文档库 最新最全的文档下载
当前位置:文档库 › 车床编程实例二十六

车床编程实例二十六

车床编程实例二十六
车床编程实例二十六

车床编程实例二十六

如图2-17所示变速手柄轴,毛坯为φ25㎜×100㎜棒材,材料为45钢,完成数控车削。

1.根据零件图样要求、毛坯情况,确定工艺方案及加工路线

1)对细长轴类零件,轴心线为工艺基准,用三爪自定心卡盘夹持φ25 ㎜外圆一头,使工件伸出卡盘85㎜,用顶尖顶持另一头,一次装夹完成粗精加工。

2)工步顺序

①手动粗车端面。

②手动钻中心孔。

③自动加工粗车φ16㎜、φ22㎜外圆,留精车余量1㎜。

④自右向左精车各外圆面:倒角→车削φ16㎜外圆,长35㎜→车φ22㎜右端面→倒角

→车φ22㎜外圆,长45 ㎜。

⑤粗车2㎜×0.5㎜槽、3㎜×φ16 ㎜槽。

⑥精车3㎜×φ16㎜槽,切槽3㎜×0.5㎜槽,切断。

2.选择机床设备

根据零件图样要求,选用经济型数控车床即可达到要求。故选用CK0630 型数控卧式车床。3.选择刀具

根据加工要求,选用五把刀具,T01为粗加工刀,选90°外圆车刀,T02为中心钻,

T03为精加工刀,选90°外圆车刀,T05为切槽刀,刀宽为2㎜,T07为切断刀,刀宽为

3㎜(刀具补偿设置在左刀尖处)。同时把五把刀在自动换刀刀架上安装好,且都对好刀,把它们的刀偏值输入相应的刀

具参数中。

4.确定切削用量切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。

5.确定工件坐标系、对刀点和换刀点

确定以工件右端面与轴心线的交点O 为工件原点,建立XOZ工件坐标系,如图2-17所示。采用手动试切对刀方法(操作与前面介绍的数控车床对刀方法基本相同)把点O 作为

对刀点。换刀点设置在工件坐标系下X35、Z30 处。

6.编写程序(以CK0630车床为例)按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清

24

单。该工件的加工程序如下:

N0010 G59 X0 Z105

N0020 G90

N0030 G92 X35 Z30

N0040 M03 S700

N0050 M06 T0101

N0060 G00 X20 Z1

N0070 G01 X20 Z-34.8 F80 N0080 G00 X20 Z1

N0090 G00 X17 Z1

N0100 G01 X17 Z-34.8 F80 N0110 G00 X23 Z-34.8

N0120 G01 X23 Z-80 F80

N0130 G28

N0140 G29

N0150 M06 T0303

N0160 M03 S1100

N0170 G00 X14 Z1

N0171 G01 X14Z0

N0180 G01 X16 Z-1 F60

N0190 G01 X16 Z-35 F60

N0200 G01 X20 Z-35 F60

N0210 G01 X22 Z-36 F60

N0220 G01 X22 Z-80 F60

N0230 G28

N0240 G29

3.2a数控机床的工作流程包括哪些内容?

答:工作流程包括:①数据加工程序的编制;②输入;③译码;④刀具补偿;⑤插补;⑥位置控制和机床加工。N0250 M06 T0505

N0260 M03 S600

N0270 G00 X23 Z-72.5

N0280 G01 X21 Z-72.5 F40 N0290 G04 P2

N0300 G00 X23 Z-46.5

N0310 G01 X16.5 Z-46.5 F40 N0320 G28

N0330 G29

N0340 M06 T0707

N0350 G00 X23 Z-47

N0360 G01 X16 Z-47 F40

N0370 G04 P2

N0380 G00 X23 Z-35

N0390 GO1 X15 Z-35 F40

N0400 G00 X23 Z-79

N0410 G01 X20 Z-79 F40

N0420 G00 X22 Z-78

N0430 G01 X20 Z-79 F40

N0440 G01 X0 Z-79 F40

N0450 G28

N0460 G29

N0470 M05

N0480 M02

3.4a数控加工工艺处理有哪些内容?

答:1)选择并确定进行数控加工的零件及内容。2)对被加工零件的图样进行工艺分析,明确加工内容和技术要求,在此基础上确定零件的加工方案、划分和安排加工工序。3)设计数控加工工序。如工步的划分,零件的定位,夹具与刀具的选择,切削用量的确定等。4)选择对刀点、换刀点的位置,确定加工路线,考虑刀具的补偿。5)分配数控加工中的容差。6)数控加工工艺技术零件的定型与归档。

4.1a简述数控车床程序编制的特点答:在一个程序段中,根据被加工零件的图样标注尺寸,从编程方便出发,可以采用绝对值编程、增量值编程或二者混合编程。

(1) 由于车削零件的图纸尺寸和测量尺寸在X方向上都时直径值,所有在用绝对值编程时,X通常以直径值表示。用增量值编程时,以径向实际位移量的二倍值编程。同时附上方向符号,正向可省略。

(3) 车削加工的毛坯常用棒料或锻料,加工余量较大,所以数控装置常具备不同形式的固定循环功能,可进行多次重复循环切削。(4)为了提高刀具耐用度并提高加工光洁度,车刀刀尖常磨成半径不大的圆弧。

在编程时必须对刀具半径进行补偿。对具有刀具半径自动补偿的数控系统,可直接按轮廓尺寸编程。而对于不具备半径自动补偿的功能的编程,需要人工求出假想刀尖或刀具中心的运动轨迹,这种计算有时是相当繁琐的。

4.2a简述数控系统的工作过程

答:在CNC机床中,加工过程的人工操作均被数控系统所代替,CNC装置在硬件和系统软件的支持下,执行输入的加工程序。具体的工作过程如下:

(1)输入首先将被加工零件图上的几何信息和工艺参数数字化,即将刀具与工件的相对运动轨迹,用按规定的代码和格式编成加工程序,然后将这些具有零件特征、控制参数和刀具补偿数据的程序输入CNC装置中。

(2)译码经过校验和转换后的代码,含有零件的轮廓信息(线型、起点和终点坐标等)、加工速度(F代码)和其它的一些辅助信息(M.S.T代码等),全部存放在CNC装置的内部存储器中,CNC装置按一个程序段为单位,根据一定的语言规则将其解释成计算机能够识别的数据形式,这一过程称为译码。

(3)数据处理数据处理包括刀具补偿、进给方向判断、进给速度计算和机床辅助功能处理等。处理后的数据以最直接、最方便的形式送入到工作寄存器,供插补运算使用。

(4)插补运算插补运算是根据数控语言G代码提供的轨迹类型(直线、顺圆或逆圆)及

所在的象限等选择合适的插补运算公式,通过相应的插补计算程序,在所提供的已知起点和终点的轨迹上进行“数据点的密化”。

(5)位置控制位置控制是数控系统的重要组成部分,它可由软件来实现,也可由硬件来完成。在闭环系统中,通过位置检测装置检测位移量,同时发出反馈信号,将实际反馈的位置与经计算机插补计算得出的理论位置进行比较,其差值经放大后去控制执行部件,使其朝着消除偏差的方向运动。

(6)I/O处理I/O处理主要是实现对机床的位置伺服控制和M.S.T等辅助功能的强电控制。

(7)显示CNC系统的显示装置有显示器、报警器等,主要功能是为操作者提供方便,显示的内容通常有:零件程序、刀具位置、机床状态、报警等多种参数。(8)诊断数控系统中的诊断程序都具有联机和脱机诊断的功能。

4.4 设在第一象限插补直线段OA,起点为坐标原点O(0,0),终点为A(6,4)。试用逐点比较法进行插补,要求:①列表填写插补计算过程;②画出插补轨迹图。

图插补轨迹

解:刀具沿x、y轴应走的总步数为,插补运算过程见下表,插补轨迹如下图。(1分)

图插补轨迹(4分)

N=10-1=9

N=9-1=8

N=8-1=7

N=7-1=6

N=6-1=5

N=5-1=4

N=4-1=3

N=2-1=1

N=1-1=0

3.2b数控机床编制程序的一般步骤是什么?

答:分析零件图样、确定加工工艺过程、数值分析、编写零件加工程序、制作控制介质、程序校验和试切削。

3.4b 进给伺服系统的作用是什么?进给伺服系统的技术要求有哪些?

答:进给伺服系统的作用:进给伺服系统是数控系统主要的子系统。它忠实地执行由CNC装置发来的运动命令,精确控制执行部件的运动方向,进给速度与位移量。

进给伺服系统的技术要求:调速范围要宽且要有良好的稳定性(在调速范围内);位移精度高;稳定性好;动态响应快;还要求反向死区小,能频繁启、停和正反运动。

四、论述题(每小题10 分,共40分)

4.1b试述CNC系统两种典型的软件结构

答:目前CNC系统的软件一般采用两种典型的结构:一是前后台型结构;二是中断型结构;(1)前后台型软件结构前后台型软件结构将CNC系统整个控制软件分为前台程序和后台程序。前台程序是一个实时中断服务程序,实现插补、位置控制及机床开关逻辑控制等实时功能;后台程序又称背景程序,是一个循环运行程序,实现数控加工程序的输入和预处理(即译码、刀补计算和速度计算等数据处理)以及管理的各项任务。前台程序和后台程序相互配合完成整个控制任务。工作过程大致是,系统启动后,经过系统初始化,进入背景程序循环中。在背景程序的循环过程中,实时中断程序不断插入完成各项实时控制任务。

(2)多重中断型软件结构多重中断型软件结构没有前后台之分,除了初始化程序外,把控制程序安排成不同级别的中断服务程序,整个软件是一个大的多重中断系统。系统的管理功能主要通过各级中断服务程序之间的通信来实现。

4.2b简述数控机床机械结构的特点

答:数控机床作为一种高速、高效和高精度的自动化加工设备,由于其控制系统功能强大,使机床的性能得到大大提高。部分机械结构日趋简化,新的结构、功能部件不断涌现,使得其机械结构和传统的机床相比,有了明显的改进和变化,主要体现在以下几个方面:(1)结构简单、操作方便、自动化程度高

数控机床需要根据数控系统的指令,自动完成对进给速度、主轴转速、刀具运动轨迹以及其他机床辅助功能(如自动换刀、自动冷却等)的控制。(2)高的静、动刚度及良好的抗振性能(3)采用高效、高精度无间隙传动装置数控机床进行的是高速、高精度加工,在简化机械结构的同时,对于机械传动装置和元件也提出了更高的要求(4)具有适应无人化、柔性化加工的功能部件“工艺复合化”和“功能集成化”是无人化、柔性化加工的基本要求,也是数控机床最显著的特点和当前的发展方向。“功能集成化”是当前数控机床的另一重要发展方向。

1.数控机床控制系统按控制方式分为哪几类?

1.可分为三类:开环控制数控系统;闭环控制系统;半闭环控制系统。

五、计算题

1、 插补第一象限直线OE ,起点为O (0,0),终点为E (5,3),写出插补过程并画出轨

迹运动图。

解:因终点最大坐标值为5,取累加器、被积函数寄存器、终点计数器均为三位二进制寄存

器,即N=3。则累加次数823==n 。插补运算过程见表5—3,插补轨迹见图5—9。

2、利用数控机床加工第一象限直线OE ,原点为O ,E 为终点,坐标为()6,4E ,用DDA 法插补此直线,请写出插补运算过程并画出运动轨迹图。

图5—9

相关文档