文档库 最新最全的文档下载
当前位置:文档库 › 可控硅的应用范围有哪些

可控硅的应用范围有哪些

可控硅的应用范围有哪些

可控硅的应用范围有哪些?

我们知道单向可控硅具有一触即发,实现自锁的功能。关断单向可控硅的方式有两种:其中一种是众所周知的,就是可控硅在阳极电位低于阴极电位或阳极电流小于维持电流时,可由导通转换为关断。另一种则是将可控硅的控制极对地短路,也可直接将其关断,本人利用它的这个特性制作了下面这款简单的红外遥控开关电路。今天我们就先来了解一下,可控硅遥控开关电路的输出和输入过程。

开启过程静态时脉冲放大管V1处于饱和状态,集电极输出0.1V的低电平,此时可控硅触发电路不工作。瞬间按压遥控器(各类彩电、VCD遥控器均可),接收头接收到红外遥控信号,其输出端输出解调后的序列指令脉冲,经V1放大信号分成两路:一路经R6对C6进行充电,另一路经R5对C5进行充电,由于C5的容量远大于C6,所以充电速度较慢,不能使V2导通,而C6上充得的瞬间脉冲电压足以使单向可控硅SCR触发导通,继电器K得电,常开触点CJ1闭合,插座CZ中的负载得电工作。LED作工作状态指示用。

关闭过程:再次按压遥控器按键超过3秒时,C5上充得的电压足以使V2由截止进入饱和导通状态,从而将可控硅控制极对地短路,可控硅被关断。继电器失电,触点断开,负载停止工作。随后C5上充得的电压很快通过R5、V1的集射极对地放电,电路进入等待状态。

6脉冲12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 2007-2-8 10:36:00文/厂商稿出处:https://www.wendangku.net/doc/633336130.html, 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:

(1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移

相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。

可控硅的工作原理

一、可控硅的工作原理 可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。 图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。

电力电子期末试题与答案

1.晶闸管导通的条件是什么?导通后流过晶闸管的电流由什么决定?晶闸管的关断条件是什么?如何实现?晶闸管导通与阻断时其两端电压各为多少? 解:晶闸管导通的条件是:晶闸管阳极和阴极之间加正向阳极电压。门极和阴极之间加适当的正向阳极电压。 导通后流过晶闸管的电流由主电路电源电压和负载大小决定。 晶闸管的关断条件是:阳极电流小于维持电流。 关断晶闸管可以通过降低晶闸管阳极-阴极间电压或增大主电路中的电阻。 晶闸管导通时两端电压为通态平均电压(管压降),阻断时两端电压由主电路电源电压决定。 2.调试图所示晶闸管电路,在断开负载R d测量输出电压U d是否可调时,发现电压表读数不正常,接上R d后一切正常,请分析为什么? 习题2图 解:当S断开时,由于电压表内阻很大,即使晶闸管门极加触发信号,此时流过晶闸管阳极电流仍小于擎住电流,晶闸管无法导通,电流表上显示的读数只是管子漏电流形成的电阻与电压表内阻的分压值,所以此读数不准。在S合上以后,Rd介入电路,晶闸管能正常导通,电压表的读数才能正确显示。 3.画出图1-35所示电路电阻R d上的电压波形。 图1-35 习题3图 解:

4.说明晶闸管型号KP100-8E代表的意义。 解:KP100-8E表示额定电流100A、额定电压8级(800V、通态平均电压组别E(0.7<U T≤0.8)普通晶闸管。 5.晶闸管的额定电流和其他电气设备的额定电流有什么不同? 解:由于整流设备的输出端所接负载常用平均电流来衡量其性能,所以晶闸管额定电流的标定与其他电器设备不同,采用的是平均电流,而不是有效值,又称为通态平均电流。所谓通态平均电流是指在环境温度为40℃和规定的冷却条件下,晶闸管在导通角不小于170°电阻性负载电路中,当不超过额定结温且稳定时,所允许通过的工频正弦半波电流的平均值。 6.型号为KP100-3、维持电流I H=3mA的晶闸管,使用在习题图所示的三个电路中是否合理?为什么(不考虑电压、电流裕量)? 习题6图 解:(a)图的目的是巩固维持电流和擎住电流概念,擎住电流一般为维持电流的数倍。本题给定晶闸管的维持电流I H=3mA,那么擎住电流必然是十几毫安,而图中数据表明,晶闸管即使被触发导通,阳极电流为100V/50KΩ=3 mA,远小于擎住电流,晶闸管不可能导通,故不合理。 (b)图主要是加强对晶闸管型号的含义及额定电压、额定电流的理解。 本图所给的晶闸管额定电压为300A、额定电流100A。图中数据表明,晶闸管可能承受的最大电压为311V,大于管子的额定电压,故不合理。 (c)图主要是加强对晶闸管型号的含义及额定电压、额定电流的理解。 晶闸管可能通过的最大电流有效值为150A,小于晶闸管的额定电流有效值1.57×100=157A,晶闸管可能承受的最大电压150V,小于晶闸管的额定电压300V,在不考虑电压、电流裕量的前提下,可以正常工作,故合理。

(完整版)单向可控硅的原理及测试

单向可控硅的原理及测试 可控硅的意思:可控的硅整流器,其整流输出电压是受控的,常与移相或过零触发电路配合,应用于交、直流调压电路。可控硅是在晶体管基础上发展起来的一种集成式半导体器件。单向可控硅的等效原理及测量电路见下图1: A K G P N P N K G G K G A 图1 可控硅器件等效及测量电路 单向可控硅为具有三个PN 结的四层结构,由最外层的P 层、N 层引出两个电极——阳极A 和阴极K ,由中间的P 层引出控制极G 。电路符号好像为一只二极管,但好多一个引出电极——控制极或触发极G 。SCR 或MCR 为英文缩写名称。 从控制原理上可等效为一只PNP 三极管与一只NPN 三极管的连接电路,两管的基极电流和集电极电流互为通路,具有强烈的正反反馈作用。一旦从G 、K 回路输入NPN 管子的基极电流,由于正反馈作用,两管将迅即进入饱合导通状态。可控硅导通之后,它的导通状态完全依靠管子本身的正反馈作用来维持,即使控制电流(电压)消失,可控硅仍处于导通状态。控制信号U GK 的作用仅仅是触发可控硅使其导通,导通之后,控制信号便失去控制作用。 单向可控硅的导通需要两个条件: 1)、A 、K 之间加正向电压; 2)、G 、K 之间输入一个正向触发电流信号,无论是直流或脉冲信号。 若欲使可控硅关断,也有两个关断条件: 1)、使正向导通电流值小于其工作维持电流值; 2)、使A 、K 之间电压反向。 可见,可控硅器件若用于直流电路,一旦为触发信号开通,并保持一定幅度的流通电流的话,则可控硅会一直保持开通状态。除非将电源开断一次,才能使其关断。若用于交流电路,则在其承受正向电压期间,若接受一个触发信号,则一直保持导通,直到电压过零点到来,因无流通电流而自行关断。在承受反向电压期间,即使送入触发信号,可控硅也因A 、K 间电压反向,而保持于截止状态。

可控硅工作原理

可控硅工作原理 一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。 在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。它只有导通和关断两种状态。 可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。 可控硅从外形上分类主要有:螺栓形、平板形和平底形。 1、可控硅元件的结构 不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。 2、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1、可控硅结构示意图和符号图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

单向可控硅最筒单电路图大全(四款模拟电路设计原理图详解)

单向可控硅最筒单电路图大全 (四款模拟电路设计原理图详解) 单向可控硅最筒单电路图(一) 触摸一下金属片开,SCR1导通,负载得电工作。触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J放电,维持继电器吸合约4秒钟,故电路动作较为准确。如果将负载换为继电器,即可控制大电流工作的负载。 单向可控硅最筒单电路图(二) 触摸式台灯电路原理图

触摸式台灯电路见图,它分四档控制灯泡的亮度。通电后灯泡不亮,第一次轻轻触摸一下灯罩外壳,灯泡便发出低亮度的光,第二次触摸灯泡发出中亮度的光,第三次触摸灯泡变为全亮,第四次触摸灯泡熄灭,依次循环。此电路易出现的故障是双向可控硅97A6坏及灯罩金属外壳与电路触摸输入端子之间接触不良。 小编调试电路时,TT6061用GS6061代替,1N4004用1N4007代替,其余元件与图中相同。经验证,电路工作可靠,能实现方中所述功能。但双向可控硅易损坏,建议读者制作时在可控硅两端并联一电阻电容串联所组成的保护电路。 单向可控硅最筒单电路图(三) 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原理图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。 当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,

PLC输出电路(继电器,晶体管,晶闸管输出)区别和注意事项

PLC输出电路(继电器,晶体管,晶闸管输出)区别和注意事项 PLC的输出电路形式一般分为:继电器输出,晶体管输出和晶闸管输出三种。弄清这三种输出形式的区别,对于PLC的硬件设计工作非常有必要。下面以三菱PLC为例,简要介绍一下这三种输出电路形式的区别和注意事项,其它公司的PLC输出电路形式也大同小异。 1、晶体管输出电路 晶体管输出电路形式相比于继电器输出响应快(一般在0.2ms以下),适用于要求快速响应的场合;由于晶体管是无机械触点,因此比继电器输出电路形式的寿命长。 晶体管输出型电路的外接电源只能是直接电源,这是其应用局限的一方面。另外,晶体管输出驱动能力要小于继电器输出,允许负载电压一般为DC5V~30V,允许负载电流为0.2A~0.5A。这两点的使用晶体管输出电路形式时要注意。 晶体管输出电路的形式主要有两种:NPN和PNP型集电极开路输出。如下图所示: 图2 NPN集电极开路输出

图3 PNP集电极开路输出 由以上两图可看出这两种晶体管输出电路形式的区别:NPN型集电极开路输出形式的公共端COM只能接外接电源的负极,而PNP型的COM端只能接外接电源的正极。 和继电器输出形式电路一样,在驱动感性负载时也要在负载两端反向并联二极管(二极管的阴极接电源的正极)防止过电压,保护PLC的输出电路。 2、继电器输出电路 这是PLC输出电路常见的一种形式,其电路形式如下图所示。该种输出电路形式外接电源既可以是直流,也可以是交流。 图1 继电器输出 PLC继电器输出电路形式允许负载一般是AC250V/50V以下,负载电流可达2A,容量可达80~100VA (电压×电流),因此,PLC的输出一般不宜直接驱动大电流负载(一般通过一个小负载来驱动大负载,如PLC的输出可以接一个电流比较小的中间继电器,再由中间继电器触点驱动大负载,如接触器线圈等)。 PLC继电器输出电路的形式继电器触点的使用寿命也有限制(一般数十万次左右,根据负载而定,如连接感性负载时的寿命要小于阻性负载)。此外,继电器输出的响应时间也比较慢(10ms)左右,因此,在要求快速响应的场合不适合使用此种类型的电路输出形式(可以根据场合使用下面介绍的两种输出形式)。

单向可控硅与双向可控硅结构电原理图及测试方法

单向可控硅与双向可控硅结构电原理图及测试方法 可控硅的检测 1.单向可控硅的检测 万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏

。 2.双向可控硅的检测 用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电压,A1、A2间阻

值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。 检测较大功率可控硅管是地,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。双向可控硅(TRIAC)在控制交流电源控制领域的运用非常广泛,如我们的日光灯调光电路、交流电机转速控制电路等都主要是利用双向可控硅可以双向触发导通的特点来控制交流供电电源的导通相位角,从而达到控制供电电流的大小[1]。然而对其工作原理和结构的描述,以我们可以查悉的资料都只是很浅显地提及,大部分都是对它的外围电路的应用和工作方式、参数的选择等等做了比较多的描述,更进一步的--哪怕是内部方框电路--内容也很难找到。 由于可控硅所有的电子部件是集成在同一硅源之上,我们根本是不可能通过采用类似机械的拆卸手段来观察其内部结构。为了深入了解和运用可控硅,依据现有可查资料所给P 型和N型半导体的分布图,采用分离元器件--三极管、电阻和电容--来设计一款电路,使该电路在PN的连接、分布和履行的功能上完全与双向可控硅类似,从而通过该电路来达到深入解析可控硅和设计实际运用电路的目的。 1 双向可控硅工作原理与特点 从理论上来讲,双向可控硅可以说是有两个反向并列的单向可控硅组成,理解单向可控硅的工作原理是理解双向可控硅工作原理的基础[2-5]。 1.1单向可控硅 单向可控硅也叫晶闸管,其组成结构图如图1-a所示,可以分割成四个硅区P、N、P、N和A、K、G三个接线极。把图一按图1-b 所示切成两半,就很容易理解成如图1-c所示由一个PNP三极管和一个NPN三极管为主组成一个单向可控硅管。

简易单向可控硅交流调压器原理图及工作原理介绍

简易可控硅交流调压器原理图及工作原理介绍 本文介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 可控硅交流调压器电路原理: 电路图如下可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C 充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容 。 C又从新充电……如此周而复始,便可调整负载RL上的功率了 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W 的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。

达林顿管和晶闸管的区别

达林顿管和晶闸管的区别 达林顿管的电路结构 1、 概述 达林顿管又称复合三极管。它是将两个三极管适当的连接在一起,以组成一个等效的新的三极管。这个新的三极管就是达林顿三极管。其放大倍数是两者放大倍数的乘ch éng 积j ī 。一般应用于功率放大器、稳压电源电路中。 2、 达林顿管的电路连接 达林顿三极管通常由两个三极管组成,这两个三极管可以是同型号的,也可以是不同型号的;可以是相同功率,也可以是不同功率。无论怎样组合连接,最后所构成的达林顿三极管的放大倍数都是二者放大倍数乘积。 达林顿管电路连接一般有四种接法:即NPN+NPN 、PNP+PNP 、NPN+PNP 、PNP+NPN 。 它们连接如图所示。 图a 、b 所示同极性接法;图c 、d 所示异极性接法。在实示应用中,用得最普遍是前两种同极性接法。通常,图a 接法达林顿三极管叫“NPN 达林顿三极管”;而图b 接法的达林顿三极管称为“PNP 达林顿管”。 两个三极管复合成一个新的达林顿管后,他的三个电极仍然叫: B →基极、 C →集电极、 E →发射极。 达林顿管有一个特点就是两个三极管中,前面三极管的功率一般比后面三极管的要小,前面三极管基极为达林顿管基极,后面三极管射极为达林顿管射极。所以达林顿管在电路中使用方法与单个普通三极管一样,只是放大倍数β是两个三极管放大倍数的乘积。 一、 达林顿管的特点与用途 1、 达林顿管的性能特点 (1) 放大倍数大(可达数百、数千倍); (2) 驱动能力强; (3) 功率大; (4) 开关速度快; (5) 可做成功率放大模块; (6) 易于集成化。 2、 达林顿管的主要用途 (1) 多用于大负载驱动电路; (2) 多用于音频功率放大器电路; (3) 多用于中、大容量的开关电路; (4) 多用于自动控制电路。 二、 达林顿管典型电路 1、 电子开关电路

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

如何合理选择固态继电器的型号和规格

众所周知固态继电器SSR是一种无触点通断电子开关,四端为有源器件。其中两个端子为输入控制端,另外两端为输出受控端,中间采用光电隔离,作为输入输出之间电气隔离(浮空)。在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。整个器件无可动部件及触点,可实现相当于常用的机械式电磁继电器一样的功能。由于固态继电器是由固体元件组成的无触点开关元件,所以与电磁继电器相比具有工作可靠、寿命长,对外界干扰小,能与逻辑电路兼容、抗干扰能力强、开关速度快和使用方便等一系列优点,因而具有很宽的应用领域,亦有逐步取代传统电磁继电器之势。那我们应该如何合理选择固态继电器的型号和规格呢?1. 在选用小电流规格印刷电路板使用的固态继电器时,因引线端子为高导热材料制成,焊接时应在温度小于250℃、时间小于10S的条件下进行,如考虑周围温度的原因,必要时可考虑降额使用,一般将负载电流控制在额定值的1/2以内使用。2. 各种负载浪涌特性对固态继电器SSR的选择被控负载在接通瞬间会产生很大的浪涌电流,由于热量来不及散发,很可能使SSR 内部可控硅损坏,所以用户在选用继电器时应对被控负载的浪涌特性进行分析,然后再选择继电器。使继电器在保证稳态工作前提下能够承受这个浪涌电流。在低电压要求信号失真小可选用采用场效应管作输出器件的直流固态继器;如对交流阻性负载和多数感性负载,可选用过零型继电器,这样可延长负载和继电器寿命,也可减小自身的射频干扰。如作为相位输出控制时,应选用随机型固态继电器。3. 使用环境中温度的影响对固态继电器的负载能力、受环境温度和自身温升的影响较大,在安装使用过程中,应保证其有良好的散热条件,额定工作电流在10A以上的产品应配散热器,100A以上的产品应配散热器加风扇强冷。在安装时应注意继电器底部与散热器的良好接触,并考虑涂适量导热硅脂以达到最佳散热效果。如继电器长期工作在高温状态下(40℃~80℃)时,用户可根据厂家提供的最大输出电流与环境温度曲线数据,考虑降额使用来保证正常工作。4. 过流、过压保护措

晶闸管可控硅的结构与工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

可控硅晶闸管的基础知识

关于可控硅 一、可控硅的概念和结构? 晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 二、可控硅的种类 可控硅有多种分类方法。 (一)按关断、导通及控制方式分类:可控硅按其关断、导通及控制方式可分为普通可控硅、双向可控硅、逆导可控硅、门极关断可控硅(GTO)、BTG可控硅、温控可控硅和光控可控硅等多种。 (二)按引脚和极性分类:可控硅按其引脚和极性可分为二极可控硅、三极可控硅和四极可控硅。 (三)按封装形式分类:可控硅按其封装形式可分为金属封装可控硅、塑封可控硅和陶瓷封装可控硅三种类型。其中,金属封装可控硅又分为螺栓形、平板形、圆壳形等多种;塑封可控硅又分为带散热片型和不带散热片型两种。 (四)按电流容量分类:可控硅按电流容量可分为大功率可控硅、中功率可控硅和小功率可控硅三种。通常,大功率可控硅多采用金属壳封装,而中、小功率可控硅则多采用塑封或陶瓷封装。 (五)按关断速度分类:可控硅按其关断速度可分为普通可控硅和高频(快速)可控硅。 图2 三、晶闸管的主要工作特性 为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。这个演示实验给了我们什么启发呢? 图3 这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。 晶闸管的特点:是“一触即发”。但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。如果晶闸管阳极和阴极之间外加

双向可控硅原理与应用

[转载] 双向可控硅原理与应用 普通晶闸管(VS)实质上属于直流控制器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 构造原理 尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实 际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率 双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所 示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、 2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向晶 闸管大多采用RD91型封装。双向晶闸管的主要参数见附表。 双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三 个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G 以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳 极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正 时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。 检测方法 下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。 1. 判定T2极由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻 都很小。在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几 十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都 不通,就肯定是T2极。,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通, 据此亦可确定T2极 2. 区分G极和T1极 (1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。 (2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加 上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。再将 红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。 3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后, 在T2一T1方向上也能维持导通状态,因此具有双向触 发性质。由此证明上述假定正确。否则是假定与实际不符, 需再作出假定,重复以上测量。显见,在识别G、T1, 的过程中,也就检查了双向晶闸管的触发能力。如果按哪 种假定去测量,都不能使双向晶闸管触发导通,证明管于 巳损坏。对于lA的管子,亦可用RXl0档检测,对于3A 及3A以上的管子,应选RXl档,否则难以维持导通状态。 典型应用 双向晶闸管可广泛用于工业、交通、家用电器等领域,实 现交流调压、电机调速、交流开关、路灯自动开启与关闭、 温度控制、台灯调光、舞台调光等多种功能,它还被用于 固态继电器(SSR)和固态接触器电路中。图5是由双向晶 闸管构成的接近开关电路。R为门极限流电阻,JAG为干式舌簧管。平时JAG断开,双向晶闸管TRIAC也关断。仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。由于通过 干簧管的电流很小,时间仅几微秒,所以开关的寿命很长. 图6是过零触发型交流固态继电器(AC-SSR)的内部电路。主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。

电力电子期末试题.及答案

电力电子期末试题■及答案1晶闸管导通的条件是什么?导通后流过晶闸管的电流由什么决定?晶闸管的关断条件是什么?如何实现?晶闸管导通与阻断时其两端电压各为多少? 解:晶闸管导通的条件是:晶闸管阳极和阴极之间加正向阳极电压。门极和阴极之间加适当的正向阳极电压。 导通后流过晶闸管的电流由主电路电源电压和负载大小决定。 晶闸管的关断条件是:阳极电流小于维持电流。 关断晶闸管可以通过降低晶闸管阳极一阴极间电压或增大主电路中的电阻。 晶闸管导通时两端电压为通态平均电压(管压降),阻断时两端电压由主电路电源电压决定。 2?调试图所示晶闸管电路,在断开负载R d

测量输出电压U d是否可调时,发现电压表读数不正常,接上R d后一切正常,请分析为什么? 习题2图 解:当S断开时,由于电压表内阻很大,即使晶闸管门极加触发信号,此时流过晶闸管阳极电流仍小于擎住电流,晶闸管无法导通,电流表上显示的读数只是管子漏电流形成的电阻与电压表内阻的分压值,所以此读数不准。在S合上以后,Rd介入电路,晶闸管能正常导通,电压表的读数才能正确显示。 3.画出图1-35所示电路电阻R d上的电压波形。 图1-35习题3图 解: 4.说明晶闸管型号KP100-8E代表的意义。解:

KP100-8E表示额定电流100A、额定电压 8级(800V、通态平均电压组别 E (0.7V U T< 0.8)普通晶闸管 5?晶闸管的额定电流和其他电气设备的额定电流有什么不同? 解:由于整流设备的输出端所接负载常用平均电流来衡量其性能,所以晶闸管额定电流的标定与其他电器设备不同,采用的是平均电流,而不是有效值,又称为通态平均电流。所谓通态平均电流是指在环境温度为40 C 和规定的冷却条件下,晶闸管在导通角不小于仃0°电阻性负载电路中,当不超过额定结温且稳定时,所允许通过的工频正弦半波电流的平均值。 6.型号为KP100 —3、维持电流I H = 3mA的晶闸管,使用在习题图所示的三个电路中是否合理?为什么(不考虑电压、电流裕量)? 习题6图 解:(a)图的目的是巩固维持电流和擎住电流概念,擎住电流一般为维持电流的数倍。本题给定晶闸管

可控硅模块和固态继电器有什么区别

可控硅和固态继电器的区别是什么 ?

固态继电器只是相当于一个开关,不能调节电流.可控硅能控制其导通角,能调节电流的大小. 固态继电器其实也是以可控硅为主要部件而制作的,所不同的是,固态继电器动作电压与控制电压通过内部电路例如光耦进行分离的,如果你觉的好奇的话我建议你拆一个固态继电器看看内部,如果你稍懂是电路知识,你完全可以按照里面的电路进行自制一个,呵呵!其实也不是难事,只不过少了一个漂亮的外壳罢了! 可控硅可以是单向的,也可以是双向的,可以过零触发也可以移相触发,固态继电器同样是如此的。所以,他们的用途、形式都有一样类型产品,从这一点上(使用的形式、性质角度)没有区别,因为固态继电器也是可控硅做的(三极管的固态继电器除外)。那么他们的区别到底在那呢?总不会一个东西,两个名字吧?他们的区别就在于,可控硅就是可控硅,固态继电器则是可控硅+同步触发驱动。这就是区别。 现在有一种叫“智能化可控硅模块”,他把可控硅元件、同步触发驱动做在一个模块里了,这种可控硅与固态继电器已经无法区分了。当然,从形状上可以区分。 可控硅的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流 ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化. 状态条件说明 从关断到导通 1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流

可控硅电源开关电源电路的简单比较

电源招聘专家线性电源,可控硅电源,开关电源电路的简单比较 关于电路结构,究竟是线性电源,可控硅电源还是开关电源,要看具体场合,合理采用。这三种电路,国际国内都大量使用,各有各的特点。可控硅电源,以其强大的输出功率,使线性电源和开关电源无法取代。线性电源以其精度高,性能优越而被广泛应用。开关电源因省去了笨重的工频变压器而使体积和重量都有不同程度的减少,减轻,也被广泛地应用在许多输出电压、输出电流较为稳定的场合。 一、可控硅电源的电路结构如下: 通俗的说,可控硅是一个控制电压的器件,由于可控硅的导通角是可以用电路来控制的,固此随着输出电压Uo的大小变化,可控硅的导通角也随着变化。加在主变压器初级的电压Ui也随之变化。 也就是~220V市电经可控硅控制后只有一部分加在主变压器的初级。当输出电压Uo 较高时,可控硅导通角较大,大部分市电电压被可控硅“放过来了”(如上图所示),因而加在变压器初级的电压,即Ui较高,这当然经整流滤波后输出电压也就比较高了。而当输出电压Uo很低时,可控硅导通角很小,绝大部分市电电压被可控硅“卡断了”(如下图所示),只让很低的电压加在变压器初级,即Ui很低,这当然经整流滤波后输出电压也就很低了。

电源招聘专家 二.线性电源的主电路如下: 线性电源实际上是在可控硅电源的输出端再串一只大功率三极管(实际是多只并联),控制电路只要输出一个小电流到三极管的基极就能控制三极管的输出大电流,使得电源系统在可控硅电源的基础上又稳压一次,因而这种线性稳压电源的稳压性能要优于开关电源或可控硅电源1-3个数量级。但功率三极管(亦称调整管)上一般要占用10伏电压,每输出1安培电流就要在电源内部多消耗10瓦功率,例如500V 5A电源在功率管上的损耗为50瓦,占输出总功率的2%,因而线性电源的效率要比可控硅电源稍低。 三、开关电源的主电路如下: 由电路可以看出,市电经整流滤波后变为311V高压,经K1~K4功率开关管有序工作后,变为脉冲信号加至高频变压器的初级,脉冲的高度始终为311V。当K1,K4开通时,311V高压电流经K1正向流入主变压器初级,经K4流出,在变压器初级形成一个正向脉冲,同理,当

相关文档
相关文档 最新文档