文档库 最新最全的文档下载
当前位置:文档库 › 5CrMnMo模具材料及其失效分析

5CrMnMo模具材料及其失效分析

5CrMnMo模具材料及其失效分析
5CrMnMo模具材料及其失效分析

《模具材料及其失效分析》

结课大作业

系别:

班级:

姓名:

学号:

任课教师:

2013年4月26日

1、 5CrMnMo钢简介

模具钢材5CrMnMo是在中碳

钢的基础上主要加入Cr、Mn、Mo

三元素而研制成的,也可看作把

5CrNiMo钢中的Ni元素由Mn元素取代而形成的。

该钢是热作模具钢,除淬透性,耐热疲劳性稍差外,5CrMnMo钢具有与5CrNiMo钢类似的性能,淬透性稍差。此钢适于制作要求具有较高强度和高耐磨性的各种类型锻模。要求韧性较高时,可采用电渣重熔钢。

5CrMnMo钢中碳含量保持在0.40%~0.60%,可获得较高的强度与耐热疲劳强度、一定的硬度与耐磨性、良好的韧性钢与导热性。适合制造边长≤400mm 的中型锤锻模即热切边模。

化学成分:C(0.50~0.60)、Si(0.25~0.60)、Mn(1.20~1.60)、S(≤0.030)P(≤0.030)、Cr(0.60~0.90)、Ni(允许残余含量≤0.25)

Cu(允许残余含量≤0.30)、Mo(0.15~0.30)

2 、5CrMnMo钢锻造和热处理特点

5CrMnMo钢相变点为AC1710℃、Ac3760℃、Ar1650℃、Ms220℃。

5CrMnMo钢始锻温度1050~1100℃,终锻温度800~850℃,锻造后坑中冷却或砂中冷却。

常见的热处理工艺及特点:

a、等温退火:加热850~870℃,保温3h,650~680℃等温,保温5h,炉

冷至550℃以下出炉空冷197~255HBS Ac1710℃,Ac3760℃,加热温

度在Ac3线以上,等温温度低于Ar1727℃,以获得珠光体+铁素体组织;

b、普通退火:加热810~830℃,保温3h,炉冷至550℃以下出炉空冷

197~241HBS Ac1710℃,Ac3760℃,加热温度Ac3线以上,得到珠光

体+块状铁素体组织;

c、去应力退火:加热720~740℃,保温3h,炉冷至550℃以下出炉空冷

197~255HBS消除从残余应力,消除加工硬化;

d、淬火:加热820~850℃,保温,油冷至150~180℃,出油,加热时Cr、

Mn、S、Mo元素溶入奥氏体中,提高淬透性,改善回火稳定性。

试样的热加工工艺

1)锻造

5CrMnMo钢的锻造工艺参数与5CrNiMo钢相当。4Cr3Mo3V钢由于Cr、Mo、V的含量较高,其开锻和停锻温度约高于5CrNiMo钢50℃。

2)退火

3)淬火

5CrMnMo钢的淬火温度与5CrNiMo钢一样,淬火后的硬度略高。4Cr3Mo3V 钢虽然淬火温度比5CrNiMo钢高170℃,但是因含碳量低0.16%,所以淬火后硬度约低8HRC。

4)回火

(1)5CrMnMo钢回火温度和硬度的关系

5CrMnMo钢在300~550℃回火后硬度高于5CrNiMo钢1~4.5HRC,其中以400℃的硬度差别最大,随着回火温度的提高二者硬度基本一致。

(2)4Cr3Mn3V钢回火温度与硬度的关系(保温2h)

4Cr3Mo3v钢在400℃回火后硬度逐渐高于5CrNiMo钢,温度越高差别越大。如4Cr3Mo3V钢在660℃回火硬度为40.2HRC,与5CrNiMo钢525℃回火硬度(40.1HRC)相当,二者将相差135℃。另外,同样经700℃回火其硬度要高于5CrNiMoSlV钢和2Cr3Mo2NiVSi钢3.4HRC和5HRC。

(3)性能试样的回火工艺

室温力学性能

1室温力学性能

5CrMnMo钢室σb和σs值与5CrNiMo钢完全相同,但δs和ψ却下降2%和10%。4Cr3Mo3V钢因其硬度比5CrNiMo钢约高7HRC,所以拉伸强度明显提高,如σb和σs增加210MPa和60MPa,而且δs和ψ也分别增加2%和22%。从而说明4cr3M03V钢的室温拉伸性能优于5crNiMo钢。

2 室温冲击韧性

5crMnMo钢的室温A K值低于5CrNiMo钢18J。4Cr3Mo3V钢由于硬度高,所以也造成室温A K值低于5CrNiMo钢16.3。

3 室温断裂韧性(K1c)

5CrMnMo钢的室温断裂韧性没有测定。4Cr3Mo3V钢的室温断裂韧性为40.3 MPa?m1/2。

各项热处理工艺的具体作用如下:

●退火:细化晶粒,均匀组织,消除内应力

●淬火:获得细致的板条马氏体组织,提高强韧性,并提高使用寿命

●回火:使奥氏体转变为下贝氏体,避免上贝氏体的产生

3、5CrMnMo材料热处理规范

5CrMnMo钢相变点为AC1710℃、Ac3760℃、Ar1650℃、Ms220℃。

5CrMnMo钢始锻温度1050~1100℃,终锻温度800~850℃,锻造后坑中冷却或砂中冷却。

适合制造边长≤400mm的中型锤

(以下举例均为锻模)锻模即热切边模。

4.1 模具的服役条件及要求

锤锻模属于热作模具,是用各种吨

位锤产生巨大的冲击功进行毛坯变形

的工具,毛坯在短时间内快速成形,模

具承受很大的冲击载荷和热磨损。

4.2 模具的制造工艺

锻模是在高温条件下冲击加压强

迫金属成型的工具。它经受恶劣复杂的

工作条件:反复受冷受热、承受很大的

压应力、张应力和变曲应力;以及炽热

金属对模锻型腔的摩擦。

所以模具材料应具有下列的性能:

1.高的机械性能。在高温下应保持高强度、高韧性、高耐磨性、

2.高的淬透性。以保证整个模具截面得

到均匀一致的机械性能。

3.优良的耐热疲劳性。使模具表面不因

反复受冷受热而产生裂纹。

4.足够的导热性。确保由锻件传到模具型腔表面的热量能迅速散逸。以免因温度过高而降低机械性能。

5.良好的工艺性和抗氧化性。

热处理工艺路线:下料一锻造

一退火一粗加工一调质一精加工一淬

火+回火一研磨。

始锻温度为1050℃左右,终锻温

度为850℃左右,锻造比为2。退火工

艺为830~850℃加热炉冷.调质工艺

为860℃加热油冷,670~680℃回火。精加工后淬火温度为840~860℃,油冷到180℃,立即出油装炉回火,,回火温度为440---470℃,硬度要求为46--47 HRC。

毛坯的等温退火工艺曲线(在箱式炉中进行)

锻模毛坯的退火粗车后的调质处理工艺曲线(在盐浴炉中进行)

锻模毛坯的正火——中温回火工艺曲线(在箱式炉中进行)

锻模最终淬火处理工艺曲线

4.3模具材料经淬火及回火的微观组织与机械性能(参考)

4.4 微观组织检验要求

正常退火后的组织为细珠光体;淬火后组织为针状马氏体。经退火后的工件必须立即进行回火,否则将引起开裂。正常回火后组织为较细的回火屈氏体。这种组织有合适的硬度和组织稳定性。若于过低或过高温度回火,则将分别得到回火马氏体和回火索氏体,致模具的硬度达不到要求。

4.5 可能出现的失效方式、失效分析、改进方案

主要的失效方式有变形失效、热疲劳失效、磨损失效和断裂失效

①变形失效:模锻是由于外加载荷过大或局部温升过高,使锻模产生塑形变形而造成局部压塌现象以及因锻模工作零件材料的热硬性不足,或者因回火温度过高而造成硬度降低,也会引起锻模局部发生塑性变形。

②热疲劳失效:锻模与炙热(1100~1200℃)坯料金属反复接触,会不断升温,为防止型腔表面发生高温回火而导致锻模硬度下降,就得不断进行冷却,锻模受到高温金属的冷却润滑剂的交替作用,产生交变热应力,容易导致热疲劳破裂。

③磨损失效:模锻中,毛坯在型槽内受挤压流动,同时与型槽壁面发生剧烈的摩擦,造成型槽面磨损,以致引起型槽尺寸变化与表面质量劣化,尤其是飞边槽过桥处磨损最为严重。因为毛坯金属变形填满型槽后流入飞边槽时,过桥处厚度薄,冷却快,金属与过桥壁摩擦特别剧烈。锻模磨损的主要类型是磨粒磨损与黏着剪断、脱落现象。如果锻模淬火后挥霍温度过高,硬度不足,或者因为毛坯氧化皮未除尽,模具型槽表面粗糙,润滑不良等,都会造成锻模加速磨损。

④断裂失效:锻模断裂失效的原因是多方面的,可以分以下类型:a过载断裂。当锻模工作零件外加载荷超过其危险界面所能承受的极限应力时,讲发生过

载断裂;b疲劳断裂。锻模经过一定次数的循环载荷或交变应力作用后引发的疲劳断裂,其成分分为3个阶段:疲劳裂纹的萌生、裂纹的扩展、断裂或瞬断;c 脆性断裂。因锻模刚才存有夹杂物缺陷,或工艺处理不当都有可能使其材质变脆,从而引发脆性断裂。

改进方案:通过分析原热处理工艺曲线,,我们发现原工艺存在以下不足之处::5CrMnMo钢传统的淬火加热温度为830~ 870 ,温度偏低。淬火组织以针状马氏体为主,材料的力学性能特别是断裂韧度不足锻模淬火入油前在空气中预冷时,若预冷的时间太短,则起不到降温减少热应力的作用;若预冷的时间过长,则型腔中凸起部位温降过多,会发生非马氏体转变,,影响淬火效果。而且锻模的型腔一般都较为复杂,若采用空气预冷,很难控制型腔中各部位均匀预冷至760~ 780℃时再进行淬火;5CrMnMo钢的Ms点为215℃当模具淬火冷却至其表面上所附着的油不燃烧, 而呈冒青烟( 温度约150~ 200 ℃) 时, 若马上在500 ℃以上回火只会在表面产生马氏体,心部大量的过冷奥氏体会在500 ℃以上回火时转变成珠光体或粗大的上贝氏体,这两种组织的力学性能都很差,没有利用价值。

热锻模改进后的淬火回火工艺曲

5 、课程学习体会

模具材料这门课虽说是一门选修课,开学初我对这门课并没有什么兴趣,觉得那些东西枯燥乏味,但在这次在撰写课程报告的过程中我发现自己在一点一滴的努力中对其兴趣也在逐渐增加。这次的结课作业做的并不顺利,找资料成了最头疼的事情,但经过这么久的不懈努力,我又怎么会去在乎那个先后问题呢,因为对我来说学到的不仅是那些知识,更多的是一种态度。现在想来,也许老师安排的这次作业有着它更深层的意义吧,它不仅仅让我更深入的了解专业的相关知识、运用专业的知识,还让我普及了很多课堂上没有讲到的知识,并且提高了我在这方面的能力!没开始写之前还在为选材而伤脑筋,然后又在找资料的时候不知从何下手,随之而来的问题却远比我想象的要困难的多。没想到这看似简单的报告却是非常需要耐心和精力的,今天我已明白这次作业对我来说的意义。虽然我这次花了很多时间,但我相信我得到的也会更多!

作为一名材料成形专业的大三学生,我觉得这次作业是十分有意义的,而且是十分必要的。在已度过的大学时间里,我们大多数接触的是专业课,我们在课堂上掌握的仅仅是专业课的理论知识,并没有真正了解这究竟应用到了那里?所说资料都是从网上、图书馆找来的,但是在整合的过程中不仅提高了自己的逻辑思维,还能让专业知识得以应用。

通过这次作业我也发现了自身存在的不足之处,就是专业知识学得不够踏实,在运用过程中仍有意想不到的困惑,经过一番努力才得以解决。这也激发了我今后努力学习的兴趣,我想这将对我以后的学习产生积极的影响。并且我懂得了学习的重要性,了解到理论知识的重要意义,学会了坚持、耐心和努力,这将为自己今后的学习和工作做出了最好的榜样。我认为这个收获应该说是相当大的。

参考文献

[1]中国机械工程学会热处理学会.热处理手册.典型零件热处理.第3版.北京:机械工业出版社

[2]全国热处理标准化技术委员会.金属热处理标准应用手册.北京:机械工业出版社

[3]夏立芳.金属热处理工艺学.第4版.哈尔滨工业大学出版社.2008.4

[4]李泉华.热处理技术400问.北京:机械工业出版社.2002

[5]樊东黎.徐跃明.佟晓辉.热处理工程师手册.北京:机械工业出版社

[6]第一机械工业部机械科学研究院材料研究所.工具钢金相图谱:第一机械工业部第二局上海工具厂

[7]百度百科

模具的失效分析

模具的失效分析№1 一, 目的 1, 模具设计人员必须熟知如何保证模具设计正确,合理,提高模具寿命,降低成本. 2, 生产中模具失效时,能分析原因,提出改进措施,也是工艺员应掌握的技能. 二, 模具的工作条件 1, 工装模具组成 凹模- 冷镦, 正挤, 反挤, 冲孔, 锥形凸模, 切边凹模, 切边凸模, 孔类` 螺母用凹模等. 套- 推出销套, 衬套 垫- 带孔垫块 轴类冲头–正挤, 反挤, 六方冲头, (螺母冲头), 推出销, 凸模销, 光凸模(无孔) 销, 轴, 杆. 板,块类型- 垫块,切断刀,送料滚,刀体,钳片,夹子,弹簧板,弹簧片 螺旋弹簧–拉,压 弹簧碟簧 板簧 2, 易损件(服役期短,经常更换的件) 冲头, 凹模 重点分析易损件–冲头, 凹模. 3, 模具工作条件 ①挤压冲头工作条件–以活塞销为例 上冲头 上冲头–向下运动, 下冲头–固定不动. 挤压中,上冲头受力大于下冲头. 上冲头受力情况如下: A) 向下运动–反挤坯料,冲头受压应力. B)向上运动–脱离坯料,因摩擦力冲头受拉应力. C)可能因冲头偏心,产生弯曲应力. 结论: 上冲头受力复杂,易导致失效. 上冲头最大名义压力可达2500 MPa. 在尺寸过渡处,由于应力集中, 有时应力更大于此值.

② 冷挤压凹模的工作条件 № 2 冷挤压过程中,凹模型腔表面受很大的压力,该压力使凹模产生巨大的切向拉应力. (以下插图) p 0 材料力学厚壁筒受力分析理论公式 拉应力压应力 P 1R 21 - P 0 R 20 R 20 -R 2 1P 1 -P 0R 21 R 2 0σt σr = ()+ R 2R 20 -R 21()=R 20 -R 2 1 P 1 R 21 - P 0 R 20 -)(R 20 -R 2 1R 2)(R 21 R 20P 1 -P 0① ② ③ ④ ⑤ ⑥ 当采用整体模时,如下图 P 0 =0 代入①,②式 )(R 20 -R 21R 2 + = σt R 21 R 20P 1R 20 -R 21P 1R 21= P 1R 2 1R 20 -R 21(1+ R 20R 2 ) P 1 R 21 R 2 0R 2 R 20 -R 21()-P 1R 21 R 20 -R 21 =σr =R 20 -R 21 P 1R 21 )R 2 R 2 01-(当R=R 1 时,分别代入公式③,④得 σtR1σrR1= )R 21 R 20 1+(R 20 -R 21P 1R 21)R 21 R 2 1- (R 20 -R 21 P 1R 21=P 1 R 20 -R 21R 20 +R 21= =-P 1

汽车模具材料的选用

汽车模具材料的选用 发表时间:2019-01-25T15:29:21.190Z 来源:《电力设备》2018年第25期作者:马洪宾王乐乐 [导读] 摘要:模具是冲压生产的关键工艺装备,随着模具行业的不断发展,模具在兵器工业、机械工业及日用品的生产中应用越来越广泛。 (长城汽车股份有限公司技术中心河北省汽车工程技术研究中心河北保定 071000) 摘要:模具是冲压生产的关键工艺装备,随着模具行业的不断发展,模具在兵器工业、机械工业及日用品的生产中应用越来越广泛。我国的模具行业已步入了高速发展时期,但模具的制造水平和使用性能与世界上发达国家相比,还有很大的差距。现代汽车90%以上的白车身零件,都靠冲压模具实现大批量生产。通过对汽车模具设计标准的研究,介绍几种常用模具材料的使用性能,以及模具材料的成本、使用寿命等的比对。结果表明,合理的选用模具的材料,会降低成本、缩短制造周期、方便维修、减少钳工劳动强度。 关键词:汽车模具;材料选用 Abstract: Die is the key equipment for stamping production. With the continuous development of die industry, die has been widely used in the production of weapon industry, machinery industry and daily necessities. China's mold industry has entered a period of rapid development, but the mold manufacturing level and performance compared with the developed countries in the world, there is still a big gap. More than 90% of the body parts of modern cars rely on stamping dies for mass production. Based on the research of automobile die design standard, this paper introduces the performance of several commonly used die materials and the comparison of die material cost and service life. The results show that reasonable selection of die materials will reduce the cost, shorten the manufacturing cycle, facilitate maintenance and reduce the labor intensity of fitters. Key words: automobile mould; material selection 前言:根据汽车冷冲模具的使用寿命要求:在正常使用、维修状态下,能多批次、小批量生产出50万辆合格零件。故模具材料的性能、质量对模具的使用寿命有极大的影响。因此,模具材料的研究和开发,一直受到模具钢生产厂商的重视,并得到了迅速的发展。 1、模具材料分类 近年来,我国模具钢生产技术发展较快,用于制造冷冲压模具材料主要分为以下几类:①高碳低合金冷作模具钢,如:9SiCr、 7CrSiMnMoV、8Cr2MnWMoVS、等;②抗磨损冷作模具钢,如:6Cr4W3Mo2VNb、Cr12、Cr12MoV、Cr12Mo1V1等;③抗冲击冷作模具钢,如:4CrW2Si、5CrW2Si、6CrW2Si等;④冷作模具用高速钢,如:W6Mo5Cr4V2、W12Mo3Cr4V3N、W9Mo3Cr4V等。 2、汽车模具材料的使用 2.1冲裁模材料的使用要求 对于薄板冲裁模具的用材要求具有高的耐磨性和硬度,而对厚板冲裁模除了要求具有高的耐磨性、抗压屈服点外,为防止模具断裂或崩刃,还应具有高的断裂抗力、韧性。 2.2拉延、整形模材料的使用要求 要求模具工作零件材料具有高的耐磨性和硬度、一定的强韧性以及较好的切削加工性能、良好的抗粘附性(抗咬合性),而且热处理时变形要小。根据汽车厂生产冲压件的模具现状,汽车模具主要采用的材料为:钼铬铸铁、Cr12MoV、铸态空冷钢。 2.2.1钼铬铸铁:属于镍硬白口铸铁系中高铬白口铸铁的一种,由于其共晶组织由一种M7C3型碳化物和奥氏体其它转变物组成,其基体退火成马氏体后能表现出很高的耐磨性,同时其含有的铬能显著提高强度、硬度和耐磨性、锰能显著提高韧性,而且钼能使钢的晶粒细化,提高淬透性。其热处理的方法为表面淬火,大量节省热处理时间,淬火后硬度HRC 50以上,热处理后变形量小。由于其铸造性好,且铸造成本较低,可实现整体铸造,减轻钳工的工作强度,缩短模具的制造周期。同时由于其硬度相对空冷钢低,加工时对刀具的磨损较小,具有良好的切削加工性能,加工成本低。在模具工作时,由于钼铬铸铁的散热性能优于其他几种模具材料,尤其模具在机械压力机上工作时,其具有良好的抗粘附性(抗咬合性)能最大化的保护模具,延长模具使用寿命。维修时,可以直接对其表面进行冷焊,大量节约维修时间。但由于其淬火后的硬度相对较低,耐磨性差,生产高强板的模具不会采用钼铬铸铁。 2.2.2 Cr12MoV:属于高碳高铬钢,其含有大量的碳化物和高合金度的马氏体。使钢具有高硬度、高耐磨,其硬度与耐磨性要高于钼铬铸铁。其含有的钒能细化晶粒增加韧度,又能形成高硬度的VC,以进一步增加钢的耐磨性;铬又使钢具有高的淬透性和回火稳定性。经整体淬火后,需要1~2次的回火,热处理时间较长。火后硬度可以达到HRC 60-62。但热处理后变形量要大于空冷钢,消除变形困难,容易降低模具的精度。生产Cr12MoV模具钢的方法为锻造,生产成本较高,同时由于锻造工艺的局限性,Cr12MoV钢只能分块锻造,制造模具时还需要拼装镶块,增加了钳工的劳动强度,延长了模具的制造周期,成本也随之增加。同时由于其硬度相对空冷钢高,加工时对刀具的磨损较大,增加了切削加工的时间和成本。另外,由于Cr的大量存在,钢液结晶时析出的大量共晶碳化物,形成带状或网状碳化物脆性区,其塑性、韧度差,裂纹很容易在这里萌生与扩展,往往成为裂纹产生的主要原因,使其使用寿命降低。对其维修时,由于焊接性能差,不能直接对其表面进行冷焊,需要加热并保温一段时间后,再对其表面进行焊接,大量浪费维修时间。 2.2.3 铸态空冷钢:是一种以铸代锻的高碳低合金钢,其含有的锰使钢有较高的强度和硬度,提高钢的淬性。其热处理的方法也为表面淬火,然后空冷即达到淬火的目的,大量节省了时间和成本。火后硬度可达HRC 55以上,不须其他加工,所以变形很小,并且随淬火温度的升高变形量逐渐减小[2]。空冷钢进行表面淬火后,淬硬层下有高韧性基体作衬垫,韧性高于Cr12MoV,工作时不容易产生开裂、崩刃现象。但由于铸态空冷钢不能整体铸造,在加工模具前,需要钳工将镶块拼接好后在进行机加,钳工劳动强度增加,延长了制造周期,增加了制造成本。但由于其可以使用泡沫板材制造成近型模具型,可以节省铸造费用以及部分加工费用,又可以降低部分成本。其硬度相对钼铬铸铁高,加工时对刀具的磨损较大,增加了切削加工的时间,增加了加工成本。另外,空冷钢具有良好的焊接性能,从而模具获得较高的使用寿命。制造有偏差时可以直接进行补焊,经打磨修整即可达到理想的效果,大量的节约了维修时间。 基于以上性能介绍,适用于拉延凸模、凹模、压料圈的材料为钼铬铸铁和Cr12MoV;适用于整形模的材料为钼铬铸铁、Cr12MoV、铸态空冷钢;适用于修冲模具的材料为Cr12MoV、铸态空冷钢。 结语: 经过上述材料性能对比以及对生产现状的经验积累,对于普通钢板(如DC01、DC04、DC06、B170P1等),料厚在1.2以下时,由

电缆用模具的分类和设计

浙江三科线缆有限公司 模具有关知识 1模具的分类 此类模具一般称为线模,可分圆模和型模,常用线模材料有钻石模、硬质合金模、聚晶模等。 a钻石模:钻石模也称金刚石,具有最高的硬度,耐磨,但价格较贵。在拉丝中,一般用在拉小规格单丝,如Φ0.40mm及以下规格。 b硬质合金模:在拉伸生产中,过去使用的钨钢模全为硬质合金模所代替的。因为硬质合金模拉伸模与钢模相比具有:耐磨性较好,抛光性好、对被加工金属的粘附性小,摩擦系数小,导热系数高和具有很高的耐腐蚀性。 c 聚晶模:也称人造钻石,是目前最常用的模丝模,它具有耐磨性,但也有不足之处就是生产出产品表面不光滑。 d 钨钢模:目前常用于铝拉,且使用寿命较短,一般用于过桥模,钨钢模耐磨性一般、价格低廉,其强度不适合于铜拉,拉制线芯表面不光滑。 2模孔结构 2.1入口区: 一般有圆弧,便于拉制线材进入工作区,不被模孔边缘所损伤;润滑液储蓄、并起到润滑拉制线材作用,在拉伸模孔中靠这部分来加大工作区的高一般为模坯总高H的25%,角度为60度。 2.2工作区: 是整个模孔的重要部分,金属拉伸塑性变形是该区进行的就是金属材料通过此区由尺寸的截面。此区的选择主要是高度和锥角,高度的选择原则是: a)拉制软金属线材应拉制硬金属线材为短, b)拉制小直径线材应拉制较大直径线材为短, c)湿法拉伸应干式润滑拉伸为短, d)一般为定径区d的1~1.4倍。 工作锥角根据下列原则选择: a)压缩率越小,工作锥角越小, b)拉制材料越硬,工作锥角越小, c)拉制小直径的材料的材料为小,一般有金属及其合金拉伸时,角度为16~26°,一般拉铜线圆锥角为16~18°,拉铝线时圆锥角为20~24°。 2.3定径区: 它的作用是使制品得到最终尺寸,其高度的选择原则是: a)拉制软金属材料较拉制金属材料要短, b )拉制大直径材料应较拉制小直径的炎短, c )湿式拉伸较之干式润滑拉伸的为短,一般选择h=0.5~1.0d。 2.4出口区: 出口区是拉制材料离开模孔的最后一部分,它能保护定径区不致于崩裂,出口锥角可避免金属线材被定径的出口处损伤和停机时线倒退被括伤,一般为45°。金属的强度极限与拉伸应力之比称为拉伸的安全系数。它的制范围:1.4~2.0。 电缆行业紧压成型类模具最常见的是异型压轮,适用于多芯电缆线芯的压制。 按其用途及角度主要分:180°两芯电缆用、120°三芯电缆用、90°四芯或3+1芯电缆及3+2或4+1芯电缆用。也有将3+1芯、3+2芯及4+1芯电缆用紧压成型模具细分为:90°、100°等。

模具材料选用标准

模具材料选用标准 成型零部件材料选用 .1 成型零部件指与塑料直接接触而成型制品的模具零部件,如型腔、型芯、滑块、镶件、斜顶、侧抽等。 .2 成型零部件的材质直接关系到模具的质量、寿命,决定着所成型塑料制品的外观及内在质量,必须十分慎重,一般要在合同规定及客户要求的基础上,根据制品和模具的要求及特点选用。 .3 成型零部件材料的选用原则是:根据所成型塑料的种类、制品的形状、尺寸精度、制品的外观质量及使用要求、生产批量大小等,兼顾材料的切削、抛光、焊接、蚀纹、变形、耐磨等各项性能,同时考虑经济性以及模具的制造条件和加工方法,以选用不同类型的钢材。 .4 对于成型透明塑料制品的模具,其型腔和型芯均需选用高镜面抛光性能的高档进口钢材,如718(P20+Ni类)、NAK80(P21类)、S136(420类)、H13类钢等,其中718、NAK80为预硬状态,不需再进行热处理;S136及H13类钢均为退火状态,硬度一般为HB160-200,粗加工后需进行真空淬火及回火处理,S136的硬度一般为HRC40-50,H13类钢的硬度一般为HRC45-55(可根据具体牌号确定)。 .5 对于制品外观质量要求高,长寿命、大批量生产的模具,其成型零部件材料选择如下: a) 型腔需选用高镜面抛光性能的高档进口钢材,如718(P20+Ni类)、NAK80(P21类)等,均为预硬状态,不需再进行热处理。 b) 型芯可选用中低档进口P20或P20+Ni类钢材,如618、738、2738、638、318等,均为预硬状态;对生产批量不大的模具,也可选用国产塑料模具钢或S50C、S55C等进口优质碳素钢。 .6 对于制品外观质量要求一般的模具,其成型零部件材料选择如下: a) 小型、精密模具型腔和型芯均选用中档进口P20或P20+Ni类钢材。 b) 大中型模具,所成型塑料对钢材无特殊要求,型腔可选用中低档进口P20或P20+Ni类钢材;型芯可选用低档进口P20类钢材或进口优质碳素钢S50C、S55C等,也可选用国产塑料模具钢。 c) 对于蚀皮纹的型腔,当蚀梨地纹时应争取避免选用P20+Ni类的2738(738)牌号。 .7 对无外观质量要求的内部结构件,成型材料对钢材亦无特殊要求的模具,其成型零部件材料选择如下: a) 对于大中型模具,型腔可选用低档的进口P20或P20+Ni类钢材,也可选用进口优质碳素钢S55C、S50C或国产P20或P20+Ni类塑料模具钢;型芯可选用进口或国产优质碳素钢。 b) 对于小型模具,若产量较高,结构较复杂,型腔可选用低档的进口P20或P20+Ni类钢材,也可选用国产P20或P20+Ni类塑料模具钢;型芯可选用国产塑料模具钢。 c) 对于结构较简单,产量不高的小型模具,型腔型芯均可选用国产塑料模具钢或优质碳素钢。 .8 对于成型含氟、氯等有腐蚀性的塑料和各类添加阻燃剂塑料的模具,若制品要求较高,可选用进口的耐蚀钢,要求一般的可选用国产的耐蚀钢。 .9 对于成型对钢材有较强摩擦、冲击性塑料的模具,例如用来注射尼龙+玻璃纤维料的模具,需选用具有高耐磨、高抗热拉强度及高韧性等优点的进口或国产H13类钢材。 .10成型镶件一般与所镶入的零件选用相同材料。对于模具较难冷却的部分或要求冷却效果较高的部分,镶件材料应选用铍青铜或合金铝。 .11对于模具中参与成型的活动部件材料选择原则如下:

模具材料选用规范

PTA022模具材料选用规范(设计节点规范) 1.概述 塑料模具钢的选用直接影响着模具的成本和模具的使用寿命.所以塑料模具钢应根据成型的塑料种类,制品的形状,尺寸精度,质量要求及制品的使用要求,同时要考虑模具制造条件和加工方法,来选择合适的钢材。 2.注塑模具钢材的通用要求: 2.1 成型部件钢材的选用 2.1.1对于透明的塑料制品,需如下选择: (1)若制品的要求很高,要求高透光性或镜面效果,成型塑料为ABS、PS、PMMA、PC等,宜选用高档进口的P20系列,此系列包括718H、S136、S136H等,其中718H为预硬态,一般不需再进行热处理,S136为退火态,硬度一般为HB160-230,粗加工后需进行真空淬火处理,硬度一般为HRC50±2 (2)若制品要求不是很高,成型材料为PP、ABS、PS等可选用中档的进口P20料,如进口738等。 2.1.2对于非透明件,但外观要求很高的制品有如下选择: (1)小型、精密的模具及所用塑料对钢材有较强冲击性,应选用高档进口P20系列,如:718H、S136、S136H 等。 (2)中大型塑料制品,成型材料对钢材无特殊要求,此类模具外观面可选用中档进口的P20系列,如:进口738等。成型非外观部件可选用低档的进口P20系列,如638、国产P20等。 2.1.3对制品要求不高,所用材料对钢材无特殊要求,此类模具有如下选择: (1)对于大型制品,外观部分构件选用中低档的进口P20系列,非外观部分构件选用国产P20,经客户认可也可选用进口的优质中碳钢,如S55C、S50C。 (2)对于小型制品,产量较高,结构较复杂,成型构件可选用低档的进口P20系列。 (3)对于其它结构较简单,产量不高,无较高外观要求的模具,可选用国产P20。 2.1.4对于参与成型的活动部件有如下选择: (1)透明件应选用抛光性好的中高档进口P20系列,如718H、S136H、738等 (2)非透明件,一般应选用硬度和强度较高的中高档进口P20系列,表面进行离子渗氮硬化处理,如:斜顶采用738,氮化层深度为0.15-0.2mm,硬度为HV600-700 。 (3)对参与成型的镶芯,最好选用硬度和强度较高的中高档进口P20系列,要求不高的可用国产P20代替。 2.1.5.特殊应用情况下材料的选用: (1)对于成型PVC和电镀ABS等对钢材有腐蚀性的塑料的模具,若制品要求较高,可选用进口的耐蚀钢,如S136、S136H等。要求一般的可选用国产的耐蚀钢。 (2)对于模具较难冷却的部分或要求冷却效果较高的部分,应选用铍铜合金。 2.2非成型部分钢材的选用 模架材料参照相关标准,一般选用进口S50C,要求硬度均匀为HB150-170,且内应力小,不易变形。 模具中一般结构用件,如顶出限位块、支撑柱等对硬度和耐磨性无较高要求,可选用S45C或45#。 滑块压板,锁紧块,浇口套等对于硬度、强度、耐磨性要求较高,应选用碳素工具钢或优质碳素工具钢,具体钢材种类根据标准件规范选用。 3.海尔注塑模具现行材料选用规范: 如表1所示: 表1: 海尔模具常用模具材料设计参考明细:

模具材料失效分析

1.模具寿命定义:模具因为磨损或其他形式失效、终至不可修复而报废之前所加工合格产品的件数称为模具的使用寿命,简称模具寿命。 2.失效定义:模具受到损坏,不能通过修复而继续服役时叫模具失效。 3.模具寿命与成本的关系:产品成本随着模具寿命的增加而下降,提高模具寿命可降低成本。考虑两个因素:应根据批量选择不同的模具材料和制造工艺。 4.磨损失效:由于相对运动产生磨损,使模具尺寸或表面状态发生改变,使之不能继续服役的现象,叫磨损失效。 5.磨粒磨损:外来硬质颗粒存在工件与模具接触表面之间,刮擦模具表面,引起模具表面材料脱落的现象。工件表面的硬突出物刮擦模具引起的磨损也叫磨粒磨损。 6.粘着磨损:工件与模具表面相对运动时,由于表面凹凸不平,粘着的结点发生剪切断裂,使模具表面材料转移到工件上或脱落的现象。 7.脆性断裂:断裂时不发生或发生较小的宏观塑性变形的断裂,分为一次性断裂和疲劳断裂。 8.多种失效形式的交互作用:(1)磨损对断裂及塑性变形的促进作用,。磨损沟痕可成为裂纹的发源地,当由磨损形成的裂纹在有利于其向纵深发展的应力作用下,就会造成断裂。模具局部磨损后,会带来承载能力的下降和偏载,造成另一部分承受过大应力而产生塑变。(2)塑性变形对磨损和断裂的促进作用。局部塑变会改变模具零件正常的配合关系,模具间隙变小引起不均匀磨损,会加快磨损速度进而促进磨损失效。另一方面,塑变后间隙不均匀,承载面变小,会带来附加偏心载荷,造成局部应力集中,并由此产生裂纹,促进断裂失效。 9.圆角半径的影响及措施:模具零件的两个面相交处常用圆角过渡,工作部位的圆角半径对成形件质量和模具寿命影响很大。(1)凸的圆角半径对成形工艺影响大。过小的凸圆角半径在板料拉深中增加成形力,在模锻中易造成锻件折叠缺陷。(2)凹的圆角半径对模具寿命影响大。小的凹圆角半径会使局部受力恶化,在圆角半径处产生较大的应力集中,易萌生裂纹导致断裂。【措施】增大圆角半径,使模具受力均匀,不易产生裂纹。 10.成形件材质与模具寿命的关系:成形件的材质有金属和非金属、固体和液体之分。(1)非金属材料和液体材料由于强度低,所需成形力小,模具受力小,模具

模具类型

六、模具类型(Mold Types): 两板模(Two-Plate Molds)﹕ 两板模是最常用的模具类型,与三板模比较,两板模具有成本低、结构简单及成型周期短的优点。 单模穴两板模 许多单穴模具采用两板模的设计方式,如果你的产品只用一个浇口,不要流道,那么塑料会由竖流道直接流到型腔中。 多模穴与家族模穴两板模 你可以使用两板模在一模多穴和家族模穴模中,但是这种结构中限制进浇的位置,因为在两板模中流道和浇口也位于分模面上,这样他们才能随开模动作一起作业。 在你设计多穴模具之前,你应该分析单个成品(分析类型用Part Only)来决定浇口位置。如果分模面与浇口在同一线上,那么就能用两板模。 当你设计一模多穴的模具时,到 达流动平衡对你设计流道是重要的。 对于一模多穴而言,使用常用的两板 模结构,使各模穴的流动到达平衡不 大可能,因此你或许要用三板模或者 用热流道的两板模代替。 采用热流道的两板模 它能保证塑料以熔融状态通过竖流道、横流道、浇口,只有到了模穴时才开始冷却、凝固。当模具打开时,成品(或冷流道)被顶出,当模具再次关闭时,流道中的塑料仍然是热的,因此可以直接充填模穴,此种模具中的流道可能由冷热两部分组成。 采用热流道的两板模可以用来改变成三板模。 在这种模具中,进浇位置必需放在模穴中心,以避免在成品可见侧上留下痕迹,这就意味着流道 必需远离分模面。(脱模时避免碰 到划伤) 假设你使用热流道模具,流

道不需顶出,因此流道远离分模面也不会引起任何问题。 热流道也适用于小产品的一模多穴模具中,假如有许多小产品,常用的流道系统可能会浪费许多材料,如果它不能回收的话。 热流道的优点: 较少的废料,无需回收 较不明显的浇口痕迹 可以不要切除浇口 缩短成型周期 可较大程度上控制模穴充填和胶体流动 热流道的缺点: 较高的成本 难于改变材料颜色 易于出故障,特别是加热控制系统 对热敏性材料不适用 对高数量、高品质的产品,采用热流道系统利大于弊。在有些案中,最好的结果也许是采用热流道与冷流道的结合。 三板模(Three-Plate Molds)﹕ 三板模的流道系统位于与主分模面平行的拨料板上,开模时拨料板顶出流道及衬套内的废料,在三板模中流道与成品将分开顶出。 当整个流道系统不可能与浇口放于同一平板上时,使用三板模。这可能因为: 模具包含多穴或家族模穴; 一模一穴较复杂的成品需要多个进浇点; 进浇位置在不便于放流道的地方; 平衡流动要求流道设计在分模面以外的地方。

模具材料选用标准介绍(

模具材料选用规范 成型零部件材料选用 1 成型零部件指与塑料直接接触而成型制品的模具零部件,如型腔、型芯、滑块、镶件、斜顶、侧抽等。 2 成型零部件的材质直接关系到模具的质量、寿命,决定着所成型塑料制品的外观及内在质量,必须十分 慎重,一般要在合同规定及客户要求的基础上,根据制品和模具的要求及特点选用。 3 成型零部件材料的选用原则是:根据所成型塑料的种类、制品的形状、尺寸精度、制品的外观质量及使 用要求、生产批量大小等,兼顾材料的切削、抛光、焊接、蚀纹、变形、耐磨等各项性能,同时考虑经济性以及模具的制造条件和加工方法,以选用不同类型的钢材。 4 对于成型透明塑料制品的模具,其型腔和型芯均需选用高镜面抛光性能的高档进口钢材,如718(P20+Ni 类)、NAK80(P21类)、S136(420类)、H13类钢等,其中718、NAK80为预硬状态,不需再进行热处理;S136及H13类钢均为退火状态,硬度一般为HB160-200,粗加工后需进行真空淬火及回火处理,S136的硬度一般为HRC40-50,H13类钢的硬度一般为HRC45-55(可根据具体牌号确定)。 5 对于制品外观质量要求高,长寿命、大批量生产的模具,其成型零部件材料选择如下: a) 型腔需选用高镜面抛光性能的高档进口钢材,如718(P20+Ni类)、NAK80(P21类)等,均为预硬 状态,不需再进行热处理。 b) 型芯可选用中低档进口P20或P20+Ni类钢材,如618、738、2738、638、318等,均为预硬状态; 对生产批量不大的模具,也可选用国产塑料模具钢或S50C、S55C等进口优质碳素钢。 6 对于制品外观质量要求一般的模具,其成型零部件材料选择如下: a) 小型、精密模具型腔和型芯均选用中档进口P20或P20+Ni类钢材。 b) 大中型模具,所成型塑料对钢材无特殊要求,型腔可选用中低档进口P20或P20+Ni类钢材;型芯 可选用低档进口P20类钢材或进口优质碳素钢S50C、S55C等,也可选用国产塑料模具钢。 c) 对于蚀皮纹的型腔,当蚀梨地纹时应争取避免选用P20+Ni类的2738(738)牌号。 7 对无外观质量要求的内部结构件,成型材料对钢材亦无特殊要求的模具,其成型零部件材料选择如下: a) 对于大中型模具,型腔可选用低档的进口P20或P20+Ni类钢材,也可选用进口优质碳素钢S55C、 S50C或国产P20或P20+Ni类塑料模具钢;型芯可选用进口或国产优质碳素钢。 b) 对于小型模具,若产量较高,结构较复杂,型腔可选用低档的进口P20或P20+Ni类钢材,也可选 用国产P20或P20+Ni类塑料模具钢;型芯可选用国产塑料模具钢。 c) 对于结构较简单,产量不高的小型模具,型腔型芯均可选用国产塑料模具钢或优质碳素钢。 8 对于成型含氟、氯等有腐蚀性的塑料和各类添加阻燃剂塑料的模具,若制品要求较高,可选用进口的耐 蚀钢,要求一般的可选用国产的耐蚀钢。 9 对于成型对钢材有较强摩擦、冲击性塑料的模具,例如用来注射尼龙+玻璃纤维料的模具,需选用具有高 耐磨、高抗热拉强度及高韧性等优点的进口或国产H13类钢材。 10成型镶件一般与所镶入的零件选用相同材料。对于模具较难冷却的部分或要求冷却效果较高的部分,镶件材料应选用铍青铜或合金铝。 11对于模具中参与成型的活动部件材料选择原则如下: a) 透明件应选用抛光性好的高档进口钢材,如718、NAK80等。 b) 非透明件,一般应选用硬度和强度较高的中档进口钢材,如618、738、2738、638、318等,表面进 行氮化处理,氮化层深度为0.15-0.2mm,硬度为HV700-900。 c) 若模具要求较低,也可选用低档进口钢材或国产钢材,氮化处理硬度一般为HV600-800。 非成型零部件材料选用

模具材料考试题答案 (1)

模具材料 一、名词解释 1.模具失效 :是指模具丧失正常的使用功能,不能通过一般的修复方法使其重新服役的现象。 2.模具寿命 : 是指模具在正常失效前生产出的合格产品数目。 3.冷作模具 : 是指在常温下对材料进行压力加工或其它加工所使用的模具。 4.冷拉深模具 : 是将材进行伸延使之成为一定尺寸,形状产品的模具。 5.热作模具 : 是指将金属坯料加热到再结晶温度以上进行压力加工的模具。 6.基体钢:是指在高速钢淬火组织基体的化学成分基础上,添加少量的其他元素,适当增减碳元素含量,使钢的成分与高速钢基体成分相同或相近的一类模具钢。 7.回火稳定性:是指随回火温度的升高,材料的强度和硬度下降的快慢程度。 8.热稳定性:钢在受热过程中保持组织和性能稳定的能力。 9.激光合金化:是利用激光束使合金元素与基体表面金属混合熔化,在很短的时间内形成不同化学成分和 结构的高性能表面合金层。 10.激光淬火:是指铁基合金在固态下经激光照射,使表层激光照射,使表层被迅速加热至奥氏体化状态,并在激光停止照射后,快速自冷淬火得到马氏体组织的一种工艺方法。 11.激光熔覆:是利用激光束在工件表面熔覆一层硬度高,耐磨,耐蚀和抗疲劳性好的材料,以提高工件 的表面性能。 12. 渗碳 : 是把钢件置于含有活性炭的介质中。加热至850℃-950℃,保温一定时间,使碳原子渗入钢件 表面的化学热处理工艺。 13. 渗氮 : 渗氮是把钢件置入含活性氮原子的气氛中,加热到一定温度,保温一定时间,使氮原子渗入钢 件表面的热处理工艺。 14. 电镀 : 是指在直流电的作用下,电解液中的金属离子还原沉积在零件表面而形成一定性的金属镀层的过程 15. 电刷镀 : 是在可导电工件{或模具}表面需要镀覆的部位快速沉积金属镀层的新技术。 16. 气相沉积 : 是将含有形成沉积元素的气相物质输送到工件表面,在工件表面形成沉积层的工艺方法。 17.热硬性: 是指钢在较高温度下,仍能保持较高硬度的性能。 18. 冷热疲劳: 是指材料在多少度高温和多少度低温以多大的频率交替的情况下可以保持多长时间的正常 使用性能。 二、填空 1.根据工作条件,模具分为冷作模具、热作模具和塑料模具三大类。 2. 根据工艺特点,冷作模具分为:冷冲裁模具、冷拉深模具、冷挤压模具、冷镦模具等。 3. 模具在使用过程中产生失效的主要形式有:过量变形、表面损伤、断裂开裂、冷热疲劳等

模具种类

模具的分类 [用途上分]: A [塑胶模]Plastic mould :用于制造塑胶产品,如:3C类产品[3C:计算机(Computer),通讯(Communication), 消费类电子:(Consumer Electrics)]汽车摩托车结构件,内饰件,日用品,儿童玩具,建筑用PVC水管接头,各种工具的手柄,精密仪器零件等涉及生活的每一个角落。 B [冲压模]die ( Pressed tooling):用于制造金属钣金,片状材料的剪裁下料等。如:电脑等各类机箱、机柜、不锈钢厨具、连接器端子、接插件铜片、电路板切孔,钣金成型,快餐盒成型等。 C [压铸模]Die casting (alloy mould):主要用于生产铝合金,锌合金,镁铝合金等铸件,如笔记本外壳,汽车摩托车发动机,音箱,阀体配件等。 D [压缩模] Compression mould:主要用于生产橡胶,硅橡胶制品,如各种防水圈,饰件,缓冲件,衬垫,手机按键等。 E [吹塑,吸塑模] blow mold:主要用于生产塑胶类中空容器类产品,如各种饮料瓶,塑料壶,化妆品盒,洗发水瓶,充气玩具,塑料包装等。 F [挤出模具]extrusion mould :主要是各种型材,如建筑用铝合金门窗,电线槽, G [半导体模具]semiconductor mold:主要是生产各种二级管,三级管等电子电气元件。 H 玻璃钢模具(SMC/BMC) Phenolic mould 电木模具属于热固性模具 其中应用最广泛的就是塑胶模具,由于塑胶产品种类繁多,所以塑胶模具也有各种分类: [品质要求]: A. production mould量产模 模具产量主要指的是:在模具使用寿命期间所能生产的最大的产品数 按照美国[SPI-SPE]标准可以分为以下几类 一、101类模。(长期精密生产模具,产量在1,000,000shots或以上) 二、102类模。(不超过1,000,000shots,大量生产模具) 三、103类模。(少于500,000shots,中量产模具) 四、104类模。(少于100,000shots,少量产模具) 五、105类模。(少于500shots,手办模或试验模)

塑胶模具材料限用标准

模具材料限用标准 1. 范围 本标准对xx科技有限公司模具设计材料的选用作出了规定。根据模具零件的功能和重要程度按必须贯彻执行﹑推荐采用建议执行﹑按客户要求执行和不受本标准限制按贯例选用的四种情况在本标准内选用。 按照本标准规定的选用材料原则进行选材,可以达到在确保模具品质的情况下合理选材﹑压缩品种﹑减少规格﹑简化供应渠道﹑减少呆料和库存积压。 本标准适用于xx科技在模具设计和制作过程中的黑色金属(即钢、铜和铝)材料的选用。本标准不适用于非金属(如塑料﹑塑胶)材料的选用。 2. 引用文件 模具工业标准应用手册 模具钢手册冶金工业部出版社 机械设计手册化学工业出版社 3. 材料限用的一般规定 3.1选择材料一般应遵循的原则 a. 选择材料一般应以满足产品的功能和生产要求为原则 b. 在满足模具品质的情况下, 不要随意提高材料成本,要以节省资源为原则 c. 要选择货源充裕﹑有信誉度的供应商的材料。 3.2选择注塑模具材料时应考虑的影响因素 3.2.1受注塑产品的影响因素 a. 啤塑产品在啤塑过程中是否会对材料产生腐蚀性影响。 b. 塑胶树脂的种类对模具钢材的影响。 c. 塑胶件的生产批量对模具钢材的要求。 d. 塑胶件的外观品质对模具材料的要求。 3.2.2模具本身对材料的要求 a. 要求有良好的加工性(包括易切削性、良好的电加工性、好的抛光特性和溶接性)。 b. 对硬度和可预硬性的要求(包括材料内部组织纯洁均匀,可进行热处理和表面处理)。 c. 模具出现故障时易于修复,有良好的可烧焊性能。 4.材料限用的具体规定 根据注塑模具的特点及其模具零件的功能和重要程度将模具零件分为成型零件﹑模胚组件和结构组件,对模具材料的限制选用分为以下四种情况: a. 成型零件——如上下模肉﹑行位﹑斜顶﹑直顶﹑上下模肉镶件﹑行位镶件等;成型零件的选用原则属于 推荐采用建议执行,限用材料详见表二、表三、表四。 b. 模胚组件——如上下码模板﹑“A”板﹑“B”板﹑热流道框板﹑顶针板等;模胚组件的选用原则属于限 制选用强制执行,限用材料详见表五。 c. 结构组件——如硬片﹑法兰﹑唧咀﹑司筒针压片等;结构组件的选用原则属于必须贯彻执行,若客户有特别的要求应建议客户接受我们的意见。限用材料详见表六。 d. 除上述三种情况以外的所有零﹑组件的选材原则不作规定,按以往贯例选取。 ※为便于查找资料和选材本标准将通用模具材料分类和材料牌号列于表一: 1 表一:通用模具材料分类和材料牌号

5CrMnMo模具材料及其失效分析解析

《模具材料及其失效分析》 结课大作业 系别: 班级: 姓名: 学号: 任课教师: 2013年4月26日 1、 5CrMnMo钢简介 模具钢材5CrMnMo是在中碳 钢的基础上主要加入Cr、Mn、Mo 三元素而研制成的,也可看作把

5CrNiMo钢中的Ni元素由Mn元素取代而形成的。 该钢是热作模具钢,除淬透性,耐热疲劳性稍差外,5CrMnMo钢具有与5CrNiMo钢类似的性能,淬透性稍差。此钢适于制作要求具有较高强度和高耐磨性的各种类型锻模。要求韧性较高时,可采用电渣重熔钢。 5CrMnMo钢中碳含量保持在0.40%~0.60%,可获得较高的强度与耐热疲劳强度、一定的硬度与耐磨性、良好的韧性钢与导热性。适合制造边长≤400mm 的中型锤锻模即热切边模。 化学成分:C(0.50~0.60)、Si(0.25~0.60)、Mn(1.20~1.60)、S(≤0.030)P(≤0.030)、Cr(0.60~0.90)、Ni(允许残余含量≤0.25) Cu(允许残余含量≤0.30)、Mo(0.15~0.30) 2 、5CrMnMo钢锻造和热处理特点 5CrMnMo钢相变点为AC1710℃、Ac3760℃、Ar1650℃、Ms220℃。 5CrMnMo钢始锻温度1050~1100℃,终锻温度800~850℃,锻造后坑中冷却或砂中冷却。 常见的热处理工艺及特点: a、等温退火:加热850~870℃,保温3h,650~680℃等温,保温5h,炉 冷至550℃以下出炉空冷197~255HBS Ac1710℃,Ac3760℃,加热温 度在Ac3线以上,等温温度低于Ar1727℃,以获得珠光体+铁素体组织; b、普通退火:加热810~830℃,保温3h,炉冷至550℃以下出炉空冷 197~241HBS Ac1710℃,Ac3760℃,加热温度Ac3线以上,得到珠光 体+块状铁素体组织; c、去应力退火:加热720~740℃,保温3h,炉冷至550℃以下出炉空冷 197~255HBS消除从残余应力,消除加工硬化; d、淬火:加热820~850℃,保温,油冷至150~180℃,出油,加热时Cr、 Mn、S、Mo元素溶入奥氏体中,提高淬透性,改善回火稳定性。 试样的热加工工艺 1)锻造 5CrMnMo钢的锻造工艺参数与5CrNiMo钢相当。4Cr3Mo3V钢由于Cr、Mo、V的含量较高,其开锻和停锻温度约高于5CrNiMo钢50℃。

刀具模具失效模式分析

PVD涂层刀具、模具失效分析 郭 硕 摘要:1、阐述了刀具、模具的基本失效模式;2、失效模式与原因分析的方法;3、刀具、模具经过PVD (物理气相沉积)处理后,失效模式的分析与改善方法。 关键字:PVD、ALTiN、TiCN、TiN、磨损、失效模式 1、概述 1.1失效:即产品丧失规定功能。(国标GB3187-82中定义)比如刀具刃口磨损变钝,不能继续切削 使用。 1.2失效模式:是指失效的外在宏观表现形式和过程规律,一般可理解为失效的性质和类型。 1.3失效分析:是指判断产品失效模式,查找失效机理和原因,提出改善和预防措施的活动。 2、失效模式 2.1 主要的失效模式(针对模具、刀具、机械零件等) 2.1.1 磨损 2.1.2 断裂 2.1.3 变形 2.1.4 腐蚀 2.2 磨损 2.2.1 磨损过程(如下图所示) (1)磨合阶段(Ⅰ区,O~A) (2)正常磨损阶段(Ⅱ区,A~B) (3)快速磨损阶段,也称严重磨损阶段(Ⅲ区,B~C) 图1 磨损过程示意图 z磨损是一定会发生的,我们的分析与研究只是为了尽可能延长“正常磨损阶段”(即Ⅱ区)的时间,并能对B点的到来作出准确的预测。 2.2.2 磨损的分类

(1)粘着磨损:相对运动的物体,接触表面发生了固相粘着,使材料从一个表面转移到另一个表面的现象。粘着磨损情况严重时会出现“咬死”“卡死”现象。 z产生原因: ①表面粗糙,表面凸起来的部分在摩擦过程中,受到很大压力发生塑性变形,进 而彼此粘着。 ②接触的两种材料之间物理、化学特性接近,有粘着在一起的可能,比如金属之 间可能发生粘着,而金属和木材之间就不可能发生粘着。 z对于刀具、模具而言,轻微的情况就是粘料、积屑,以及进而形成的擦伤、拉毛等。 比如五金拉伸模具,模具表面粘料后,产品将出现拉毛、擦伤等异常。 (2)磨粒磨损:又称磨料磨损或研磨磨损,是指两物体接触时,一方硬度比另一方大得多时,或接触面之间存在着硬质颗粒时,所产生的磨损。 z此类磨损,在我们涂层的模具或零件应用中极为常见。因为涂层本身硬度极高,一旦脱落,其碎片就是“硬质颗粒”,它夹杂在摩擦面之间,会造成模具本身的快速 磨损。 (3)表面疲劳磨损:是指两物体接触摩擦,在交变应力作用下,材料表面疲劳,产生小坑点和很浅的细小裂纹以及由裂纹造成的下片金属脱落。表面疲劳是介于疲劳与磨损之间的破坏 形式。 z比如,冲压螺丝的十字精冲,冲压到某一寿命次数之后,十字针上就会出现很细小的裂纹和小坑点。 (4)腐蚀磨损:是指在有腐蚀性的环境下,摩擦面受到化学、电化学腐蚀与摩擦的双重作用,从而引起的破坏形式。 z塑胶模具,对于存在腐蚀性的胶料,同时受压力较大的部位(比如进胶口),在腐蚀和磨损双重作用下,就会更容易被破坏。 2.2.3 “正常磨损阶段”时间没有达到预期值(即我们所说的“寿命异常”)的失效分析,就是找 出实际发生的属于那种磨损形式,以及为何没有达到正常标准时限,并找出改善其摩擦环境 的措施。 2.2.4 在实际的磨损过程中,往往是多种磨损同时发生或交替作用,而且各种机理在里面的作用大 小也不一定,故我们在做失效模式判断时,要根据实际情况,作出全面的分析判断。 2.3 断裂 2.3.1 断裂:是指产品在外力作用下产生裂纹进而扩展分裂成两部分或多部分的过程。对于刀具、 模具的局部断裂,我通常称为“崩刃”、“崩口”。 2.3.2 断口:即断裂形成的断面。我们分析断裂原因时,就是根据断口的痕迹与特征来判断的。 2.3.3 断裂的分类: (1)脆性断裂:材料本身的韧性不够好,在承受过大的外力时,仅发生了很小的变形就断裂。 (2)塑性断裂:材料本身韧性较好,但由于承受的外力过大,发生严重塑性变形后断裂。 (3)疲劳断裂:材料在交变应力反复作用下(如冲压加工),萌生裂纹及裂纹扩展进而造成断裂。 2.3.4 对于刀具、模具而言,发生断裂的主要原因: (1)材料问题,材料本身的强度不足以承受这般大的外力,故而断裂。 (2)热处理问题,热处理的方式或工艺不当,造成刀具、模具内部应力没有完全消除,脆性过大进而断裂。 (3)使用不当,如装夹偏位、撞车、撞刀等。 (4)加工参数设定太严苛,使得刀具、模具负荷过大,或造成机台振动,从而造成刀具、模具崩裂。

冲压模具材料的种类及特性

冲压模具材料的种类及特性 制造冲压模具的材料有钢材、硬质合金、钢结硬质合金、锌基合金、低熔点合金、铝青铜、高分子材料等等。目前制造冲压模具的材料绝大部分以钢材为主,常用的模具工作部件材料的种类有:碳素工具钢、低合金工具钢、高碳高铬或中铬工具钢、中碳合金钢、高速钢、基体钢以及硬质合金、钢结硬质合金等等。 1. 碳素工具钢在模具中应用较多的碳素工具钢为T8A、T10A等,优点为加工性能好,价格便宜。但淬透性和红硬性差,热处理变形大,承载能力较低。 2. 低合金工具钢低合金工具钢是在碳素工具钢的基础上加入了适量的合金元素。与碳素工具钢相比,减少了淬火变形和开裂倾向,提高了钢的淬透性,耐磨性亦较好。用于制造模具的低合金钢有 CrWMn、9Mn2V、7CrSiMnMoV(代号CH-1)、6CrNiSiMnMoV(代号GD)等。 3. 高碳高铬工具钢常用的高碳高铬工具钢有Cr12和Cr12MoV、Cr12Mo1V1(代号D2),它们具有较好的淬透性、淬硬性和耐磨性,热处理变形很小,为高耐磨微变形模具钢,承载能力仅次于高速钢。但碳化物偏析严重,必须进行反复镦拔(轴向镦、径向拔)改锻,以降低碳化物的不均匀性,提高使用性能。 4. 高碳中铬工具钢用于模具的高碳中铬工具钢有Cr4W2MoV、Cr6WV 、Cr5MoV等,它们的含铬量较低,共晶碳化物少,碳化物分布均匀,热处理变形小,具有良好的淬透性和尺寸稳定性。与碳化物偏析相对较严重的高碳高铬钢相比,性能有所改善。 5. 高速钢高速钢具有模具钢中最高的硬度、耐磨性和抗压强度,承载能力很高。模具中常用的有 W18Cr4V(代号8-4-1)和含钨量较少的W6Mo5 Cr4V2(代号6-5-4-2,美国牌号为M2)以及为提高韧性开发的降碳降钒高速钢 6W6Mo5 Cr4V(代号6W6或称低碳M2)。高速钢也需要改锻,以改善其碳化物分布。 6. 基体钢在高速钢的基本成分上添加少量的其它元素,适当增减含碳量,以改善钢的性能。这样的钢种统称基体钢。它们不仅有高速钢的特点,具有一定的耐磨性和硬度,而且抗疲劳强度和韧性均优于高速钢,为高强韧性冷作模具钢,材料成本却比高速钢低。模具中常用的基体钢有6Cr4W3Mo2VNb(代号65Nb)、7Cr7Mo2V2Si(代号LD)、5Cr4Mo3SiMnVAL(代号012AL)等。 7. 硬质合金和钢结硬质合金硬质合金的硬度和耐磨性高于其它任何种类的模具钢,但抗弯强度和韧性差。用作模具的硬质合金是钨钴类,对冲击性小而耐磨性要求高的模具,可选用含钴量较低的硬质合金。对冲击性大的模具,可选用含钴量较高的硬质合金。 钢结硬质合金是以铁粉加入少量的合金元素粉末(如铬、钼、钨、钒等)做粘合剂,以碳化钛或碳化钨为硬质相,用粉末冶金方法烧结而成。钢结硬质合金的基体是钢,克服了硬质合金韧性较差、加工困难的缺点,可以切削、焊接、锻造和热处理。钢结硬质合金含有大量的碳化物,虽然硬度和耐磨性低于硬质合金,但仍高于其它钢种,经淬火、回火后硬度可达 68 ~ 73HRC。 冲压模具材料的选用及热处理要求 冲裁模具材料的选用及热处理要求 选用冲裁模具材料应考虑工件生产的批量,若批量不大就没有必要选择高寿命的模具材料;还应考虑被冲工件的材质,不同材质适用的模具材料亦有所不同。对于冲裁模具,耐磨性是决定模具寿命的重要因素,钢材的耐磨性取决于碳化物等硬质点相的状况和基体的硬度,两者的硬度越高,碳化物的数量越多,则耐磨性越好。常用冲压模具钢材耐磨性的劣优依次为碳素工具钢—合金工具钢—基体钢—高碳高铬钢—高速钢—钢结硬质合金—硬质合金。 此外还必须考虑工件的厚度、形状、尺寸大小、精度要求等因素对模具材料选择的影响。 1.传统模具用钢长期以来,国内薄板冲裁模用钢为 T10A 、 CrWMn 、9Mn2V、Cr12 和Cr12MoV 等。 其中 T10A 为碳素工具钢,有一定强度和韧性。但耐磨性不高,淬火容易变形及开裂,淬透性差,只适用于工件形状简单、尺寸小、数量少的冲裁模具。 T10A 碳素工具钢的热处理工艺为: 760~810 ℃水或油淬, 160~180 ℃回火,硬度59~62HRC 。

相关文档
相关文档 最新文档