文档库 最新最全的文档下载
当前位置:文档库 › 8圆锥曲线

8圆锥曲线

2009届高考数学概念方法题型易误点技巧总结(八)

圆锥曲线

1.圆锥曲线的两个定义:

(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数

2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。如(1)已知定点)0,3(),0,3(21F F -,在满足

下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .10

21=+PF PF D .122

2

2

1

=+PF PF (答:C )

;(2)方程

8

=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线

距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点

)0,22(Q 及抛物线4

2

x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):

(1)椭圆:焦点在x 轴上时12222=+b

y a x (0a b >>)?{

cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22

22b

x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆

的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。如(1)已知方程1

232

2=-++k

y k x 表示椭圆,则k 的取值范围为____(答:11

(3,)(,2)22

--- );(2)若R y x ∈,,且

62322=+y x ,则y x +的最大值是____,22y x +的最小值是___2)

(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22

22b

x a y -=1(0,0a b >>)。

方程22

Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。如(1)

双曲线的离心率等于2

5

,且与椭圆14922=+y x 有公共焦点,

则该双曲线的方程_______(答:2

214

x y -=)

;(2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)

(3)抛物线:开口向右时22(0)y px p =>,开口向左时2

2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时2

2(0)x py p =->。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):

(1)椭圆:由x

2

,y

2

分母的大小决定,焦点在分母大的坐标轴上。如已知方程

1212

2=-+-m

y m x 表示焦点在y 轴上的椭圆,

则m 的取值范围是__(答:)23,1()1,( --∞) (2)双曲线:由x 2,y 2

项系数的正负决定,焦点在系数为正的坐标轴上;

(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,a 最大,2

2

2

a b c =+,在双曲线中,c 最大,

222c a b =+。

4.圆锥曲线的几何性质:

(1)椭圆(以122

22=+b

y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;

②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c

=±; ⑤

离心率:c

e a

=,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。如(1)若椭

圆1522=+m y x 的离心率5

10

=

e ,则m 的值是__(答:3或325);(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:22)

(2)双曲线(以22

221x y a b

-=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称

为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a

x c

=±; ⑤离心率:

c

e a

=,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;

⑥两条渐近线:b

y x a =±。如(1)双曲线的渐近线方程是023=±y x ,则该双曲线的离心

率等于______);(2)双曲线22

1ax by -=:a b =

(答:4或14);(3)设双曲线122

22=-b

y a x (a>0,b>0)中,离心率e ∈[2,2],

则两条渐近线夹角θ的取值范围是________(答:[,]32

ππ

);

(3)抛物线(以2

2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2

p

,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c

e a

=,抛物线

?1e =。如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________(答:)161

,

0(a

);

5、点00(,)P x y 和椭圆122

22=+b

y a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外

?22

00

221x y a b +>;

(2)点00(,)P x y 在椭圆上?220220b y a x +=1;(3)点00(,)P x y 在椭圆内?2200

221x y a b

+<

6.直线与圆锥曲线的位置关系:

(1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。如

(1)若直线y=kx+2与双曲线x 2-y 2

=6的右支有两个不同的交点,则k 的取值范围是_______

(答:(-3

15

,-1));(2)直线y ―kx ―1=0与椭圆

2215x y m +=恒有公共点,则m 的取值范围是_______(答:[1,5)∪(5,+∞));(3)过双曲线12

12

2=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB ︱=4,则这样的直线有_____条(答:3);

(2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切;

(3)相离:0?

特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线

与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线22

22b

y a x -=1外一

点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含

双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。如(1)过点)4,2(作直线与抛物线x y 82

=只有一个公共点,这样的直线有______(答:2);(2)过

点(0,2)与双曲线116

922=-y x 有且仅有一个公共点的直线的斜率的取值范围为______(答:

4,3??±?????

;(3)过双曲线1222

=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条(答:3)

;(4)对于抛物线C :x y 42

=,我们称满足02

04x y <的点),(00y x M 在抛物线的内部,若点),(00y x M 在抛物线的内部,则直线l :

)(200x x y y +=与抛物线C 的位置关系是_______(答:相离)

;(5)过抛物线x y 42

=的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则

=+q

p 1

1_______(答:1);(6)设双曲线

19

162

2=-y x 的右焦点为F ,右准线为l ,设某直线m 交其左支、

右支和右准线分别于R Q P ,,,则PFR ∠和QFR ∠的大小关系为___________(填大于、小于或等于) (答:等于);(7)求椭圆284722=+y x 上的点到直线01623=--y x 的最短距

);(8)直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点。①当a 为何值时,A 、B 分别在双曲线的两支上?②当a 为何值时,以AB 为直径的圆过坐标原点?

(答:①(;②1a =±);

7、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径r ed =,其中d 表示P 到与F 所对应的准线的距离。

如(1)已知椭圆116

252

2=+y x 上一点P 到椭圆左焦点的距离为3,则点P 到右准线的距离为

____(答:

353

);(2)已知抛物线方程为x y 82=,若抛物线上一点到y 轴的距离等于5,则它到抛物线的焦点的距离等于____;(3)若该抛物线上的点M 到焦点的距离是4,则点M

的坐标为_____(答:7,(2,4)±);(4)点P 在椭圆19

252

2=+y x 上,它到左焦点的距离是它

到右焦点距离的两倍,则点P 的横坐标为_______(答:25

12

);(5)抛物线x y 22=上的两

点A 、B 到焦点的距离和是5,则线段AB 的中点到y 轴的距离为______(答:2);(6)椭

圆13

422=+y x 内有一点)1,1(-P ,F 为右焦点,在椭圆上有一点M ,使MF MP 2+ 之值

最小,则点M 的坐标为_______(答:)1,3

6

2(-)

; 8、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点00(,)P x y 到两焦点12,F F 的距离分

别为12,r r ,焦点12F PF ?的面积为

S ,则在椭圆12222=+b y a x 中, ①θ=)12arccos(2

12

-r r b ,且当12

r r =即P 为短轴端点时,θ最大为θmax =2

22arccos a c b -;②2

0tan ||2S b c y θ==,当0||y b =即P 为短轴端点时,max S 的最大值为bc ;对于双曲线22

221x y a b

-=的焦点三角形

有:①???? ?

?-=21221arccos r r b θ;②2cot sin 212

21θθb r r S ==。如(1)短轴长为5,离心率3

2

=

e 的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ?的周长为________(答:6);(2)设P 是等轴双曲线)0(222>=-a a y x 右支上一点,F 1、F 2是左右

焦点,若0212=?F F PF ,|PF 1|=6,则该双曲线的方程为 (答:224x y -=);

(3)椭圆22194

x y +=的焦点为F 1、F 2,点P 为椭圆上的动点,当PF 2→ ·PF 1→

<0时,点P 的横坐标的取值范围是

(答:();(4)双曲线的虚轴长为4,离心率e =2

6,

F 1、F 2是它的左右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且AB 是2AF 与2

BF 等差中项,则AB =__________

(答:;(5)已知双曲线的离心率为2,F 1、F 2是左

右焦点,P 为双曲线上一点,且 6021=∠PF F ,31221=?F PF S .求该双曲线的标准方程

(答:22

1412

x y -=);

9、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;(3)设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;(4)若AO 的延长线交准线于C ,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A ,O ,C 三点共线。

10、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB

=12x -,若12,y y 分别为A 、B 的纵坐标,则AB =

212

11y y k

-+

,若弦AB 所在直线方程设为x ky b =+,则AB

12y y -。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。如(1)过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,那么|AB|等于_______(答:8);(2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知|AB|=10,O 为坐标原点,则ΔABC 重心的横坐标为_______(答:3);

11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆122

22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0202y a x b ;在双曲线

22

2

21x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0

202y a x b ;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0

p

y 。如(1)如果椭圆

22

1369

x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是 (答:280x y +-=);(2)已知直线y=-x+1与椭圆22

221(0)x y a b a b

+=>>相交于A 、B 两点,

且线段AB 的中点在直线L :x -2y=0上,则此椭圆的离心率为_______

(答:2

);(3)

试确定m 的取值范围,使得椭圆13

42

2=+y x 上有不同的两点关于直线m x y +=4对称

(答:? ??

; 特别提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>!另外韦达定理的运用可以化简很多计算过程,你有感觉到吗?

12.你了解下列结论吗?

(1)双曲线1222

2=-b y a x 的渐近线方程为02222=-b

y a x ;

(2)以x a b y ±=为渐近线(即与双曲线12222

=-b

y a x 共渐近线)的双曲线方程为λλ(22

2

2=-b

y a x 为参数,λ≠0)。如与双曲线116922=-y x 有共同的渐近线,且过点)

32,3(-的双曲线方程为_______(答:22

4194

x y -=) (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为221mx ny +=;

(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为2

2b a

,焦准距(焦点到相

应准线的距离)为2

b c

,抛物线的通径为2p ,焦准距为p ;

(5)通径是所有焦点弦(过焦点的弦)中最短的弦;

(6)若抛物线22(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则

①12||AB x x p =++;②2

21212,4

p x x y y p ==- (7)若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p

13.动点轨迹方程:

(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围; (2)求轨迹方程的常用方法: ①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;如已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程.(答:212(4)(34)y x x =--≤≤或

24(03)y x x =≤<);

②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。如线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为 (答:22y x =);

③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;如(1)由动点P 向圆2

2

1x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600

,则动点P 的轨迹方程为

(答:22

4x y +=);(2)点M 与点F(4,0)

的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是_______ (答:2

16y x =);(3) 一动圆与两圆⊙M :12

2

=+y x 和⊙N :01282

2=+-+x y x 都外切,则动圆圆心的

(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;如动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分?→

?PA 所成的比

为2,则M 的轨迹方程为__________(答:3

1

62-=x y );

⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。如(1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。(答:2

2

||x y a y +=);(2)若点),(11y x P 在圆1

2

2=+y x

上运动,则点),(1111y x y x Q +的轨迹方程是____(答:2

1

21(||)2

y x x =+≤

);(3)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是________(答:222x y =-);

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴

子”转化。如已知椭圆)0(122

22>>=+b a b

y a x 的左、右焦点分

别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.

2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足

.0||,022≠=?TF TF (1)设x 为点P 的横坐标,证明

x a

c a F +

=||1;(2)求点T 的轨迹C 的方程;(3)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若

不存在,请说明理由. (答:(1)略;(2)222

x y a +=;(3)当2b a c >时不存在;当2b a c ≤时存在,此时∠F 1MF 2=2)

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率或向量”为桥梁转化.

14、解析几何与向量综合时可能出现的向量内容:

(1) 给出直线的方向向量()k u ,1= 或()n m u ,=

(2)给出+与AB 相交,等于已知+过AB 的中点;

(3)给出0

=+,等于已知P 是MN 的中点;

(4)给出()

+=+λ,等于已知Q P ,与AB 的中点三点共线;

(5) 给出以下情形之一:①//;②存在实数,AB AC λλ=

使;③若存在实数

,,1,OC OA OB αβαβαβ+==+

且使,等于已知C B A ,,三点共线.

(6) 给出λ

λ++=1OB

OA ,等于已知P 是的定比分点,λ为定比,即λ=

(7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?

m ,等于已知

AMB ∠是钝角, 给出0>=?m ,等于已知AMB ∠是

锐角,

(8)给出=?

?

?+λ,等于已知MP 是AMB ∠的平分线/

(9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是

菱形;

(10) 在平行四边形ABCD 中,给出||||AB AD AB AD +=-

,等于已知ABCD 是

矩形;

(11)在ABC ?中,给出2

2

2

==,等于已知O 是ABC ?的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (12) 在ABC ?中,给出0=++OC OB OA ,等于已知O 是ABC ?的重心(三角形的重心是三角形三条中线的交点); (13)在ABC ?中,给出?=?=?,等于已知O 是ABC ?的垂心(三角形的垂心是三角形三条高的交点);

(14)在ABC ?中,给出+=()||||

AB AC AB AC λ+

)(+∈R λ等于已知通过ABC ?的内心;

(15)在ABC ?中,给出0=?+?+?c b a 等于已知O 是ABC ?的内心(三

角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);

(16) 在ABC ?中,给出()

12

AD AB AC =+

,等于已知AD 是ABC ?中BC 边的中线;

长相思八首 汴水流,泗水流,流到瓜州古渡头,吴山点点愁。 思悠悠,恨悠悠,恨到归时方始休,月明人依楼。 唐·白居易

吴山青,越山青,两岸青山相对迎,争忍有离情? 君泪盈,妾泪盈,罗带同心结未成,江边潮已平。 宋· 林逋

山无情,水无情,杨柳飞花春雨晴,征衫长短亭。 拟行行,重行行,吟到江南第几程,江南山渐青。 宋· 张辑

烟霏霏,雨霏霏,雪向梅花枝上堆,春从何处回, 醉眼开,睡眼开,疏影横斜安在哉,从教塞管催。 宋·吴淑姬

雨如丝,柳如丝,织出春来一段奇,莺梭来往飞。 酒如池,醉如泥,遮莫教人有醒时,雨晴都不知。 宋·无名氏

燕成双,蝶成双,飞来飞去杨柳旁,问伊因底忙? 绿纱窗,篆炉香,午梦惊回书满床,棋声春昼长。 宋·无名氏

折花枝,恨花枝,准拟花开人共卮 ,开时人去时。 怕相思,已相思,轮到相思没处辞,眉间露一丝。 明·俞彦

说相思,问相思,枫落吴江雁去迟

,天寒二九时。怨谁知,梦谁知,可有梅花寄一枝,雪来翠羽飞。 清·吴锡麟

2013高考试题分类汇编(理科):圆锥曲线

2013年全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .引直线l 与曲线y =A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线l 的斜率等于( ) A . 3 B .3 - C .3 ± D .2 .双曲线2 214 x y -=的顶点到其渐近线的距离等于( ) A . 25 B . 45 C D 3 .已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程是( ) A .22 14x = B .22145x y - = C . 22 125 x y -= D .22 12x -= 4 .已知双曲线C :22221x y a b -=(0,0a b >>) ,则C 的渐近线方程为( ) A .14 y x =± B .13 y x =± C .12 y x =± D .y x =± 5 .已知04π θ<<,则双曲线22122:1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 6 .抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是( ) A .12 B C .1 D 7 .如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( ) A .2 B .3 C . 2 3 D . 2 6 8 .已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =( ) A .1 B . 3 2 C .2 D .3 9 .椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? , 10.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若 0MA MB =uuu r uuu r g ,则k =( ) A . 12 B C D .2 11.若双曲线22 221x y a b -= 则其渐近线方程为( ) A .y =±2x B .y = C .12 y x =± D .2 y x =±

直线与圆锥曲线

直线与圆锥曲线 考情分析: 本节内容是高中数学的重要内容之一,也是历年高考尝试新题的板块,各种解题方法在这里表现得比较充分,尤其是在近几年高考的新课程卷中.平面向量与解几融合在一起,综合性很强,题目多变,解法灵活多样,能充分体现高考的选拔功能. 1、考查直线的基本概念,求在不同条件下的直线方程、直线的位置关系,此类题大都属中、低档题,以选择、填空题的形式出现,每年必考. 2、二次曲线的基础知识,直线与二次曲线的普通方程、参数方程,以及普通方程与参数方程的互化,常以选择题、填空题的形式出现属于中档题. 3、有关直线与圆、直线与圆锥曲线的综合题,多以解答题的形式出现,这类题主要考查学生几何知识与代数知识的综合应用,对学生分析问题、解决问题的能力要求较高. 二、考点整合 1、第一部分内容:直线的倾斜角、斜率,直线的方程,两条直线的位置关系;简单的线性规划及其实际应用;曲线和方程、圆的方程. 2、第二部分内容包括椭圆、双曲线、抛物线的定义、性质,以及它们与直线的位置关系的判定,弦长的有关计算、证明等,本部分内容为高考命题的热点. 3、椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质. 4、椭圆、双曲线、抛物线统称圆锥曲线,它们的统一性如下: (1)从方程的形式看:在直角坐标系中,这几种曲线的方程都是二元二次方程,所以它们属于二次曲线; (2)从点的集合(或轨迹)的观点看:它们都是与定点和定直线距离的比是常数e 的集合(或轨迹),这个点是它们的焦点,定直线是它们的准线.只是由于离心率e 取值范围的不同,而分为椭圆(10<e )和抛物线(1=e )三种曲线; (3)这三种曲线都是由平面截圆锥面得到的截线. 5、坐标法是研究曲线的一种重要方法,本节进一步研究求曲线方程的一般方法,利用曲线的方程讨论曲线的几何性质,以及用坐标法证明简单的几何问题等. 6、椭圆、双曲线、抛物线是常见的曲线,利用它们的方程及几何性质,可以解决一些简单的实际问题;利用方程可以研究它们与直线的交点、相交弦等有关问题. 解析几何的综合问题,主要是以圆锥曲线为载体,考查直线与圆锥曲线的有关性质以及函数、方程、不等式、三角、向量等知识.考查的数学思想有数形结合的思想、分类整合的思想、换元的思想、等价转化的思想等.常见题型有求曲线方程,由方程研究性质以及定值、最值、范围、探索性问题等.这类题目一般难度较大,常作高考题中的压轴题. 三、典例精讲: 例 1 (1)由动点P 向圆12 2 =+y x 作两条切线、PB PA ,切点分别为、B A , ο60=∠APB ,则动点P 的轨迹方程为______________________. (2)设直线022:=++y x l 关于原点对称的直线为/ l ,若/ l 与椭圆14 2 2 =+y x 的交 点为、B A ,点P 为椭圆上的动点,则使得PAB ?的面积为2 1的点P 的个数为( ) A 、1 B 、2 C 、3 D 、4 (3)已知双曲线的中心在原点,离心率为3,它的一条准线与抛物线x y 42 =的准

第八章 圆锥曲线 测试题二

专业 专注 119号为您服务 - 1 - 第八章 圆锥曲线 测试题二 一、选择题: 1.已知圆与抛物线的0762 2 =--+x y x 与抛物线()02>=p px y 的准线相切,则=p ( ). (A )2 (B )-2 (C )1 (D )-1 2.设双曲线()b a b y a x <<=-012222的半焦距为c ,直线l 过()0,a ,()b ,0两点,已知原点到直线l 的距离为c 43 , 则双曲线的离心率为( ) (A )2 (B )3 (B )2 (D ) 3 32 3.双曲线122 22=-b y a x 的焦点为1F 、2F ,弦AB 过1F 且两端点在双曲线的一支上,若AB BF AF 222=+,则AB =( ) (A )为定值a 2 (B )为定值a 3 (C )为定值a 4 (D )不是定值 4.设AB 是曲线14 32 2=+y x 的长轴,F 是一个焦点,过AB 的每一个十等分点作AB 的垂线,交椭圆同一侧于点1P 、2P 、…、9P ,则AF + BF F P F P F P ++++921 的值是( ) (A )44 (B )33 (C )22 (D )11 5.双曲线12222=-b y a x 离心率为1e ,双曲线122 22-=-b y a x 的离心率为2e ,则21e e +的最小值是( ) (A )4 (B )22 (C )2 (D )2 6.PQ 为经过抛物线px y 22 =焦点的任意一条弦,MN 为PQ 在准线l 上的射影, PQ 绕l 转一周所得旋转面面积为1S ,以MN 为直径的球面面积为2S ,则( ) (A )21S S ≥ (B )21S S > (C )21S S < (D )不确定 7.若双曲线12 2 =-y x 右支上一支()b a P ,到直线x y =的距离是2,则b a +为( ) (A )2 1- (B ) 2 1 (C )21- 或2 1 (D )2或-2 8.直线过()0,1A 且与抛物线x y 22 -=仅有一个公共点,这样的直线共有( ) (A )1条 (B )2条 (C )3条 (D )4条 9.直线3+=x y 与曲线19 42 =+-y x x 的交点的个数是( ) (A )0 (B )1 (C )2 (D )3 10.设P 是椭圆()0122 22>>=+b a b y a x 上的动点,则xy 1的最小值是( )

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

(完整版)圆锥曲线高考题及答案

数学圆锥曲线测试高考题选讲 一、选择题: 1. (2006全国II )已知双曲线 x 2a 2- y 2 b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3 +y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在 BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .75 C .8 5 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

1直线与圆锥曲线位置关系-学生

1(2015·山东,20,13分)平面直角坐标系xOy 中,已知椭 圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3 2,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆 心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 2 4b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线 PO 交椭圆E 于点Q . ①求|OQ ||OP | 的值; ②求△ABQ 面积的最大值.

(2014·课标Ⅰ,20,12分)已知点A (0,-2),椭圆E :x 2 a 2+ y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程; (2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 2(2016·课标Ⅱ,20,12分)平面直角坐标系xOy 中,过椭

圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程; (2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. (2016·课标Ⅰ,10)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点 为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 2 27=1 C.x 227+y 218=1 D.x 218+y 2 9 =1

【优秀教案】高中数学第二册上 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质

课题:8.4双曲线的简单几何性质 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线等几何性质 2.掌握标准方程中c b ,的几何意义 a, 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 教学重点:双曲线的渐近线及其得出过程 教学难点:渐近线几何意义的证明 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节知识是讲完了双曲线及其标准方程之后,反过来利 它是教学大纲要求学生必须掌握的内容,也是高考的一个考点用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分

坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学 运动变化和对立统一的思 想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学 利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点 本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别 对圆锥 曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来 以1=±b y a x 为渐近线的双曲线方程则是λ=-22 22b y a x 对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小,而椭圆离心率的大小反映的是椭圆的扁平程度 同椭圆一样,双曲线有两种定义,教材上以例3的 教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律

2018高三数学全国二模汇编(理科)专题07圆锥曲线

【2018高三数学各地优质二模试题分项精品】 一、单选题 1.【2018黑龙江大庆高三二模】已知分别是双曲线的左、右焦点,为双曲线右支上一点,若,,则双曲线的离心率为( ) A. B. C. D. 2 【答案】A 点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的 关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围). 2.【2018广东惠州高三4月模拟】已知F是抛物线2x4y =的焦点,P为抛物线上的动点,且点A的坐标为 () 0,1-,则PF PA 的最小值是()

A. 14 B. 1 2 C. 22 D. 3 【答案】C 设切点() 2,P a a ,由214y x =的导数为1 2y x '=,则PA 的斜率为1222a a a ?== . ∴1a =,则()2,1P . ∴2PM =, 22PA =∴2 sin 2 PM PAM PA ∠== 故选C . 点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题. 3.【2018河南郑州高三二模】如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()24,,圆 222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则4PN QM +的最小值为 ( )

第8章圆锥曲线专练14—探索性问题2-高三数学一轮复习

圆锥曲线专练14——圆锥曲线中的探索问题2 (1)求椭圆的方程; (2)若动直线l 与椭圆E 交于A ,B 两点,且恒有0OA OB =,是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由. 【解答】解:(1)由题意可得c e a = = , 设12F PF θ∠=,1||PF m =,2||PF n =,由椭圆的定义可得2m n a +=, 由余弦定理可得2222242cos ()2(1cos )42(1cos )c m n mn m n mn a mn θθθ=+-=+-+=-+, 所以2222 2222()2221cos ()2a c b b b mn mn m n a θ-+===+, 当且仅当m n =(即P 为椭圆的短轴端点时)取得等号,且12F PF ∠取得最大值, 此时△12PF F 的面积是 1 22 c b bc =② 由222a b c =+,③,联立①②③解得2a =,1b =,c = 则椭圆的方程为2 21:4 x y += (2)当直线l 的斜率不存在时,直线l 的方程设为x n =, 由0OA OB =,可得AOB ?为等腰直角三角形, 则可设(,)A n n ,所以2244n n +=,即24 5 n = ,此时原点到直线l 的距离为d =;

当直线l 的斜率存在时,设直线l 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y , 原点O 到直线l 的距离为d ,所以 d = ,即为222(1)m d k =+, 由22 44 y kx m x y =+??+=?可得222(14)8440k x kmx m +++-=, △2 2 2 (8)4(14)(44)0km k m =-+->,即2 2 14k m +>,122 814km x x k +=-+,21224414m x x k -=+, 2222 2 2 2 1212121222 2 4484()()()()141414m km m k y y kx m kx m k x x km x x m k km m k k k --=++=+++=+-+=+++, 22222 1212222 4445440141414m m k m k OA OB x x y y k k k ----=+=+==+++,即225440m k --=,即2225(1)440d k k +--=恒成立, 即22(54)(1)0d k -+=恒成立, 所以2540d -=,所以d , 所以定圆C 的方程为2245 x y += , 所以当0OA OB =时,存在定圆C 始终与直线l 相切,其方程为2245 x y += . 2.在直角坐标系xOy 中,已知抛物线2:2(0)C x py p =>的焦点为F ,若椭圆 (1)求抛物线C 和椭圆M 的方程; (2)是否存在正数m ,对于经过点(0,)P m 且与抛物线C 有A ,B 两个交点的任意一条直线,都有焦点F 在以AB 为直径的圆内?若存在,求出m 的取值范围;若不存在,请说明理由.

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

【精品】高二数学上 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质教案

8.4双曲线的简单几何性质 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线等几何性质 2.掌握标准方程中c b ,的几何意义 a, 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 教学重点:双曲线的渐近线及其得出过程 教学难点:渐近线几何意义的证明 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节知识是讲完了双曲线及其标准方程之后,反过来 它是教学大纲要求学生必须掌握的内容,也是高考的一个考点用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分

坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学 运动变化和对立统一的思 想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学 利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点 本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别 对圆锥 曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来 以1=±b y a x 为渐近线的双曲线方程则是λ=-2222 b y a x 对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小,而椭圆离心率的大小反映的是椭圆的扁平程度 同椭圆一样,双曲线有两种定义,教材上以例3的 教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律

2012_2018全国卷圆锥曲线(理科)

2012-2018全国卷圆锥曲线解答题(理科) 1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点. (Ⅰ)若90BFD ∠=?,ABD ?的面积为,求p 的值及圆F 的方程. (Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值. 2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆 22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程; (Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB . 3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22 221(0) x y a b a b +=>> 的离心率为 2 ,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程; (Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ?的面积最大时,求l 的方程. 4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2 :4 x C y =与直线 (0)y kx a a =+>交于,M N 两点. (Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程; (Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

高三数学 第8章 圆锥曲线单元测试题

第8章 圆锥曲线单元测试题 高二年级 班 学号 姓名 一、选择题 1)如果实数y x ,满足等式3)2(2 2 =+-y x ,那么 x y 的最大值是( ) A 、 2 1 B 、33 C 、23 D 、3 2)若直线01)1(=+++y x a 与圆022 2=-+x y x 相切,则a 的值为( ) A 、1,1- B 、2,2- C 、1 D 、1- 3)已知椭圆1252 22=+y a x )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为( ) (A )10 (B )20 (C )241(D ) 414 4)椭圆 136 1002 2=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是( ) (A )15 (B )12 (C )10 (D )8 5)椭圆 19 252 2=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) (A )9 (B )12 (C )10 (D )8 6)椭圆14 162 2=+y x 上的点到直线022=-+y x 的最大距离是( ) (A )3(B )11(C )22(D )10 7)以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( ) (A )22 2 =-y x (B )22 2 =-x y (C )42 2 =-y x 或42 2=-x y (D )22 2 =-y x 或22 2 =-x y 8)双曲线19 162 2=-y x 右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为( ) (A )6 (B )8 (C )10 (D )12 9)过双曲线82 2=-y x 的右焦点F 2有一条弦PQ ,|PQ|=7,F 1是左焦点,那么△F 1PQ 的周长为( ) (A )28 (B )2814-(C )2814+(D )28 10)双曲线虚轴上的一个端点为M,两个焦点为F 1、F 2,?=∠12021MF F ,则双曲线的离心率为( ) (A )3(B ) 26(C )36(D )3 3 11)过抛物线2 y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长

圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳 例1、已知三角形ABC 的三个顶点均在椭圆80542 2 =+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴 上). (1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为0 90,AD 垂直BC 于D ,试求点D 的轨迹方程. 分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为0 90可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程; 解:(1)设B (1x ,1y ),C(2x ,2 y ),BC 中点为(00,y x ),F(2,0)则有 116 20,116202 2 222121=+=+y x y x 两式作差有 16) )((20))((21212121=+-+-+y y y y x x x x 04 500=+k y x (1) F(2,0)为三角形重心,所以由 2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得5 6 =k 直线BC 的方程为02856=--y x 2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2) 设直线BC 方程为8054,2 2 =++=y x b kx y 代入,得080510)54(2 2 2 =-+++b bkx x k 2 215410k kb x x +-=+,222154805k b x x +-= 2 2 22122154804,548k k b y y k k y y +-=+=+ 代入(2)式得 054163292 2=+--k b b ,解得)(4舍=b 或94 -=b 直线过定点(0,)94-,设D (x,y ),则1494 -=-?+ x y x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()9 20()916(222 ≠=-+y y x 。 3、设而不求法 例2、如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线 过C 、D 、E 三点,且以A 、B 为焦点当 4 3 32≤≤λ时,求双曲线离心率e 的取值范围。

相关文档
相关文档 最新文档