文档库 最新最全的文档下载
当前位置:文档库 › 阻抗控制培训

阻抗控制培训

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

PCB的阻抗控制

浅谈PCB的阻抗控制 随着电路设计日趋复杂和高速,如何保证各种信号(特别是高速信号)完整性,也就是保证信号质量,成为难题。此时,需要借助传输线理论进行分析,控制信号线的特征阻抗匹配成为关键,不严格的阻抗控制,将引发相当大的信号反射和信号失真,导致设计失败。常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,我对这个问题有了一些粗浅的认识,愿和大家分享。 多层板的结构: 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um 或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异,通过与上海嘉捷通电路板厂技术支持的沟通,得到该厂的一些参数数据: 表层铜箔:

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.wendangku.net/doc/6a3059051.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

主动悬架系统的阻抗控制

主动悬架系统的阻抗控制 摘要:新的控制系统的开发是为了让汽车的动态行为能适应道路状况的干扰。本文的创新之处就是将阻抗控制系统应用到了装有液压传动装置的汽车的主动悬架系统中。乘客的舒适度和车辆的配适之间的关系可以由阻抗参数导出。阻抗控制的方法很简单,无模型并且可以应用到广泛的道路状况中包括平坦的道路。系统的稳定性已经分析过,然后用一个四分之一车模型悬挂系统和液压执行器非线性模型来模拟控制系统。 关键词:主动悬架系统反馈线性化阻抗控制 一、介绍 被动悬架系统的目的是维护2个预期目标,即:车辆的平稳和乘客的舒适。这个设计性的问题提出就是为这两个彼此相反的目标提供一个平衡。被动悬架系统不能适应它在道路条件上路宽的改变。然而,这些都可以通过主动悬架系统来控制车辆的垂直加速度来改变。它包括在有弹簧作用跟没弹簧作用的车身与车桥之间加一个力产生装置。主动悬架系统已经高度参考了各种文献名著。到目前为止,许多的控制方法比如H1控制,滑动控制,最有控制,模糊控制,主动控制,无模型控制和自适应模糊滑膜控制都应用到了主动悬架系统中。然而,阻抗控制还没有被应用到汽车的悬架系统中。悬架系统的行为就像机械阻抗。因此表明了将阻抗控制应用到主动悬架系统中。 在机械方面,阻抗控制用来调节在与环境控制的机器人动力学上。阻抗控制使机器人成为了一个由大规模,阻尼器,还有弹簧组成的机械装置。有些报告提出了对由阻抗控制其动态行为的机器人的想法。比如,为了提供一个合适的夹紧装置,夹具都是为了表现基于阻抗控制的机器人任务。阻抗控制计算方法被应用

到了非对角刚度的机器人臂上。模糊阻抗控制的目的是执行快速机器人任务。而阻抗控制被应用到了诸如机器人的控制任务等方面。 智能弹簧是为了将阻抗控制应用到旋翼震动抑制而研发的。因此阻抗控制的算法也就随着通过对单个叶片的控制来抑制转子的震动而产生。智能弹簧就像质量弹簧系统致力于由压电陶瓷驱动器的震动结构。执行器在它所工作的为止调节摩擦力。据报道,智能弹簧可以用来控制动态阻抗特性等结构的刚度,阻尼,有效质量。但是,没个有潜在应用价值的智能弹簧的概念都需要优化其设计参数,即以结构参数为基础的刚度和质量。 在我们的认知里,阻抗控制还没有被应用到车辆的被动悬架系统中。在本文中,阻抗控制通过液压执行机构被应用到了汽车悬架系统里。这个方法同智能弹簧的那个方法相比有很多的优点。 1、它可以配合不同的道路状况,这是智能弹簧所不能比拟的,因为它的质量跟刚度都是根据这些路况设计的。 2、该方法相对于智能弹簧的方法比较容易实施。 3、液压执行器更具有操作性,因为智能弹簧为了适应结构必须要控制摩擦力。低重复时摩擦显示了一个复杂的特征。 本文的组织如下。第二部分基于一个四分之一悬架系统和电动液压执行机构介绍了系统的动力学。控制系统是在第三部分设计的,是由两个内部控制回路,即力量控制和位置控制。第四部分应用反馈线性化制定了液压传动装置的力控制。第五部分介绍了阻抗的规则并且为阻抗参数的选择做了分析。为了表现控制

TCSC及其控制策略

TCSC的控制策略 张帆 HVDC&FACTS GROUP 12/21/2003

主要内容 TCSC的基本概念和原理 TCSC的控制 我的工作

Part ⅠTCSC的基本概念及原理 基本结构:固定的串补电容C上并联一个由晶闸管控制的电抗器L 右图是稳态分析用的 TCSC模型,TCSC通 过控制晶闸管触发角 α,改变流过电抗器 的电流值,从而改变TCSC的单元结构图TCSC的阻抗值,其稳态基波阻抗与晶闸管触发角α的关系如式所示:

Part Ⅰ其中,为导通角,πβββπββ)tan tan ()1(cos )(42sin 2)(2222---++--=k k k X X X X X X X X L C C L C C C TCSC L C r X X k ==ωωLC r 1 =ωβαπβ-=

Part Ⅰ与触发角的关系曲线如下: 阻抗X TCSC 理论上,TCSC的容性电抗调节范围可以从串补电容C本身的容抗直 到无穷大,感性电抗调节范围大致为可控硅控制电抗器L本身的电抗到 无穷大。但实际上,由于受晶闸管、C和L上所能承受的电流和电压的限 制以及TCSC控制器性能及电力系统对TCSC电抗变化灵敏程度的限制,使得TCSC阻抗调节范围大大的缩小了。

Part Ⅰ TCSC 的基本工作模式 晶闸管截止。此时,TCSC 等同于固定串联补偿。 晶闸管旁路。此时,VT 1、VT 2全导通,线路电流大部分通过L ,整个TCSC 呈现小电抗特性。 容性微调模式。此时,VT 1、VT 2的导通角较小,整个TCSC 的阻抗呈现大于C 本身容抗的容性电抗特性。TCSC 通常都是运行在容性微调模式 感性微调模式。此时,VT 1、 VT 2的导通角较大,整个 TCSC 的阻抗呈现感性电 抗特性

手机射频之阻抗控制

阻抗控制的目的,便是希望讯号能完全由Source端,传送到Load端,毫无反射,阻抗控制作得越好,其反射就越少[1]。 以RF而言,单端讯号控制为50奥姆,差分讯号控制为100奥姆。至于为何RF 特征阻抗要定为50奥姆? 主要是最大传送功率(30奥姆)与最小Loss(77奥姆)的折衷[2]。

在做阻抗控制之前,要先向PCB厂要迭构数据,才能知道PCB参数。以手机而言,多半为8层板或10层板,8层板多半为3-2-3迭构 或Any Layer

10层板多半为4-2-4迭构 或Any Layer 当然Any Layer在走在线的弹性最大,但是价格最贵。

Trace型式 RF讯号在阻抗控制的型式,多半有4种,单端讯号走表层 单端讯号走内层

差分讯号走表层 差分讯号走内层 将上述四种型式的参数,整理如下: 单端讯号走表层 单端讯号走内层 差分讯号走表层差分讯号走内层 H1 覆膜厚度较大的与参考层距离覆膜厚度较大的与参考层距离H 与参考层距离两层参考层距离与参考层距离两层参考层距离W1 Trace下方宽度Trace下方宽度Trace下方宽度Trace下方宽度 W Trace上方宽度Trace上方宽度Trace上方宽度Trace上方宽度 S 与GND间距与GND间距差分线间距差分线间距 T Trace厚度Trace厚度Trace厚度Trace厚度

单端讯号多半会用Coplanar结构计算,因为与GND的间距,会影响阻抗。而差分讯号与GND的间距,对阻抗影响不大,反而是差分线间距影响较大,所以单端讯号的S,是与GND的间距,而差分讯号的S,是差分线间距。 至于线宽,因为制程缘故,所以洗出来会变梯型,而一般说的线宽,是指W1,而W多半以下式估算阻抗 W = W1 - 1 要注意的是,上式用的单位为mil,而一般计算阻抗时,也多半用mil 。 在此我们利用10层板Any layer来作阻抗控制,

变压器知识培训

变压器知识培训 变压器概述 变压器是利电磁感应原理传输电能和电信号的器件,它具有变压,变流,变阻抗的作用。变压器种类很多,应用也十分广泛,例如在电力系统中用电力变压器把发电机发出的电压升高后进行远离输电,到达目的地后再用变压器把电压降低以便用户使用,以此减少运输过程中电能的损耗。 变压器的工作原理 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的一侧叫一次侧,一次侧的绕组叫一次绕组,把变压器接负载的一侧叫二次侧,二次侧的绕组叫二次绕组。 变压器是变换交流电压、电流和阻抗的器件,一次线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使二次级线圈中感应出电压(或电流)。 变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器设备。 型号说明:

一、变压器的制作原理: 在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 二、分类 按容量分类:中小型变压器(35KV及以下,容量在5-6300KVA)、大型变压器(110KV及以下容量为8000-63000KVA)、特大型变压器(220KV以上)。 按用途分类:电力变压器(升压变、降压变、配电变、联络变、厂用或电所用等)、仪用变压器(电流互感器、电压互感器等用于测量和保护用)、电炉变压器、试验变压器、整流变压器、调压变压器、矿用变压器、其它变压器。 按冷却价质分类:干式(自冷)变压器、油浸(自冷)变压器、气体(SF6)变压器。 按冷却方式分类:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式、蒸发冷却式。

PCB阻抗控制解决方案

PCB阻抗控制解决方案 随着PCB 信号切换速度不断增长,当今的PCB 设计厂商需要理解和控制PCB 迹线的阻抗。相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。 在实际情况中,需要在数字边际速度高于1ns或模拟频率超过300Mhz时控制迹线阻抗。PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。 阻抗控制 阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为阻抗控制。 PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。影响PCB走线的阻抗的因素主要有:铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。PCB 阻抗的范围是25 至120 欧姆。 在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。迹线和板层构成了控制阻抗。PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定: 信号迹线的宽度和厚度 迹线两侧的内核或预填材质的高度

阻抗

阻抗设计 附件三1. 阻抗定义及分类: 1.1阻抗(Zo): 对流经其中已知频率之交流电流,所产生的总阻力称为阻抗(Zo),对印刷电路板而言,是指在高频讯号之下,某一线路层( signal layer)对其最接近的相关层(reference plane)总合之阻抗. 1.2特性阻抗: 在传输讯号线中,高频讯号或电磁波传播时所遭遇的阻力称之为特性阻抗 1.3差动阻抗: 由两根差动信号线组成的控制阻抗的一种复杂结构,驱动端输入的信号为极性相反的两个信号波形,分别由两根差动线传送,在接收端这两个差动信号相减,这种方式主要用于高速数模电路中以获得更好的信号完整性及抗噪声干扰 1.4 Coplanar阻抗: 当阻抗线距导体的距离小于等于最近对应层的距离时即为Coplanar阻抗. 1.5介质常数(Dielectric Constant),又称透电率(Permittivity): 指介质材料的电容ε,与相同条件下以真空为介质之电容εo,两者之比值(ε/εo). 即. Εr=ε/εo. 1.6介质: 原指电容器两极板之间的绝缘材料而言,现已泛指任何两导体之间的绝缘物质,如各种树脂与配合的棉纸以及玻纤布. 1.7 影响阻抗之要素相对于阻抗变化之关系(其中一个参数变化, 假设其余条件不变) 1.7.1 阻抗线宽:阻抗线宽与阻抗成反比, 线宽越细, 阻抗越高, 线宽越粗,阻抗越低. 1.7.2 介质厚度:介质厚度与阻抗成正比, 介质越厚则阻抗越高, 介质越薄则阻抗越低. 1.7.3 介电常数:介电常数与阻抗成反比, 介电常数越高,阻抗越低,介电常数越低,阻抗越高. 1.7.4 防焊厚度:防焊厚度与阻抗成反比.在一定厚度范围内,防焊厚度越厚,阻抗越低,防焊厚 度越薄,阻抗越高. 1.7.5 铜箔厚度:铜箔厚度与阻抗成反比, 铜厚越厚,阻抗越低,铜厚越薄, 阻抗越高. 1.7.6 差动阻抗:间距与阻抗成正比.间距越大,阻抗越大. 其余影响因素则与特性阻抗相同. 1.7.7 Coplanar阻抗:阻抗线距导体的间距与阻抗成正比,间距越大,阻抗越大.其它影响因素 则与特性阻抗相同. 2. 作业内容: 2.1 客户数据确认 2.1.1. 确认客户有无阻抗要求,有无阻抗类型及迭构要求,是否为厂内打样的第一个版本,若 不是确认阻抗.迭构等是否与前版相同. 2.1.2. 如有阻抗及迭构要求且为厂内打样的第一个版本则需模拟确认阻抗能否达到规格中

阻抗设计指引

阻抗设计指引 1.0、目的 确定阻抗控制的要求,规范阻抗计算方法,拟定阻抗测试Coupon设计之准则,确保产品能够满足生产的需要及客户要求。 2.0、范围 所有需要阻抗控制产品的设计、制作及审核。 2.1、定义 特性阻抗的定义:在某一频率下,电子器件传输信号线中,相对某一参考层,其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗……的一个矢量总和。 2.2、特性阻抗的分类:目前我司常见的特性阻抗分为:单端(线)阻抗、差分(动) 阻抗、共面阻抗此三种情况。 2.2.1、单端(线)阻抗:英文Single Ended Impedance ,指单根信号线测得的阻抗。 2.2.2、差分(动)阻抗:英文Differential Impedance,指差分驱动时在两条等宽等间 距的传输线中测试到的阻抗。 2.2.3、共面阻抗:英文Coplanar Impedance ,指信号线在其周围GND/VCC(信号 线到其两侧GND/VCC间距相等)之间传输时所测试到的阻抗。 3.0、职责 3.1、工程部负责本文件的编制及修订。 3.2、MI设计人员负责对客户资料中阻抗要求的理解及转换,负责编写阻抗控制 的流程指示、菲林修改指示及阻抗测试Coupon的设计。MI在生产使用过程中负责解释相关条款内容。 3.3、品保部QAE负责对工程资料的检查及认可。 4.0、内容

4.1、阻抗设计流程: 测量阻抗是否符合客户要求 4.2、阻抗控制需求的决定条件: 当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线,一般信号传输线均需做阻抗控制。PCB制作时,依客户要求决定是否需管控阻抗,若客户要求某一线宽需做阻抗控制,生产时则需管控该线宽的阻抗。 4.3、阻抗匹配的三个要素: 4.3.1、输出阻抗(原始主动零件) 特性阻抗(信号线) 输入阻抗(被动零件) (PCB板) 阻抗匹配 4.3.2、当信号在PCB上传输时,PCB板的特性阻抗必须与头尾元件的电子阻抗相

高频设计中的阻抗匹配

阻抗匹配在高频设计中是一个常用的概念,下面对这个“阻抗匹配”进行解析。阐述什么是阻抗匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸 收了.反之则在传输中有能量损失。高速 PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。

特性阻抗控制介绍

特性阻抗控制
2010.10.20
1

Agenda
1. 何謂特性阻抗 2. 2 影響特性阻抗之因子 3. 特性阻抗之類型介紹 4. CITS25模組介紹及應用 5. Impedance Coupon設計 6. 特性阻抗測試及製程管制
2

何謂特性阻抗
3

PCB的演進
1. 1 傳統 PCB只是 個簡單的互連工具 PCB只是一個簡單的互連工具。 2. 隨著積體電路集成度提高和應用、電路的工作速度愈來愈快, 信號傳輸頻率和速度愈來愈高,PCB上的導線必須扮演高性 信號傳輸頻率和速度愈來愈高 PCB上的導線必須扮演高性 能的傳 輸線,將輸出端的信號完整,準確的傳送到接收器件 的輸入端。
4

電阻 阻抗 特性阻抗
電阻
當導線中流通者是直流電流
流 路 流 路 1 2πfC 兩 兩 流 利 2πfL 率 兩
時,其所遭遇的阻力稱為電阻
兩 流 路
=
= ρ
阻抗
導線中流通者是低頻 或 的交流電流時,其 到的阻力稱為阻抗 ,符號為 ,其數值大與導線本身的電阻 及迴路的容抗與感抗 有關。 有關
=
+
?
特性阻抗
當傳輸線中傳送的是高頻 以上 的波動訊號時,其 到的阻力稱為特性 阻抗 ,符號為 。此種高頻傳輸線,導線本身的 電阻影響很小,系統中之電感及電容影響較大。
ZO = R +
L ≈ C
L C
5

USB线缆结构及差分阻抗要求

USB线缆结构以及差分阻抗要求 USB 2.0数据线的结构如下: 其中,两根电源线(Vcc、GND)直径较粗,而数据线则相对较细。外层的铝箔和编织网只在质量较好的USB线里面才有,用于增加线缆的强度并起到电磁屏蔽的作用,一般是与GND相连的。 USB 3.0数据线的结构如下:

USB3.0关键信号总共8根,一对兼容USB2.0的差分信号,2对超高速差分信号,分别是发送差分对和接收差分对,如下图。UTP用于传输USB 2.0信号,另外两对屏蔽双绞线SDP 用于超高速信号。

USB 3.0的导线数量较多,但基本结构与USB 2.0是相同的。需要注意的是USB 3.0的数据线数量比较多,并且数据线传输的信号也是频率很高的信号,因此很多线缆加强了屏蔽(图中这个就是,可以看到有两组数据线拥有独立的屏蔽层)。 USB3.0的线缆和连接器同样是要做差分阻抗的。 线缆的差分阻抗要求是90Ω±5Ω。 匹配连接器的差分对阻抗要求90Ω±10Ω。

由于USB 3.0的速度达到了5.0Gbps,串行接口的时钟频率已经相当高。目前只有6Gbps的SATA和SAS硬盘接口以及PCI-E 2.0/3.0总线的频率能够与之匹敌,而这些都是主要用于机箱内部的互连(SAS也可以用在外部,PCI-E则很少),USB 3.0却是连接在主机和外设之间。为了保证信号的完整性,对控制器和线缆提出了更加严格的要求。由于USB 3.0

和2.0的速度相差10倍以上,再加上还有键盘/鼠标这样的USB 1.x低速外设的拖累,为了保持向下的兼容性USB 3.0采用了双总线架构(如上图)。即在主机、Hub(集线器)、设备和线缆方面全部保留Non-SuperSpeed(USB 2.0)部分模块,在此基础上增加SuperSpeed(USB 3.0)功能模块。这样做可以说是一种折中的办法,虽然增加了一部分成本,但是却很好的解决了兼容性的问题。 USB 3.0线缆结构示意图 从上表我们看到,USB 3.0除了在数据速度上提升到5Gbps 之外,其传输界面也由USB 2.0的半双工(同一时间只能向一个方向传输数据)改为使用双重单工设计,这一点从上面的线缆图就已经能看出来。“双重单工”(Dual-simplex)与我们常说的全双工(Full-Duplex)技术相类似,二者区别在于双重单工的每对线缆都拥有它自己的接地,而全双工则使用一条公共的地线,双重单工连接可以达到更高的速度和更好的信号质量。这样看来PCI Express总线严格的说应该也属于双重单工连接。

IC知识培训

IC知识简介 1947年第一颗电晶体发明成功,结束了真空管的时代,而1958年TI成功开发出全球第一颗IC,又宣告电晶体的时代结束,IC的时代由此正式开始。从此开始各式IC不断被开发出来,集成度也不断提升,面积也越来越小,而功能则越来越多,性能和可靠性越来越好,这为当今社会的快速发展,起了很大的作用。IC具有集成度高、体积小、可靠性高、成本低等特点,是继电子管、晶体管之后的第二代电子器件。 根据内部电路的规模,集成电路可分为以下几类: 1、小规模集成电路:内部只有100个元件以下或10个逻辑门以下的集成电路称为小 规模集成电路; 2、MSI(中规模集成电路):内部元件数在100个以上、1000个以下,或逻辑门在10 个以上、100个以下的称为中规模集成电路; 3、LSI(大规模集成电路):内部有1000─10000个元件,或逻辑门在100-1000个 的集成电路称大规模集成电路(LSI); 4、VLSI(超大规模集成电路):内部元件数在10000-100000以上的集成电路成为超 大规模集成电路。 IC的温度范围主要有以下几种: C=0℃至+70℃(商业级) I=-20℃至+85℃(工业级) E=-40℃至+85℃(扩展工业级) A=-40℃至+85℃(航空级) M=-55℃至+125℃(军品级) IC封装 前言 对于CPU,大家已经很熟悉了,相信你可以如数家珍似地说出各款的型号特点。但谈到CPU和其他大规模集成电路的封装,真正熟悉的人便寥寥无几。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电器性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁。芯片通过导线连接到封装外壳的引脚,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对于集成电路来说起着重要的作用。

阻抗控制、差分走线的设置

高速电路设计中_走线的等长、关键信号的阻抗控制、差分 走线的设置_ 发布时间: 2012-11-23 15:30:34 来源: EDA中国 本文首先简述了高性能ARM9微处理器EP9315集成的外设接口及硬件结构框架,提出了当前高速电路设计中的问题;然后,详细介绍了利用Allegro实现嵌入式系统中SDRAM和IDE总线接口的电路设计;最后以Cirrus Logic公司的CS8952为例,阐述了物理层接口芯片的布线准则及其在Allegro中的实现。关键词:嵌入式系统;Allegro;等长;差分对;阻抗控制 引言 随着嵌入式微处理器主频的不断提高,信号的传输处理速度越来越快,当系统时钟频率达到100MHZ以上,传统的电路设计方法和软件已无法满足高速电路设计的要求。在高速电路设计中,走线的等长、关键信号的阻抗控制、差分走线的设置等越来越重要。笔者所在的武汉华中科技大学与武汉中科院岩土力学所智能仪器室合作,以ARM9微处理器EP9315为核心的嵌入式系统完成工程检测仪的开发。其中在该嵌入式系统硬件电路设计中的SDRAM 和IDE等长走线、关键信号的阻抗控制和差分走线是本文的重点,同时以cirrus logic公司的网络物理层接口芯片cs8952为例详细介绍了网络部分的硬件电路设计,为同类高速硬件电路设计提供了一种可借鉴的方法。 2 硬件平台 2.1 主要芯片 本设计采用的嵌入式微处理器是Cirrus Logic公司2004年7月推出的EP93XX系列中的高端产品EP9315。该微处理器是高度集成的片上系统处理器,拥有200兆赫工作频率的ARM920T内核,它具有ARM920T内核所有的优异性能,其中丰富的集成外设接口包括PCMCIA、接口图形加速器、可接两组设备的EIDE、1/10/100Mbps以太网MAC、3个

PCB阻抗控制

随着通信科技的不断提升,必然对PCB的要求也有了相应的提高,传统意义上PCB已受到严峻的挑战,以往PCB的最高要求open&short从目前来看已变成PCB的最基本要求,取而代之的是一些为保证客户设计意图的体现而在PCB上所体现的性能的要求,如阻抗控制等。在过去几年之中,控制阻抗的PCB迹线已经开始从纯粹的专家应用转变为更加普及的应用,到目前为止有“阻抗”控制的PCB已广泛的应用于:SDH、GSM、CDMA、PC、大功率无绳电话、手机等,同时也为国防科技提供了相当数量的PCB。本文结合我所在PCB 设计过程中的阻抗控制经验,围绕PCB迹线的阻抗控制,从下面五个方面分别进行了讨论。 一、PCB迹线的阻抗控制简介 二、传输线特性阻抗 三、实现阻抗控制的传输线配置方式 四、传输线阻抗计算中的有关问题 五、传输线阻抗控制典型应用总结 一PCB迹线的阻抗控制简介 PCB上的阻抗控制 电信和计算机设备操作的速度和切换速率正在不断增长。尽管在低频情况下,这是一个可以忽略的物理规律,但现在却需要严肃考虑了。现代PCB上处理器时钟速度和组件切换速度的提高意味着组件间的互连路径(例如PCB迹线:PCB trace)不能再视为简单的导线。实际应用中快速切换速度或高频(即数字边际速度超过1ns或者模拟频率大于300MHz)的PCB迹线必须视为传输线--其电子特性必须由 PCB 设计厂商来控制的信号线。就是说,为了稳定和可预测的高速运行,PCB迹线和PCB绝缘物的电子特性必须得到控制。 PCB 迹线的关键参数之一就是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。这是一个有关迹线物理尺寸(例如迹线的宽度和厚度)和PCB底板材质的绝缘物厚度的函数。PCB迹线的阻抗由其电感和电容电抗决定。 实际情况中,PCB传输线路通常由一个导线迹线、一个或者多个参考层和绝缘材质组成。传输线路,即迹线和板材构成了控制阻抗。PCB通常采用多层结构,并且控制阻抗也可以采用多层方式来构建。但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定: 信号迹线的宽度和厚度 迹线两侧的内核和预填充材质的高度 迹线和层的配置 内核和预填充材质的绝缘常数 阻抗匹配 组件自身可以显示特性阻抗,因此必须选择PCB迹线阻抗来匹配使用中的所有逻辑系列的特性阻抗(对于 CMOS 和 TTL,特性阻抗的范围是 80 到 110 欧姆)。为了最好地将信号从源传送到负载,迹线阻抗必须匹配发送设备的输出阻抗和接收设备的输入阻抗。 如果连接两个设备的的 PCB 迹线的阻抗不匹配设备的特性阻抗,在负载设备可以进入新的逻辑状态之前将会发生多次反射。结果将可能导致高速数字系统中的切换时间或随机错误增加。为此线路设计工程师和 PCB 设计厂商必须仔细指定迹线阻抗值及其误差。 所以阻抗控制技术在高速PCB设计中显得尤其重要。阻抗控制技术包括两个含义:①阻抗控制的PCB信号线是指沿高速PCB信号线各处阻抗连续,也就是说同一个网络上阻抗

电阻基础知识培训讲义

电阻基础知识(培训用) 、电阻定义 1物质对电流的阻碍作用就叫该物质的电阻。 2、在电路中对电流有阻碍作用并且造成能量消耗的导体叫电阻 3、电荷在导体内做定向运动时会遇到阻力,这种阻力称为电阻。 电阻是导体的一种基本性质,与导体的尺寸、材料、温度有关。 二、电阻的特点 1普通电阻是线性元件2、耗能元件 三、电阻的作用 1、降压:用电阻与“用电器”串联,“用电器”的电流全部经过电阻。利用电 流经过电阻时在电阻上产生压降,从而使“用电器”两端的电压下降。原理依据是U总=U1+U2用欧姆定律可轻松算出降压电阻的阻值。电阻降压,适用于电流稳定的“用电器”,如果电流时大时小,“用电器”得的电压将时小时大。= 2、限流:电路结构完全与降压”相同,只是目的不同。降压是不让用电器”的端电压太高,限流是不让用电器”的电流太大。 3、分压:两只电阻串联,利用其中一只电阻上的压降(作为电源)为用电器”供电 ---------------------- 用 电器”与这只电阻并联。 4、分流:给用电器”并联电阻,让本该流过用电器”的电流,可以有一部分从电阻过,从而减小用电器”的电流。 分流与分压,只是目的不同,电路结构其实是相同的,不过, 重要性同等, 分压电路中的两只电阻的 而分流电路不着重研究另一只电阻。 5、阻抗匹配:是指信号在传输过程中负载阻抗和信号源内阻抗之间的特定配合关系。也即 一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,,以免接上负载后对器 材本身的工作状态产生明显的影响。 6、偏置:电阻在放大电路中的偏置作用就是使三极管有一个基本的静态工作电流,使三极管工作在线性放大区,以避免信号失真。 7、负载:电阻做负载,主要用于吸收产品在使用过程中产生的不需要的电量,或起到缓冲、制动的作用,比如修理当中将一些电阻做假负载 8、滤波:往往和电容或电感一起构成滤波电路 9、退藕或去藕:在电路中有些耦合是必要的,而有些耦合是有害的,会产生不良影响,如功放电路驱动喇叭,要很大的电流,此时,电源内阻压降较大,使电源电压降低,产生一个 不良的波动信号,这个信号如果传到前级去再进行放大,会干扰原来的放大信号,使放大器

EMC完整培训教材

EMC测试实训指导书 严冬 编写 工程实训中心

目录 第一章射频电磁场辐射抗扰度测试 (3) 一、射频电磁场辐射抗扰度测试目的及要求 (3) 二、射频电磁场辐射抗扰度测试工作原理 (3) 三、射频电磁场辐射抗扰度测试方案设计 (5) 四、射频电磁场辐射抗扰度测试主要设备和器件介绍 (7) 五、射频电磁场辐射抗扰度测试 (10) 六、射频电磁场辐射抗扰度测试报告 (12) 第二章射频场传导骚扰抗扰度测试 (13) 一、射频场传导骚扰抗扰度测试目的及要求 (13) 二、射频场传导骚扰抗扰度测试工作原理 (13) 三、射频场传导骚扰抗扰度测试方案设计 (13) 四、射频场传导骚扰抗扰度测试主要设备和器件介绍 (14) 五、射频场传导骚扰抗扰度测试 (16) 六、射频场传导骚扰抗扰度测试报告 (18) 第三章静电放电抗扰度测试 (19) 一、静电放电抗扰度测试目的及要求 (19) 二、静电放电抗扰度测试工作原理 (19) 三、静电放电抗扰度测试方案设计 (19) 四、静电放电抗扰度测试主要设备和器件介绍 (21) 五、静电放电抗扰度测试 (21) 六、静电放电抗扰度测试报告 (22) 第四章电快速瞬变脉冲群抗扰度测试 (23) 一、电快速瞬变脉冲群抗扰度测试目的及要求 (23) 二、电快速瞬变脉冲群抗扰度测试工作原理 (23) 三、电快速瞬变脉冲群抗扰度测试方案设计 (23) 四、电快速瞬变脉冲群抗扰度测试内容主要设备和器件介绍 (24) 五、电快速瞬变脉冲群抗扰度测试 (25) 六、电快速瞬变脉冲群抗扰度测试报告 (28) 第五章浪涌抗扰度测试 (29) 一、浪涌抗扰度测试目的及要求 (29) 二、浪涌抗扰度测试工作原理 (29) 三、浪涌抗扰度测试方案设计 (29) 四、浪涌抗扰度测试主要设备和器件介绍 (36) 五、浪涌抗扰度测试 (37) 六、浪涌抗扰度测试报告 (38) 第六章电压暂降、短时中断和电压变化抗扰度测试 (39) 一、电压暂降、短时中断和电压变化抗扰度测试目的及要求 (39) 二、电压暂降、短时中断和电压变化抗扰度测试工作原理 (39) 三、电压暂降、短时中断和电压变化抗扰度测试方案设计 (41) 四、电压暂降、短时中断和电压变化抗扰度测试主要设备和器件介绍 (43) 五、电压暂降、短时中断和电压变化抗扰度测试 (43) 六、电压暂降、短时中断和电压变化抗扰度测试报告 (44)

阻抗板的制作培训

阻抗板的制作培训 1.线宽/线距 常规下侧蚀因子在2.0-2.5左右。为了方便计算,在常规板制作计算时,使用计算线宽如下表:(对于非常规铜厚时则需要参考侧蚀因子进行计算及与工艺人员进行确认)。使用计算间距(S )为顾客设计间距。 (注:W 0=顾客设计线宽) 铜厚 常规下,内层基铜厚为1OZ 、0.5OZ 、2OZ ,外层基铜铜厚为HOZ 、1OZ 、2OZ 。 常规情况下内层的基铜厚就是其成品的计算厚度。 阻焊的厚度与对阻抗值的影响 阻焊厚度为10um 对单端的阻抗值影响为1-3ohm (4%-6%),计算时定为减小2ohm ,外层设计计算时采用不盖阻焊的方法进行软件计算,再减去阻焊对阻抗值的影响而得到设计阻抗值。阻焊厚度对差分阻抗影响较大,减小为5-12ohm ,计算时采用盖阻焊的模式来进行计算。

制作阻抗附连片用于阻抗测试: 1阻抗附连片设计在板边,方向与阻抗线布方向平行,若阻抗线两个方向,原则上选用 短边,但若短边长度不足 9英寸或出现特殊情况如金手指等则将其设计在长边。如图示。 100mil 2 阻抗附连片与板平行,距离成品板间距100mil 。 3 测试线设计不小于7.5英寸,测试孔为PTH 孔,成品孔径要求1.25mm ,一般线路焊盘为 80mil,而其阻焊盘为88mil,内层隔离焊盘和花焊盘按相关规范设定,要求阻抗最靠近板边的测试 焊盘距离板边距离为30mil 左右,设计最小开料尺寸为佳。 4在开料尺寸比较小的情况下,为满足阻抗线的长度的情况下,往往需要另外加大开料, 在阻抗线对不是很多情况下,可以将阻抗线做为曲线。如下图示d=100mil 。

相关文档