文档库 最新最全的文档下载
当前位置:文档库 › 气相色谱使用注意事项

气相色谱使用注意事项

气相色谱使用注意事项
气相色谱使用注意事项

气相色谱使用注意事项

一、进样应注意问题:

手不要拿注射器的针头和有样品部位、不要有气泡(吸样时要慢、快速排出再慢吸,反复几次,10ul注射器金属针头部分体积0.6ul,有气泡也看不到,多吸1-2ul把注射器针尖朝上气泡上走到顶部再推动针杆排除气泡,(指10ul 注射器,带芯子注射器平感觉)进样速度要快(但不易特快),每次进样保持相同速度,针尖到汽化室中部开始注射样品。

二、安装色谱柱:

1.安装拆卸色谱柱必须在常温下。

2.填充柱有卡套密封和垫片密封,卡套分三种,金属卡套,塑料卡套,石

墨卡套,安装时不易拧的太紧。垫片式密封每次按装色谱柱都要换新的

垫片(岛津色谱是垫片密封)。

3.色谱柱两头是否用玻璃棉塞好。防止玻璃棉和填料被载气吹到检测器中。

4.毛细管色谱柱安装插入的长度要根据仪器的说明书而定,不同的色谱汽

化室结构不同,所以插进的长度也不同。需要说明的如果你用毛细管色

谱柱采用不分流,汽化室采用填充柱接口这时与汽化室连接毛细管柱不

能探进太多,略超出卡套即可。

三、氢气和空气的比例对FID检测器的影响:

氢气和空气的比例应1:10,当氢气比例过大时FID检测器的灵敏度急剧下降,在使用色谱时别的条件不变的情况下,灵敏度下降要检查一下氢气和空气流速。氢气和空气有一种气体不足点火时发出“砰”的一声,随后就灭火,一般当你点火电着就灭,再点还着随后又灭是氢气量不足。

四、使用TCD检测器:

1.氢气做载气时尾气一定要排到室外。

2.氮气做载气桥流不能设大,比用氢气时要小的多。

3.没通载气不能给桥流,桥流要在仪器温度稳定后开始做样前在给。

五、如何判断FID检测器是否点着火:

不同的仪器判断方法不同,有基流显示的看基流大小,没有基流显示的用

带抛光面的扳手凑近检测器出口,观察其表面有无水汽凝结。

六、如何判断进样口密封垫是否该换:

进样时感觉特别容易,用TCD检测器不进样时记录仪上有规则小峰出现,说明密封垫漏气该更换。更换密封垫不要拧的太紧,一般更换时都是在常温,温度升高后会更紧,密封垫拧的太紧会造成进样困难,常常会把注射器针头弄弯。

七、如何选择合适的密封垫:

密封垫分一般密封垫和耐高温密封垫,汽化室温度超过300℃时用耐高温密封垫,耐高温密封垫的一面有一层膜,使用时带膜的面朝下。

八、怎样防止进样针不弯:

很多做色谱分析工作的新手常常会把注射器的针头和注射器杆弄弯,原因是: 1.进样口拧的太紧,室温下拧的太紧当汽化室温度升高时硅胶密封垫膨胀后会更紧,这时注射器很难扎进去。 2.位置找不好针扎在进样口金属部位。 3.注射器杆弯是进样时用力太猛,进口色谱带一个进样器架,用进样器架进样就不会把注射器杆弄弯。 4.因为注射器内壁有污染,注射时将针杆推弯。注射器用一段时间就会发现针管内靠近顶部有一小段黑的东西,这时吸样注射感到吃力。清洗方法将针杆拔出,注入一点水,将针杆插到有污染的位置反复推拉,一次不行再注入水直到将污染物弄掉,这时你会看到注射器内的水变的浑浊,将针杆拔出用滤纸擦一下,再用酒精洗几次。分析的样品为溶剂溶解的固体样时,进完样要及时用溶剂洗注射器。 5.进样时一定要稳重,急于求快会把注射器弄弯的,只要你进样熟练了自然就快了。

企业管理使企业的运作效率大大增强;让企业有明确的发展方向;使每个员工都充分发挥他们的潜能;向顾客提供满意的产品和服务;树立企业形象。管理就是效益。企业管理能增强企业竞争力。

企业管理的意义:

1,企业管理可以增强企业的运作效率;

2,可以让企业有明确的发展方向;

3,可以使每个员工都充分发挥他们的潜能;

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

怎样分析气相色谱图

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。 3、确定初始操作条件 当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

高效液相色谱 质谱联用技术的应用

高效液相色谱质谱联用技术的应用 高效液相色谱(HPLC或LC)是以液体溶剂作为流动相的色谱技术,一般在室温下操作,可以直接分析不挥发性化合物、极性化合物和大分子化合物(包括蛋白、多肽、多糖、多聚物等),分析范围广,而且不需衍生化步骤。质谱是强有力的结构解析工具,能为结构定性提供较多的信息,是理想的色谱检测器,不仅特异,而且具有极高的检测灵敏度。串联质谱(MS/MS)是将一个质量选择的操作接到另一个质量选择的后面,在单极质谱给出化合物相对分子量的信息后,对准分子离子进行多极裂解,进而获得丰富的化合物碎片信息,确认目标化合物,对目标化合物定量等。[1] 高效液相色谱一质谱(HPLC—MS)联用技术是近几年来发展起来的一项新的分离分析技术,将HPLC 对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子质量与结构信息的优点结合起来,在药物分析、环境分析等许多领域得到了广泛的应用。[2] 本文着重讲述液相色谱质谱联用仪在药物分析、环境分析上的应用。 1液相色谱质谱联用在药学分析上的应用 1.1LC/MS在药物代谢中的应用 Lee等[3]总结了利用LC/MS鉴定药物代谢产物的方法,主要包括以下几个步骤:测定原形药物的质谱;选择准分子离子、加合离子和主要的碎片离子进行多级质谱分析;选择原形药物的主要中性丢失,测定生物样品的中性丢失谱,图谱中的离子即为原形药物和可能的代谢物的分子离子;选择主要的子离子测定生物样品的母离子谱,所得母离子即为各个代谢物;测定生物样品中所有可能代谢物的子离子谱,解谱得到代谢物的结构。 王宁生等[4]以LC/MS联用技术及标准品对照法,分离检测健康志愿者口服复方丹参滴丸后,血清中水溶性成分及代谢产物,从一级质谱的分子离子峰推测,丹参素及原儿茶醛在体内分别与硫酸及葡萄糖醛酸结合,产生丹参素硫酸结合物及原儿茶醛的葡糖醛酸结合物。 Hsiu SL等[5]研究芍药苷在小鼠体内药代动力学,用LC/MS方法检测体内药物浓度,未检测到芍药苷原形药物;但在血浆及各种排泄物中,均可检测其代谢物,经液相色谱一质谱分析,结合核磁共振(NMR),确定其为芍药苷的脱糖基代谢物,提示芍药苷给药后,在肠道经细菌转化为PG后,被吸收进入血液循环中发挥作用。 Chen SJ等[6]用LC/DAD/MS/MS联用技术,对山豆根碱在小鼠体内的代谢进行了研究,用ESI /MSn技术检测山豆根碱的代谢物,并鉴定其主要代谢物为N一去甲基山豆根碱。 1.2LC/MS在药学浓度上的应用 M.Brolis等[7]采用I-IPLC—DAD—MS法从贯叶金丝桃Hyoericum performm中分离鉴定出槲皮素、异槲皮素、金丝桃苷等成分。 Gerthard Brillgma等[8]采用HPLC—NMR和HPLC—ESI—MS—MS法对Habropetalum dawei进行分析,分离鉴定出dioneopeltine、N-methyldioncophylline、N-methyl-7-epi-dioncophylline、tetralone、(1R,3R)和(1S,3R)-N-formyl-8-hydroxy-6-methoxy-l,3-dimthyltetra-hydroisoquinoline等7个已知化合物,以及5’-O-methydioncopeltine、isoquinoline phylline 2个新化合物。 徐智秀等[9]以反相高效液相色谱法分离了9种人参皂苷(I), 利用三级四级杆质谱研究了9种I的一级质谱(主要给出相对分子质量信息)和二级质谱(提供碎片结构信息),通过它们的质谱图差异对其进行了鉴别, 并将方法用于实际样品中的9种I的定性。 郭继芬等[10]选用Discovery C18柱,以甲醇-水-甲酸(40:60:0.025)为流动相,经紫外检测后,在ESI- 扫描方式下,对HPLC—UV图谱中各色谱峰进行一级和二级质谱分析,与对照品比较鉴定了提取物中4个已知的黄酮类化合物,推断出3个未知黄酮苷类化合物可能的结构。 2液相色谱质谱联用在环境分析上的应用 1

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

气相色谱技术的新进展及应用

气相色谱技术的新进展及应用张胜旺 (华宇橡胶有限责任公司化验室:张胜旺) 摘要:气相色谱技术室现代仪器分析的重要研究领域之一,由于其高效快速的分离特点,现在已成为物理化学分析不可缺少的重要工具,本文主要介绍了气相色谱在石油化工、环保行业中的应用。 关键词:气相色谱技术、应用。 一、气相色谱的发展历史:从茨维特1903年发现色谱算起,气相色谱已经有了100多年的历史,从马丁和辛格1941年提出分配色谱和1952年发明气-液色谱而获得诺贝尔化学奖也有50多年的历史了。自1952年世界上第1次创建实用气液色谱法以来,气相色谱仪作为现代分析检测仪器的代表,已发展成为一个有相当生产规模的产业,并形成了具有相当丰富的检测技术知识的学科。气相色谱法由于其具有分离效能高、分析速度快、选择性好等优点而被广泛应用于环境样品中的污染物分析、药品质量检验、天然产物成分分析、食品中农药残留量测定、工业产品质量监控等领域。随着新型气相色谱仪器、检测器、数据分析方法的出现,气相色谱的应用领域必将越来越广阔。 二、气相色谱的机构原理及特点: 色相色谱仪技术的基本原理是:当气体样品通过一定的进样方式送入色谱系统后,样品中混合物的各组分在流动相(载气)的带动下,通过称为色谱柱的固定相,利用各组分在流动相中具有不同的吸附能力,当二相作相对运动时,样品中各组分就会在二相中反复多次受到上述各种作用力的作用,从而使混合物中各组分获得分离,被分离后的单一组分随载气进入检测器的系统,获得非电量转换,将化学成分转变成与其浓度成正比的电信号,然后通过这些电信号的不同来分析样品成分。

2.1载气系统:包括气源、净化器干燥管和载气流速控制 2.2进样系统:进样器和汽化室 2.3色谱柱:填充柱或毛细管柱 2.4检测器:可连接各种检测器,以热导检测器或氢火焰检测器为常见 2.5记录系统:放大器、记录仪或数据处理仪 2.6温度控制系统:柱室、汽化室的温度控制 2.7气相色谱在石油化工行业中的应用 气相色谱法的特点:三高一快一广 2.8高选择性----能分离性质极为接近的物质,如:异构体、同位素 2.9高效能----在很短的时间内能分离测定性质极为复杂的混合物 3.0高灵敏度----微量、痕量组分,样品用量较少 3.1分析速度快----样品准备好后,几分或者几十分钟即可完成分析 3.2应用范围广----可广泛应用到环保,石油化工、食品、农药等方面的测定 三、气相色谱在石油化工行业中的应用 在石油和石油化工行业,气相色谱技术的应用相当普及,从石油勘探、石油加工研究到生产控制和产品质量把关等。气相色谱技术之所以得到石油和石化行业分析化学家们的欢迎,是由于它的分离和定量能力以及出色的性价比,目前尚无其它类型的仪器分析技术能与之匹敌。 1气体分析 1.1永久性气体分析

实验7 气相色谱-质谱联用技术定性鉴定混合溶剂的成分

实验七 气相色谱-质谱联用技术 定性鉴定混合溶剂的成分 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5% )混合而成,甲

高效液相色谱质谱联用 HPLC-MS 实验 含思考题

液相色谱-质谱联用技术(LC-MS)的各种模式探索 一、实验目的 1、了解LC-MS的主要构造和基本原理; 2、学习LC-MS的基本操作方法; 3、掌握LC-MS的六种操作模式的特点及应用。 二、实验原理 1、液质基本原理及模式介绍 液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。 但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS 已经成为最重要研究方法之一。 质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。 (一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。实例:(Q1 = 100-259m/z) (二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。主要用于目标化合物检测和复杂混合物中杂质的定量分析。实例:(Q1 = 259m/z) 本实验采用三重四极杆质谱仪(Q1:质量分析器;Q2:碰撞活化室;Q3:

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

高效液相色谱技术(HPLC)

140 7 高效液相色谱技术(HPLC ) 高效液相色谱(HPLC :High Performance Liquid Chromatography )是化学、生物化 学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的 分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题 必不可缺少的工具。国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大 的份额,增长速度最快。 高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精 度高,应用范围广。适用于分析高沸点、大分子、强极性、热稳定性差的化合物。其缺点 是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗 大且有毒性的居多。目前的发展趋势是向生物化学和药物分析及制备型倾斜。 7.1 基本原理 固定相 流动相 A B C C B A 固定相 —— 柱内填料,流动相 —— 洗脱剂。 HPLC 是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数 次的交换和分配而达到分离的过程。 通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类: 分配色谱:—— 分配系数 亲和色谱:—— 亲和力 吸附色谱:—— 吸附力 离子交换色谱:—— 离子交换能力 凝胶色谱(体积排阻色谱):—— 分子大小而引起的体积排阻 分配色谱又可分为:

正相色谱:固定相为极性,流动相为非极性。 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。 固定相(柱填料): 固定相又分为两类,一类是使用最多的微粒硅胶,另一类是使用较少的高分子微球。后者的优点是强度大、化学惰性,使用pH范围大,pH=1~14,缺点是柱效较小,常用于离子交换色谱和凝胶色谱。 最常使用的全孔微粒硅胶(3~10μm)是化学键合相硅胶,这种固定相要占所有柱填料的80%。它是通过化学反应把某种适当的化学官能团(例如各种有机硅烷),键合到硅胶表面上,取代了羟基(-OH)而成。它是近代高效液相色谱技术中最重要的柱填料类型。 使用微粒硅胶要特别注意它的使用pH范围是2~7.5,若过碱(>pH7.5),硅胶会粉碎或溶解;若过酸(<pH2),键合相的化学键会断裂。 键合相使用硅胶作基质的优点是:①硅胶的强度大;②微粒硅胶的了孔结构和表面积易人为控制。③化学稳定性好。 硅胶( SiO2?n H2O) :OH OH —Si—O—Si— 重要的键合相是:硅烷化键合相,它是硅胶与有机硅烷反应的产物。 最常用的键合相键型是: —Si—O—Si—C R1R1 —Si—OH + X—Si—R —Si—O—Si—R + HX R2R2 硅胶有机硅烷键合相 X ━Cl,CH3O,C2H5O等。 R ━烷:C8H17(即C8填料),C10H21,C18H37等。 R1、R2 ━X、CH3等。 最常用的“万能柱”填料为“C18”,简称“ODS”柱,即十八烷基硅烷键合硅胶填料(Octadecylsilyl,简称ODS)。这种填料在反相色谱中发挥着极为重要的作用,它可完成高效液相色谱70~80%的分析任务。由于C18(ODS)是长链烷基键合相,有较高的碳含量和更好的疏水性,对各种类型的生物大分子有更强的适应能力,因此在生物化学分析工作中应用的最为广泛,近年来,为适应氨基酸、小肽等生物分子的分析任务,又发展了 141

气体色谱分析方法总结

永久性气体色谱分析 .方法原理 以或分子筛为固定相,用气固色谱法分析混合气中地氧、氮、甲烷、一氧化碳,用纯物质对照进行定性,再用峰面积归一化法计算各个组分地含量. .仪器和试剂①仪器气相色谱仪,备有热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 或分子筛(目);使用前预先在高温炉内,于℃活化后备 用.纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中.氢气装在高压钢瓶内. .色谱分析条件 固定相:或分子筛(目);不锈钢填充柱管φ×;柱温:室温. 载气:氢气,流量个人收集整理勿做商业用途 检测器:热导池检测器,桥流;衰减,检测室温度:室温. 气化室:室温,进样量用六通阀进样,定量管. .定性分析个人收集整理勿做商业用途 记录各组分从色谱柱流出地保留时间,用纯物质进行对照. .定量分析 由谱图中测得各个组分地峰高和半峰宽计算各组分地峰面积.已知氧、氮、甲烷、一氧化碳地相对摩尔校正因子分别为、、、.再用峰面积归一法就可计算出各个组分地体积百分数().个人收集整理勿做商业用途 白酒中主要成分地色谱分析 .方法原理 白酒地主要成分为醇、酯和羟基化合物,由于所含组分较多,且沸点范围较宽,适合用程序升温气相色谱法进行分离,并用氢火焰离子化检测器进行检测. 个人收集整理勿做商业用途为分离白酒中地主要成分可使用填充柱或毛细管柱,常用地填充柱固定相为;邻苯二甲酸二壬酯吐温硅烷化白色载体(目);聚乙二醇有机载体(目);吐温司班红色载体(目)等.也可使用以聚乙二醇或交联制备地石英弹性毛细管柱. .仪器和试剂个人收集整理勿做商业用途 ①仪器带有分流进样器和氢火焰离子化检测器地气相色谱仪、皂膜流量计、微处理机. ②试剂氮气、氢气、压缩空气,与白酒中主要成分对应地醛、醇、酯地色谱纯标样. .色谱分析条件个人收集整理勿做商业用途 色谱柱:冠醚交联石英弹性毛细管柱φ×,固定液液膜厚度.程序升温:℃()以℃升温至℃(). 载气:氮气,流量.燃气:氢气,流量.助燃气:压缩空气,流量. 个人收集整理勿做商业用途 检测器:氢火焰离子化检测器,高阻 Ω,衰减,检测室温度℃. 气化室:℃,分流进样分流比:,进样量. .定性分析个人收集整理勿做商业用途 记录各组分地保留时间和保留温度,用标准样品对照. .定量分析 以乙酸正丁酯作内标,用内标法定量. 有机溶剂中微量水地分析 .方法原理 以为固定相,利用高分子多孔小球地弱极性、强憎水性,可分析有机溶剂甲醇中地微量水含量.用纯水对照定性,用外标法测水地含量. .仪器和试剂①仪器气相色谱仪,热导池检测器;皂膜流量计;秒表. ②试剂个人收集整理勿做商业用途 氢气,苯水饱和溶液;(目). .色谱分析条件 色谱柱:(目);不锈钢填充柱管φ×;柱温:℃. 载气:氢气,流量. 个人收集整理勿做商业用途

气相色谱质谱联用原理和应用

气相色谱-质谱联用原理和应用

————————————————————————————————作者:————————————————————————————————日期:

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-MassS pectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用(GC

气相色谱-质谱联用技术..-共15页

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

气相色谱在环境分析中的应用(精)

气相色谱法在环境分析中的应用 摘要:气相色谱法是一种很常见的环境分析检测方法,我们也经常将它应用在水、大气、固废等环境检测中。我们以检测非甲烷烃为例来进行探究和学习,(非甲烷烃是一种对人体健康有害的气体)因此我们利用带有双柱双氢火焰离子化检测器的气相色谱仪(岛津GC2014型)和自己所学的知识来对此进行气相色谱检测。并且通过这次检测来了解和复习流动相、检测器、色谱柱以及温度等色谱条件是如何选择以及定性、定量分析方法。 关键词:非甲烷总烃;气相色谱法;定性、定量分析; 1.非甲烷总烃 非甲烷烃(NMHC通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~C8,又称非甲烷总烃。主要包括烷烃、烯烃、芳香烃和含氧烃等组分。大气中的非甲烷总烃超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害[1]。 监测环境空气和工业废气中的NMHC有许多方法,但目前多数国家采用气相色谱法。由于直接测定NMHC所用仪器价格昂贵,因此我们采用双柱双氢火焰离子化检测器气相色谱法分别测出总烃和甲烷的含量,两者之差为NMHC的含量。在规定的条件下所测得的NMHC是于气相色谱氢火焰离子化检测器有明显响应的除甲烷外碳氢化合物总量,以碳计[2]。 目前我国基本采用气相色谱法测定非甲烷总烃, 按进样的不同有活性炭吸附一热解吸法及针筒采样一手动进样法,采用活性炭吸附一热解吸法[3]易受到活性炭吸附效率的影响,而针筒采样——手动进样法[4]则重复性较差、易熄火。而我们采用气袋采样—气体自动进样器进样分析气体中非甲烷总烃,而这样也最令人满意。此方法操作简单、重复性好、效率高、干扰少,且可用于其他挥发性有机物,如苯系物等的测定。 2.利用气相色谱法检测非甲烷总烃

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

气相色谱_质谱联用技术

气相色谱-质谱联用技术 本章目录(查看详细信息,请点击左侧目录导航) 第一节气相色谱质谱联用仪器系统 一、GC-MS系统的组成 二、GC-MS联用中主要的技术问题 三、GC-MS联用仪和气相色谱仪的主要区别 四、GC-MS联用仪器的分类 五、一些主要的国外GC-MS 联用仪产品简介 第二节气相色谱质谱联用的接口技术 一、GC-MS联用接口技术评介 二、目前常用的 GC-MS接口 第三节气相色谱质谱联用中常用的衍生化方法 一、一般介绍 二、硅烷化衍生化 三、酰化衍生化 四、烷基化衍生化 第四节气相色谱质谱联用质谱谱库和计算机检索 一、常用的质谱谱库 二、NIST/EPA/NIH库及其检索简介 三、使用谱库检索时应注意的问题 四、互联网上有关GC-MS和的信息资源 第五节气相色谱质谱联用技术的应用 一、GC-MS检测环境样品中的二噁英 二、GC-MS在兴奋剂检测中的应用 三、GC-MS区分空间异构体 四、常用于GC-MS 检测提高信噪比的方法 五、GC-MS( TOF)的应用 气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现 GC-MS系统的组成 气相色谱和质谱联用以后,这一技术得到长足的发展。在所有联用技术中气质联用,即GC-MS

发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。GC-MS逐步成为分析复杂混合物最为有效的手段之一。 GC-MS联用仪系统一般由图11-3-1所示的各部分组成。 气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。 GC-MS联用中主要的技术问题 气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题: 1.仪器接口 众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱的流速不同,使各组分分离,最后和载气一起流出色谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。2.扫描速度

相关文档
相关文档 最新文档