarized in the article. And the development trend was included. Keywords: starch; biosynthesis; property; application 中图分类号:TS231 文献标识码:A 1. 前言 淀粉广泛存在于自然界中,特别是植物的种子、根茎及果实内储存甚多【1】。作为人类的主食,淀粉在人类生活中有着举足轻重的作用。像稻米等禾谷类籽粒中的淀粉就提供了人类大约80%的能量所需【2】。 淀粉由两种葡萄糖聚合物组成,链淀粉和支淀粉。一般认为,链淀粉是由α-D-葡萄糖通过α(1→4)糖苷键连接而成的线性分子,其聚合度(DP)一般小于103。支淀粉是一类分支多糖,它是数百条(1→4)-α-葡聚糖链通过α(1→6)糖苷键连接而成,其聚合度一般大于6×103【1】。 不同物种中链淀粉含量是不同的。Jane【3】等对不同来源的谷物淀粉性质进行研究,其中,小麦含链淀粉26%,大麦含链淀粉22%,稻米含链淀粉18%;同一物种的不同品种(如玉米)的链淀粉含量也可从20~36%【4】。另外,植物的不同器官,不同发育阶段,甚至是不同生长条件也可以影响植物链淀粉的含量。不同的淀粉结构,有不同的淀粉特性。传统的通过化学改性的产品均一性差,而基因工程技术能直接获得改性淀粉,因此天然变性淀粉有着重要的研究和开发价值。 2. 淀粉生物合成过程 淀粉以颗形态存在于植物体中,其生物合成途径非常复杂。在高等植物中,淀粉合成的主要场所是淀粉体和叶绿体。在叶绿体细胞中合成的淀粉贮藏时间较短,称为同化淀粉,它作为临时的储备碳源供其它代谢使用;在淀粉体中合成的淀粉贮藏时间较长,称为贮藏淀粉,它作为种子发芽时的营养物质【5,6】。我们常提到的淀粉一般是指贮藏淀粉。目前已知催化淀粉合成的酶系有三种:磷酸化酶系、UDPG转葡萄糖基酶系和ADPG转葡萄糖基 ?资助项目:广东省农业科技攻关计划项目(2004A20301005) 作者简介:李伟雄(1980~ ),男,硕士研究生,主要从事碳水化合物功能化研究

相关文档