文档库 最新最全的文档下载
当前位置:文档库 › 特高压直流输电技术过电压和绝缘配合研究综述教学内容

特高压直流输电技术过电压和绝缘配合研究综述教学内容

特高压直流输电技术过电压和绝缘配合研究综述教学内容
特高压直流输电技术过电压和绝缘配合研究综述教学内容

特高压直流输电技术过电压和绝缘配合研

究综述

特高压直流输电技术过电压和绝缘配合研究综述

摘要:

特高压直流输电具有大容量、远距离和低损耗等优点,特高压直流输电作为一个全新的输电电压等级,非常适合特大型能源基地向远方负荷中心输送电能。直流换流站的绝缘配合研究是直流输电工程实施中的关鍵技术之一,缘水平的高低直接关系到整个直流工程造价。本文从特高压换流站的避雷器布置方案的设计,确定换流站设备的过电压水平、绝缘裕度、关键设备的绝缘水平等方面概括总结了国内外工作者在特高压直流输电的过电压和绝缘配合方面所做的工作,并提出在以后的相关研究中可以进一步考虑的问题。

关键词:特高压直流换流站避雷器绝缘配合过电压

0引言

我国能源资源和经济发展具有分布不均的地域性特点,能源资源主要集中在西部地区,而负荷主要集中在中东部地区[1,2]。为了保证中东部地区的电力供应,必须采取相关技术措旅将能源送往负荷中心。特高压直流输电具有超大容量、超远距离、低损耗的特点,且具有灵活的调节性能,因此非常适合大型能源基地向远方负荷中心送电。我国已成为世界上直流输电容量最大、电压等级最高、发展最快的国家[3]。为了满足未来更大容量、更远距离的输电需求,有必要进一步研究更高电压等级的直流输电技术,±1100kV特高压直流输电是我国目前正在研究的一个全新输电电压等级。

特高压直流输电由于具有大容量、远距离和低损耗等优点,将在我国“西电东送”战略中发挥重要作用。±1100kV特高压直流输电作为一个全新的输电电压等级,电压等级更高、输送容量更大、输电距离更远,非常适合特大型能源基地向远方负荷中心输送电能。

1特高压直流输电背景

自20世纪70年代初期开始,美国、苏联、巴西等国家就开启了对特高压直流输电相关工作的研究,其中CIGRE、IEEE、美国EPRI、瑞典ABB等科研机构和制造厂商在特高压直流输电关键技术研究、系统分析、环境影响、绝缘特性和工程可行性等方面开展了大量研究,并取得了丰硕的成果。相关研究认为,±

800kV特高压直流输电系统的设计、建设和运行在技术上是完全可行的,需要结合工程进一步优化系统性能和经济指标;发展±1000kV特高压直流输电系统在理论上是可行的,但需要进行大量研究、开发工作;发展±1200kV特高压直流输电系统是不切合实际的,需要有重大技术突破,才有可能进行较为经济的设计[1,4]。

1977年,苏联曾计划建设一条从埃基巴斯图兹到唐波夫的±750kV特高压直流输电工程,该工程输送功率为6000MW、输电距离达2400km,采用每极2个12脉动换流器并联的设计方案。该工程是世界上特高压直流输电技术的第一次工程实践,于1980年开始建设,并已建成1090km线路,但最终因政治、经济等原因停建[1,4]。

我国自2003年开始,中国南方电网公司结合云南一广东±800kV直流输电工程,对±800kV特高压直流输电技术进行了相关研究[5]。2009年12月,云南一广东±800kV特高压直流输电线路建成并实现单极运行,2010年实现双极投运。该工程是世界上第一条投入实际运行的特高压直流输电工程,工程额定输送功率5000MW,输送距离1438km,采用双12脉动换流阀串联接线方式。工程送端换流站为云南楚雄换流站,受端换流站为广东穗东换流站。

国家电网公司从2004年开始,组织相关科研、设计单位和高等院校对特高压直流的关键技术问题进行了研究,取得了一系列重要成果。2007年,国家电网公司在北京建成了特高压直流试验基地;2008年,在西藏建成了高海拔直流试验基地[6,7]。通过这些试验基地的建设,使我国具备了±1000kV及以下电压等级下特高压直流输电工程在不同海拔高度下的电磁环境、空气间隙放电特性、直流避雷器等设备关键技术的试验研究能力。2010年,向家坝一上海±800kV特高压直流输电工程双极投运,工程额定输送功率6400MW,输送距离1907km,工程送端起于四川复龙换流站,受端换流站为上海奉贤换流站。2012年,锦屏一苏南±800kV特高压直流输电工程双极投运,工程额定输送功率7200MW,全长2059km。工程起于四川裕隆换流站,止于江苏同里换流站。此外,还有“溪洛渡一浙西”、“哈密一郑州”等多条±800kV特高压直流工程正在建设中。

2特高压换流站的绝缘配合方案设计

(1)±1100kV特高压直流换流站避雷器布置方案的确定。

(2)特高压直流换流站避雷器的主要技术参数的确定,如避雷器持续运行电压、额定电压、保护水平、能量吸收能力等。

(3)仿真计算±1100kV特高压直流换流站关键设备的过电压水平。

(4)确定±1100kV特高压直流换流站关键设备的绝缘裕度的选取,并计算确定换流站关键设备的绝缘水平。

2.1选择避雷器保护方案的基本原则

(1)在交流侧产生的过电压,应尽可能用交流侧的避雷器加以限制;

(2)在直流侧产生的过电压,应由直流线路避雷器!直流母线避雷器和中性母线避雷器等加以限制;

(3)关键的设备应由与该设备紧密相连的避雷器保护,如阀、交流和直流滤波器设备等,应分别由各自紧靠连接的避雷器保护;

2.2换流站电气设备的绝缘配合

绝缘配合是根据系统设备上可能出现的过电压水平,同时考虑相应避雷器的保护水平来选择确定电气设备的绝缘水平,直流换流站绝缘配合的一般方法与交流系统绝缘配合的方法相同,采用惯用法进行绝缘配合,即在电气设备上可能出现的最大过电压与惯用的基本雷电冲击绝缘水平(BIL)和基本操作冲击绝缘水平(BSL)之间留有一定的裕度。

3特高压直流换电站绝缘配合技术研究现状

多年来,国内外工业界和学术界对特高压直流输电技术的研究不断深入,取得了重要的理论成果和实践经验。目前世界上投运的特高压直流输电工程也均为±800kV,并且全部建造在中国,通过这些实际工程的建设,中国积累了丰富的实践经验,占领了特高压直流输电技术的制高点。对于特高压直流换流站的绝缘配合研究主要是基于±800kV特高压直流输电系统,分别对换流站的避雷器布置、

避雷器参数选取、换流站过电压水平、设备绝缘水平确定等问题进行了详细研究。具体如下:

(1)特高压换流站的避雷器布置。目前主要存在两种方案:以ABB公司方案为代表的向家坝一上海特高压直流工程换流站避雷器布置和以SIEMENS公司方案为代表的云南一广东特高压直流工程换流站避雷器布置[8]。两种方案的主要

区别在于对高端换流变压器阀侧绕组的保护,ABB公司方案推荐采用MH与V避

雷器串联的保护方式,而SIEMENS公司方案推荐采用A2避雷器直接保护高端换流变压器闹侧绕组[9-12]。

(2)避雷器参数的选取。避雷器的参数主要包括避雷器持续运行电压、额定电压、荷电率、保护水平及能量吸收能力等参数的确定。文献[12]结合云南一广东±800kV特高压直流输电工程,介绍了特高压直流避雷器参数选择的基本原则,并对直流避雷器的持续运行电压、额定电压、能量等进行了讨论。文献[13]介绍了特高压直流避雷器的主要技术特点,与常规超高压直流避雷器进行了对比,并讨论了避雷器持续运行电压、配合电流等参数的选取。文献[14]比较了±800kV

直流换流站相关位置分别使用ABB、西门子和中国西电集团西安西电避雷器有

限责任公司三家不同避雷器的操作过电压保护水平和避雷器耐受能量。现有研究均认为,在选择避雷器参数时,应综合考虑系统最大持续运行电压、荷电率、雷电和操作冲击保护水平和能量要求等因素,使得设备上的过电压水平尽可能低,又不使避雷器的数量过多、造价过高。

(3)换流站过电压水平。与常规超高压直流输电系统相比,特高压直流换流站的过电压水平更高,过电压机理更加复杂。文献[15-19]结合±800kV向上和云广特高压工程对特高压直流换流站在典型故障下的操作过电压进行了仿真计算及研究,文献[20-23]对特高压直流系统孤岛运行方式下的过电压水平进行了分析,文献[24,25]对特高压直流工程直流线路的过电压水平进行了研究,文献研究了直流控制保护策略对换流站过电压水平的影响,并从控制保护角度提出了相关改进措施。

(4)设备绝缘水平确定。特高压换流站设备的绝缘水平直接关系到整个工程的造价,目前国内外对±800kV特高压换流站设备的绝缘水平进行了广泛研究[26-29],在换流站设备绝缘裕度选取和关键设备绝缘水平确定等方面取得了丰富的成果,相关成果已运用于向家坝一上海、云南一广东、锦屏一苏南和溪洛渡一浙西等±800kV特高压直流工程中。对于±1000kV电压等级及以上的特高压直流系统的研究,目前研究主要集中在可行性研究、晶闸管换流阀、直流互感器、换流变压器阀侧套管设计等设备制造方面[30,31]。关于±1000kV电压等级及以上的特

高压直流系统的绝缘配合方面的研究极少,仅有少数文献对其进行了探讨[32],但是相关研究并不深入,并且尚无实际工程投运。

文献[33]利用EMTP方法和EGM方法分别仿真计算了100OkV特高压交流输电线路反击跳闸率和绕击跳闸率,并在反击计算中利用击距理论修正了线路的等效受雷宽度。计算结果表明,1OO0kV同杆双回交流输电线路雷击跳闸事故主要是由绕击造成的,符合前苏联特高压交流输电线路雷击闪络的统计规律。同样,本文利用EGM方法仿真计算了士800kV特高压直流输电线路绕击闪络率。计算结果表明,由于特高压直流线路存在极性问题,正极导线比负极导线更易遭负雷的绕击。

4 小结

换流站绝缘配合设计是整个直流输电工程设计、实施过程中的一项关鍵性技术,换流站设备绝缘水平的高低对整个直流工程的造价有重要影响。对于特高压直流输电系统,国内外围绕±800kV特高压直流换流站的绝缘配合进行了较为详细的研究,但是±1100kV作为一个全新的输电电压等级,目前对该电压等级下换流站的绝缘配合相关研究极少。在以后的研究中应注意以下几个问题:(1)在特高压直流输电方式中,要重视多馈入直流输电系统,可能引起系统的安全稳定问题;

(2)当特高压输电线路经过地面倾角较大的山区或雷电活动较频繁的地区时,应加强线路的防雷措施,如适当增加绝缘子片数以及减小避雷线保护角等,以达到降低线路绕击率的目的;

(3)在特高压电网发展的不同阶段,会出现电磁环网和交直流并联等运行问题,它们有各自不同的结构和特点,需随特高压电网发展进行更深入的研究。

浅谈高电压与绝缘技术1234

电子信息工程学院论文 高 电 压 与 绝 缘 技 术 院、系(站):电子信息工程学院 学科专业:电气工程及其自动化 学生:任轩 学号:130417116 2015/10/10

摘要 在电气设备中,其绝大多数都直接暴露在空气中作业,这就对绝缘技术提出了更高的要求。同时,随着经济的快速发展,加强高电压与绝缘技术的结合,对我国高电压工程的发展起着至关重要的作用。而如何运用高电压绝缘技术并寻求全新的突破则成为电力企业可持续发展的关键。本文将从以下几个方面对其进行分析。 关键词:高电压,电气设备,绝缘诊断,预防性试验,探讨,高电压绝缘技术,有机绝缘材料,

Summary In electrical equipment, its most directly exposed to the air operation, it puts forward higher requirements on insulation technology. At the same time, along with the rapid development of economy, strengthening the combination of high voltage and insulation technology, high voltage engineering of our country plays an important role in the development. And how to use high voltage insulation technology and seek new breakthrough to become the key to the sustainable development of the electric power enterprise. This article will from the following several aspects to analyze it. Key Word:high voltage,electric accessory,Insulation diagnosis,preventive trial,discuss,High voltage insulation technology, organic insulating material

模块化多电平高压直流输电综述

模块化多电平换流器型高压直流输电综述 0引言: 现代电力电子技术的发展,使直流输电又一次登上历史舞台,与交流输电并驾齐驱。1954年,世界上第一条工业性的高压直流输电系统投入运营,从此,直流输电技术在海底电缆送电、远距离大功率输电、不同频率或相同频率交流系统之间的联结等场合得到了广泛地应用。IGBT、GTO 的出现,促使了VSC-HVDC和MMC-HVDC的产生,成为直流输电技术的一次重大变革。 MMC-HVDC(modular multilevel converter-high voltage DC transmission)是新一代直流输电技术,发展非常迅速。它具有高度模块化、易于扩展、输出电压波形好等特点,尤其适用于中高压大功率系统应用。本文首先介绍MMC的电路拓扑和工作原理,总结MMC的主要技术特点;然后分别回顾MMC在电容电压平衡、环流、控制策略、故障保护等关键问题的最新研究进展,最后指出MMC今后亟待研究的关键问题。相关研究结果表明,MMC在电力系统中有广泛的应用前景,是未来中高压大功率系统,尤其是高压输电技术的重要发展方向。 1正文: 传统两电平电压源型变换器,在电机传动、新能源并网、开关电源等工业生产领域的应用十分广泛。但在高压大功率领域的应用中,为解决功率开关器件的耐压问题,通常通过工频变压器接入高压电网,笨重的工频变压器大大增加了电力电子变换装置的体积和成本,限制了系统效率。鉴于现有传统多电平变换器在较高应用电压等级、有功功率传输场合等方面存在的不足,德国学者 Marquardt R.及其合作者提出了基于级联结构的模块组合多电平变换器(modular multilevel converter,MMC)的拓扑。 现将传统直流输电、电压源换流器型直流输电(VSC-HVDC)和MMC-HVDC三种直流输电方式的特点列表如下。

高电压与绝缘技术试题答案及评分标准

2013-2014学年第二学期期末考试答案及评分标准 (A卷) 高电压与绝缘技术 使用班级:11050441X、11050442X、11050443X、11050444X、 11050445X 一、判断题(共30分,每小题 1 分) ( ) 1.输电线路上的空气间隙包括:导线对地面,导线之间,导、地线之间,导线与杆塔之间。√ ( ) 2.实际电气设备中的固体介质击穿过程是错综复杂的,常取决于介质本身的特性、绝缘结构形式和电场均匀性。√ ( ) 3.电介质的损耗为在电场作用下电介质中的非能量损耗。× ( ) 4.介质的功率损耗与介质损耗角正切成反比比。× ( ) 5. 雷电流具有冲击波形的特点是缓慢上升,快速下降。× ( ) 6.电气设备局部放电的检测无关紧要。× ( ) 7. 雷电绕过避雷线直击于线路的概率是平原地区比山区高。× ( ) 8.偶极子极化极化时间最短的。× ( ) 9. 当外加电压逐渐升高后,气体中的放电过程发生转变,此时若去掉外界激励因素,放电仍继续发展,即为自持放电。× ( ) 10. tanδ值的测量,最常用的是西林电桥。√ ( ) 11.电子崩将产生急剧增大的空间电子流;√ ( ) 12.一般而言,吸收比越大,被试品的绝缘性越好。√ ( ) 13.在高气压和高真空的条件下,气隙都容易发生放电现象。×

( ) 14.对空气密度、湿度和海拔,校正方法是相同的。× ( ) 15.电场极不均匀的“棒-板”气隙,负极性击穿电压低于正极性击穿电压。× ( ) 16均匀电场的击穿特性符合巴申定律。√ ( ) 17.雷电冲击电压下“棒-板” 电极,棒极为正极性的击穿电压比负极性时数值低得多。√ ( ) 18.工频交流电压下“棒-棒”气隙的击穿电压要比“棒-板”气隙低一些。× ( ) 19.绝缘电阻和吸收比测量试验属于破坏性试验。× ( ) 20.线路末端短路时,发生负的全反射,电流加倍,电压为零。√ ( ) 21.冲击电晕对波过程的影响如下:导线波阻抗减小、波速增大、耦合系数增大、引起波的衰减与变形。× ( ) 22. 流注理论未考虑表面游离的现象。√ ( ) 23.极不均匀电场,达到30kV/cm出现电晕。√ ( ) 24.同轴圆筒电场是极不均匀电场。× ( ) 25.直流电压下“棒-板”负极性击穿电压大大高于正极性击穿电压。√ ( ) 26. 电场的不均匀程度对SF6电气强度的影响远比对空气的小。× ( ) 27.高真空气体主要用于配电网真空隔离开关中。× ( ) 28. 沿面放电是沿着固体介质表面发展的固体放电现象。√ ( ) 29. 引起气体放电的外部原因有两个,其一是电场作用,其二是外电离因素。√( ) 30.球形屏蔽极可以显著改善电场分布,提高气隙的击穿电压. √ 二、问答题(共40分,每小题5 分) 1、叙述汤逊理论的基本观点和流注理论的基本观点以及它们的适用范围。 答:汤逊理论只适用于pd值较小的范围,流注理论只适用于pd值较大的范围,两者的过渡值为pd≈26.66kPacm。(1分)汤逊理论的基本观点是:电子的碰撞电离是气体放电时电流倍增的主要过程,而阴极表面的电子发射是维持放电的重要条件。(2分)流注理论

直流输电技术课程报告

Harbin Institute of Technology 直流输电技术课程报告题目柔性直流输电在城市配电网中的应用 课程名称:直流输电技术 院系:电气工程系 姓名: 学号: 哈尔滨工业大学 2015年4 月17日

柔性直流输电在城市配电网中的应用 摘要:柔性直流输电技术的出现为城市高压电网的构建及微电网接入大电网提拱了新的技术手段和解决方案, 因此研究柔性直流输电技术在城市电网中的应用具有重要意义。本文简述了柔性直流输电技术的基本原理、应用领域、相比于传统输电技术的优势以及在城市电网应用的可行性条件分析,并给出了家庭和办公直流输电的两种方案。 关键词:柔性直流输电,城市电网,应用领域,运行条件,方案 1.引言 随着社会的不断发展和科学技术的不断进步,电力传输系统经过直流、交流和交直流混合输电三个阶段。由于直流电不能直接升压,这使得直流输电距离受到较大的限制,不能满足输送容量增长和输电距离增加的要求。19 世纪80年代末发明了三相交流发电机和变压器,交流输电就普遍地代替了直流输电,并得到迅速发展, 逐渐形成现代交流电网的雏形。大功率换流器的研究成功,为高压直流输电突破了技术上的障碍[1]。 直流输电相比交流输电在某些方面具有一定的优势。自从1954年第一个商业化高压直流输电(HVDC)工程投入运行以来,HVDC在远距离大功率输电、海底电缆送电、不同额定频率或相同额定频率交流系统之间的非同步联接等场合得到了广泛应用。常规HVDC采用相控换流器技术,存在一些固有的缺陷。例如需要安装大量的无功补偿以及滤波设备,不能向无源网络供电以及只有应用于远距离、大容量输电才能发挥其经济上的优势等。 1990年MeGill大学的BoonTeCk001提出用PWM控制的电压源型换流器进行直流输电。由于采用了IGBT、GTO等全控型器件,基于电压源换流器的直流输电(VSC-HVDC)系统具有可独立调节有功和无功功率的优点,可以向无源网络送电,克服了常规HVDC的本质缺陷,把HVDC的优势扩展到配电网,拓宽了HVDC的应用范围,具有广阔的应用前景。1997年3月世界上第一个采用IGBT 构成电压源换流器的直流输电工业性试验工程---赫尔斯杨工程在瑞典中部投入运行,输送功率3MW,直流电压10kV,输送距离10km。从运行情况来看,不论是暂态还是稳态,该工程电力输送稳定,换流器能够满足噪声水平、谐波畸变、电话干扰和电磁场等方面的技术要求。由于这种换流器的功能强,体积小,可以减少换流器的滤波装置,省去换流变压器,简化换流器结构,ABB公司将其称之为轻型直流输电(HVDCLight),Siemens则将基于VSC换流器的直流输电称为HVDCplus,“plus”表示电力连接系统(PowerLink universalsystem),并分别注册表明其专利权,siemens没有实际的VSC型直流输电工程。截至目前世界上已有10座基于VSC的HVDC工程,输电容量己达350Mw。ABB公司HVDCLight 输电工程输送容量电缆可达久1200MW,架空线可达2400MW,电压等级达320kV。我国国家电网公司和南方电网公司正在规划建设VSC-HVDC的工业示范工程。上海南汇风电场将成为我国首个基于VSC-HVDC的风电接入工程[2]。 2.柔性直流输电概述 传统直流输电采用自然换相技术的电流源型换流器,与之相比,VSC-HVDC 是一种以电压源换流器、可控关断器件和脉宽调制(PWM技术)为基础的新型直

西安交大《高电压绝缘技术》课后题答案

高电压绝缘技术 课后答案 第一章 1.计算同轴圆柱电极的不均匀系数f ,其中内导体外直径为100 mm ,外壳的内直径为320 mm 。 解: d R r =- , av U E d = , max ln U E R r r = , max ln av d E r f r d E r == + 其中 R=160mm ,r=50mm 。代入上式可得f=1.89<2,所以此时电场是稍不均匀的。 2. 离地高度10m 处悬挂单根直径3cm 导线,导线上施加有效值6 3.5kV 工频交流电压,请计算导线表面最大场强。若将该导线更换为水平布置的双分裂导线,两导线总截面积保持与单根导线一致,线间距离30cm ,请重新计算导线表面最大场强。 解:1):等效成圆柱—板电极:由课本P9页可查的公式为 max 0.9 ln U E r d r r =+, 其中U=63.5kV ,d=10m ,r=1.5cm 。代入上式可得:max 5.858/E kV cm =。 2)由题意可知:2 21 2r r ππ=, 可得:1 1.060.0106r cm m = ==,两导线相邻S=30cm=0.3m, 10.01060.03530.3 r S == 对于二分裂导线,由课本P9页可查得公式。 所以 21 12max 2 11(12 2)(2)ln r r U S S E H r r S +-= ,其中H=10m, max 5.450/E kV cm = 3.总结常用调整电场强度的措施。 解: 1)、改变电极形状 ①增大电极曲率半径;②改善电极边缘;③使电极具有最佳外形; 2)、改善电极间电容分布 ①加屏蔽环;②增设中间电极; 3)、利用其他措施调整电场 ①采用不同的电介质;②利用电阻压降;③利用外施电压强制电压分布; 第二章 1、解:由题意: 21 2 e e i m v eV ≥, 因此:62.7510/e v m s ≥ ==? ,,57.6nm i c hv eV v λλ ≥= ≤所以。水蒸气的电离电位为12.7eV 。97.712.7 hc nm λ≤ = 可见光的波长范围在400-750nm ,不在可见光的范围。

高电压与绝缘技术的新发展

龙源期刊网 https://www.wendangku.net/doc/6317225368.html, 高电压与绝缘技术的新发展 作者:巩沙 来源:《中国化工贸易·上旬刊》2016年第08期 摘要:随着经济的发展和科学技术的不断提高,电力企业的发展壮大使得高电压的绝缘 技术日益成为人们关注的问题,同时由于存在着大量需要直接裸露在空气中进行作业的电气设备,这使得对高电压的绝缘技术要求越来越高。因此,需要不断在高电压的绝缘技术方面寻求新的突破与创新,以促进电力事业的更好发展。本文从分析高电压的外绝缘的范围及存在的主要问题入手,阐述了目前高电压设备外绝缘的主要材料,并探讨了高电压设备有机外绝缘的应用与发展趋势。 关键词:高电压;绝缘技术;电气设备 一直以来,对于高电压并没有一个较为明确的界限划分,其概念也是相对的,它主要依赖于电介质及相应的系统而存在,因此高电压与绝缘技术两者形成了一个不可分割的整体。随着电力系统的建设和扩大,人们对高电压的关注越来越多,高电压设备的绝缘技术也得到了一定程度的发展,但是仍然在高电压的外绝缘方面存在着些许问题,所以创新研究高电压与绝缘技术对促进我国电力事业进一步发展具有重要意义。 1 高电压外绝缘的范围与主要问题 因高电压设备的特殊性,所以大部分的电气设备是需要裸露在空气中的,从高电压外绝缘的范围来看,其主要包括室内设备外绝缘和户外设备外绝缘。户外的电气设备因其所属环境的复杂性,所以相比室内电气设备的外绝缘,其问题明显要多出很多,由此可以看出户外电气设备绝缘问题的解决是高电压外绝缘技术研究的主体。 1.1 从当前高电压设备户外绝缘的情况来看 其主要存在着以下七个方面的问题:①在多雷雨的季节,高电压电气设备会由于遭受雷击而出现雷电过电压的问题;②在下雨时,高电压设备可能会出现在工作电压下闪络的雨闪问题,从而造成设备故障;③若早上有露水,当露水凝结在高电压设备的表面,同样有可能造成高电压设备在工作电压下闪络的露闪问题;④当出现大风、结冰、地震以系统自身出现故障等情况,高电压设备将会出现瞬间电动力下的超机械负荷问题;⑤电力系统因正常或者是故障操作出现的操作过电压问题;⑥户外高电压设备本就因其处于户外环境,设备难以得到恰当的清洁,导致高电压设备表面产生污垢,再加之潮湿的气象环境,高电压设备从而出现在工作电压下闪络的污闪问题;⑦从高电压设备自身来说,如果长期高强度的运转下,其绝缘材料性能的降低本就容易出现老化等问题。 1.2 从当前高电压设备户内外绝缘的情况来看

高压直流输电线路继电保护技术综述 徐军

高压直流输电线路继电保护技术综述徐军 发表时间:2020-01-03T15:15:46.603Z 来源:《河南电力》2019年7期作者:徐军[导读] 近年来,随着我国信息化技术的快速发展,对各领域的发现起到了促进作用,扩大了对信息忽视技术的应用范围,使其在各领域的发展中,充分发挥出自身的重要作用。 (贵州送变电有限责任公司贵州贵阳 550002) 摘要:近年来,随着我国信息化技术的快速发展,对各领域的发现起到了促进作用,扩大了对信息忽视技术的应用范围,使其在各领域的发展中,充分发挥出自身的重要作用。而在人们日常生活中,信息化技术的发展,给人们的生活带创新出便捷的方式,同样,在高压直流输电的发展中,具有重要的地位。随着高压直流输电线路线工程项目的增多,加大了对继电的保护,结合实际情况,不断地创新保护技术水平,提升工程项目的整体质量,从而确保电力系统的稳定发展。 关键词:高压直流输电线路;继电保护;技术水平 为了能够满足各领域的用电需求,我国加大了对电力工程项目的建设力度,从高压直流输电保护原理的角度分析,其可靠性、保护性、灵敏度等存在着一些问题,尤其是对其故障的处理,不仅无法及时地发现所存在的故障问题,而且对故障问题的解决,需要花费大量的实践。对此后期保护工作,整体的保护速度比较慢,无法满足标准配置的发展要求。对此,需要加大对高压直流输电线路继电保护技术水平的研究,结合具体的问题分析,制定出完善的解决方案与措施,提高整体的可靠性与技术水平。 一、高压直流输电线路继电保护影响因素 (一)电容电流 高压直流输电线路,主要的要求就是大电容,大功率,再受到小波阻特点的影响,需要加强对组联电流的保护,才能够确保整体的效果与稳定性。那么对整个高压直流输电线路继电的保护,需要结合实际情况的综合分析,能够确保输电线整体的安全性与稳定性,对电容电流提出了更高的要求,需要采取相应的补偿策略[1]。 (二)过电压 高压直流输电线路会受到不同因素的影响,而引导不同的故障,而一旦高压直流输电线路发生了故障,会在电弧情况下不会熄灭,对其控制在可监控的范围内,才能够确保其不产生消弧现象。而对高压直流输电线路继电的保护,针对输电线两个的顶点开关,无法在第一时间切断,那么就不会产生反射行波,从而对高压直流输电继电保护产生一定的影响。 (三)电磁暂态过程 对高压直流输电线路的建设,其整个的距离都比较远,一旦其发生了故障问题,就会增加高频分量,对其故障的诊断、处理加大工作难度,无法准确地测量出电气误差值,最终对高频分量造成不利的影响。电磁暂态过程,会引发高压直流输电故障的同时,使电流互感处于饱和的状态下,最终引导安全事故[2]。 二、提高高压直流输电线路继电保护技术水平措施 (一)加强对行波的保护 高压直流输电线路故障问题比较多,对其故障的解决,还需结合实际情况的综合分析,如果是产生了反行波的故障问题,会对高压直流输电线路的稳定性、安全性造成一定的影响。对此,西药加强对行波的科学保护。一般情况下,针对高压直流输电线路行波的保护,有两种解决方案。一种是ABB方案,另一种是SIEMENS方案。ABB方案,是根据极波理论所提出的,能够帮助相关工作人员,及时、准确地检测出高压直流输电线路的反行波情况,结合实际情况的综合分析,采用科学合理的解决措。而SIEMENS方案,是以电压积分为原理所设计的一种方案。对高压直流输电线路继电的保护时间控制在16秒--20秒之间。把ABB方案与SIEMENS方案相比较,SIEMENS方案的起动时间比较长,但是干扰效果却比ABB方案的干扰效果更好[3]。为了能够更地加强对波保护质量的保护,对相关工作人员提出了更高的要求,结合梯度理论与数学滤波技术等综合分析,制定出科学合理的保护措施。 (二)针对微分电压的保护措施 微分电压的保护是高压直流输电线路继电保护中重要的组成部分之一,那么在实际分析的过程中,主要是对差动电压主保护、后备保护等特点的综合分析[4]。例如:在西门子公司内,就会采用ABB方案加强对其行波的保护,对所应用对象的简称,详细地掌握电压电平、电压差动。由于其所使用的是ABB方案,会对其上升的时间产生影响,使其后备保护无法发挥出自身的重要作用。但是对ABB方案上升时间的调整,至少可以解决20毫秒的时间问题。但是在实施的过程中,主要的弊端就是抗干扰的能力不强。 对微分电压的安全保护,对高压直流输电线路的可靠性有直接性的影响,提高其整体的灵敏度,但是其运行的速度要比行波保护低,以此形式的运行,无法确保其整体的电阻能力,那么就会使整体可靠性逐渐地降低,无法确保高压直流输电线路的运行效率与质量[5]。例如:对继电保护的整定值计算,会产生不同的故障问题,如果是低压问题,那么对此方法的应用,会使变压器高压侧系统电源持续加大;如果是对其负荷的保护,则需要根据极端反时限工作原理;如果是对限时电流的速断保护,那么就需要采用定时限工作原理等等。根据高压直流输电线路在运行中所产生的不同故障问题,结合实际情况的综合分析,采取合理的解决措施,不要对电缆阻抗影响因素的忽视,会对进线开关、变压器进线保护定值等产生一定的影响。具体如表1所示。

高压直流输电系统概述

高压直流输电系统概述 院系:电气工程学院 班级:1113班 学号:xxxxxxxxxxx 姓名:xxxxxxxxxx 专业:电工理论新技术

一、高压直流输电系统发展概况 高压直流输电作为一种新兴的输电方法,有很多优于交流输电地方,比如它可以实现不同额定频率或相同额定频率交流系统之间的非同期联络,特别适合高电压、远距离、大容量输电,尤其适合大区电网间的互联,线路功耗小、对环境的危害小,线路故障时的自防护能力强等等。 1954年,世界上第一个基于汞弧阀的高压直输电系统在瑞典投入商业运行.随着电力系统的需求和电力电子技术的发展,高压直流输电技术取得了快速发展. 1972年,基于可控硅阀的新一代高压直流输电系统在加拿大伊尔河流域的背靠背直流工程中使用; 1979年,第一个基于微处理器控制技术的高压直流输电系统投入运行; 1984年,巴西伊泰普水电站建造了电压等级最高(±600 kV)的高压直流输电工程. 我国高压直流输电起步相对较晚,但近年来发展很快. 1987年底我国投运了自行建成的舟山100 kV海底电缆直流输电工程,随后葛洲坝-上海500 kV、1 200MW的大功率直流输电投运,大大促进了我国高压直流输电水平的提高. 2000年以后,我国又相继建成了天生桥-广州、三峡-常州、三峡-广州、贵州-广州等500 kV容量达3 000MW的直流输电工程.此外,海南与台湾等海岛与大陆的联网、各大区电网的互联等等,都给我国直流输电的发展开辟了动人的前景. 近年来,直流输电技术又获得了一次历史性的突破,即基于电压源换流器(Voltage Source Converter,VSC)技术和全控型电力电子功率器件,门极可关断晶闸管(GTO)及绝缘栅双极型晶体管(IGBT)为基础的新一代高压直流输电技术已发展起来,也就是轻型直流输电(HVDC light)技术. 现有的直流输电主要是两端系统.随着直流断路器研制的进展和成功以及直流输电技术的进一步成熟完善,直流输电必将向着多端系统发展.同时许多其他科学技术领域的新成就将使输电技术的用途得到广泛的扩展.光纤与计算机技术的发展也使得直流输电系统的控制、调节与保护更趋完善,运行可靠性进一步提高;高温超导材料及其在强电方面的应用研究正方兴未艾,在直流下运行时,超导电缆无附加损耗,可节省制冷费用,因此在超导输电方面直流输电也很适宜. 一、高压直流输电系统构成 高压直流输电系统的结构按联络线大致可分为单极联络线、双极联络线、同极联络线三大类。 单极联络线的基本结构如图1所示,通常采用一根负极性的导线,由大地或海水提供回路,采用负极性的导线,是因为负极的电晕引起的无线电干扰和受雷击的几率比正极性导线小得多,但当功率反送时,导线的极性反转,则变为负极接地。由于它只需要一根联络线,故出于降低造价的目的,常采用这类系统,对电缆

解析高电压与绝缘技术

解析高电压与绝缘技术 发表时间:2018-06-25T16:34:08.403Z 来源:《电力设备》2018年第4期作者:尹涛[导读] 摘要:在我国经济社会不断发展的同时,也带动了我国电力行业的不断发展,因为高压电使用的危险系数较大,得到广大人民的关注。 (湖北铁道运输职业学院湖北武汉 430064) 摘要:在我国经济社会不断发展的同时,也带动了我国电力行业的不断发展,因为高压电使用的危险系数较大,得到广大人民的关注。在电力工程建设中,很大部分的电力设备会直接裸露的空气中,所以就要求提高了绝缘技术,为顺应时代的进步,不断创新高电压的有机绝缘技术,使其使用不断突破。本文就结合了现阶段电力行业的发展,对高电压绝缘技术的使用进行详细的介绍,并对其中存在的问题进行探讨,以供借鉴参考。 关键词:高电压;电力;绝缘技术;分析探究 前言 高电压的使用主要是为了满足人们生活和工作的需要,它具有相对性,主要依赖于电介质和其他体系,所以高电压和绝缘就形成了一个不能分离的整体。随着时代的进步,逐渐扩大了电力系统的输送量,人们逐渐关注高电压的使用情况,高电压和绝缘技术在电力工程中的使用也是非常广泛的,因此高电压和绝缘技术的应用得到人们重要的关注对象,下面就对其进行阐述。 1 高电压外绝缘的范围 在电力工程建设中,有很多电气设备都是虚空气中裸露的,为了确保人员的安全性,就要确定绝缘的范围,其中高电压设备的外绝缘包含了室内设备外绝缘和户外设备户外绝缘两种。与室内设备的外绝缘比较,户外设备的户外绝缘就较为复杂一些,所以户外设备的户外绝缘出现的问题也要多一些,因此高电压与绝缘技术的主要研究部分就是户外设备的户外绝缘。 2 高电压外绝缘存在的问题 在电力工程各行施工中,高电压外绝缘存在的问题主要有以下几个方面:(1)由于天气原因的影响,雷击或下雨都会造成的电压不是很稳定。 (2)电力系统的故障操作引起电压操作不是很稳定 (3)每天在露水天的早上,在寒冷的冬天就会使设备表面出现结冰的现象。 (4)在时间的推动下,户外工作会有很厚的污垢附在设备的表面上,在这种潮湿的天气下很有可能出现电压闪络的污闪问题。 (5)由于设备本身结构力的影响,在大风、覆冰等外界自然因素的影响下,可能会导致系统产生故障,那么设备在瞬间电动力下的机械符合问题就会出现。 (6)在长时间的运行下,绝缘材料的性能逐渐会有老化现象,将在一定程度上影响高电压绝缘的效果。 3 高电压绝缘诊断 在一般情况下,绝缘试验项目主要包含绝缘电阻、介质耗损、直接流泄漏电流等,试验绝缘性能从而测试设备的绝缘性能,根据分析绝缘的具体情况,检测到底是设备老化原因还是绝缘油劣化的原因,并对这些问题制定出合理的维修计划,从而确保了设备在工作中的安全性和稳定性。 (1)在电力工程施工建设中,绝缘电阻试验是一项非常重要的环节,但是在变压器的吸收和试验方面不够全面,现在有一种容量较大的变压器,它们具有比较高的绝缘性,不过吸收性也比较偏小,可能是不合格的产品。要是对其采取极化指数试验的方式,对其判断就更加容易,但是从介质理论上来分析,试验的时间就要吸收时间更长一些,极化过程就是开始阶段,不能对其绝缘情况进行真实的反映。 (2)电场干扰下的设备介损测试的方式要进行改善,使用比较新的测试方式,相对操作就更为简单了,能够提高有效测试效率。另外一种电源导向和自动计算的方法受外界因素的干扰比较大,所以在测试过程中会导致很大的误差。 (3)在交流耐压测试的时候,大型的发电机设备需要运用工频串联谐振的方式来进行测试,而且在整个测试中都是电力工程中得到了广泛的应用。 (4)在测试电力变压器时,测试重点就对油中的溶解气体进行色谱分析,经过实践经验得出,通过色谱分析很容易发现电力变压器的问题。 (5)在氧化锌避雷试验中,可能会出现交流阻性电流测试和直流电压试验不合格,所以要对其进行更详细的交流工频参考电压试验。 4 高电压与绝缘技术试验的设备和仪器 (1)为了对高电压直流电压试验设备的功能更加完善,在交流耐压试验中可以串联谐振试验设备,不仅提高了电压等级,而且还提高了电压的功率,也有大型电力变压器设备测试绕组直流电阻,在测试的过程中,对三角绕组问题有所解决,再加上微机的控制,提高了稳流的性能,同时也缩短了测量的时间。 (2)另外,还要不断引进先进的绝缘技术,从而提高高电压的测试水平,比如变压器在线局部放电检测和断路器微机监测设备、红外接触电阻测量仪器等设备。 5 高电压设备外绝缘的主要使用材料 高电压设备的外绝缘材料基本上都是采用电工陶瓷,主要是因为该材料的电气性能是非常好,并且环境稳定性也是比较好,但是陶瓷存在最大的弱点就是属于脆性材料,尽管压缩度很强,但是气拉伸性相对弱一点,冲击性能也是比较差的,此外,陶瓷的表面有一定的亲水性,对雨闪电压低和污闪电压低的问题相对难以克服一些。在工业技术不断进步的过程中,绝缘材料的种类也逐渐增多,比如:脂环族环氧树脂、聚四氟乙烯、乙丙橡胶、硅橡胶等一些复合型的材料,主要是因为很难找到满足高电压设备的有机外绝缘材料,所以使用复合绝缘结构是非常多的。 6 有机外绝缘的应用和发展趋势 在二十世纪八十年代,相关人士不断积累经验,对我国绝缘技术有更深层的研究,基本达到了我国的领先水平。另外,合成绝缘技术在电力工程中的应用效果比较显著,逐渐加强了对高电压绝缘技术的认识。在二十世纪九十年代的时候,逐渐由很多绝缘产品出现,然而合成结缘子技术的优势比较显著,所以在电力工程中仍然占主导地位。

高压直流输电技术

高压直流输电技术 学院(系):电气工程学院班级:1113班 学生姓名:高玲 学号:21113043 大连理工大学 Dalian University of Technology

摘要 本文综述了高压直流输电工程的应用领域及研究现状,并从稳态模型出发分析了其控制方式和运行原理,最后介绍了新型高压直流输电系统基本情况,达到了实际的研究意义。 关键词:高压直流输电;稳态模型;控制;新型

目录 摘要....................................................................................................................................II 1 高压直流输电发展概况 (1) 1.1 高压直流输电工程的应用现状 (1) 1.2 高压直流输电的发展趋势 (1) 1.3 高压直流输电的特点 (2) 2 高压直流输电系统控制与运行 (4) 2.1 概述 (4) 2.2 直流输电系统的控制特性 (5) 2.2.1 理想控制特性 (5) 2.2.2 实际控制特性 (6) 2.3 HVDC系统的基本控制 (7) 2.4 HVDC系统的附加控制 (10) 2.4.1 HVDC系统附加控制的原理 (10) 2.4.2 HVDC系统常见的附加控制 (10) 3 新型直流高压输电系统 (12) 3.1 概述 (12) 3.2 基本结构 (12) 参考文献 (13)

1 高压直流输电发展概况 1.1 高压直流输电工程的应用现状 直流输电起步于20世纪50年代,20世纪80年代随着晶闸管应用技术的成熟、可靠性的提高,直流输电得到大的发展。到目前为止,已建成高压直流输电项目60多项,其中以20世纪80年代为之最,占30项。表1.1列出世界上长距离高压直流输电项目,表1.2列出我国直流工程项目。 表2.1 世界上长距离高压直流输电项目 项目额定电压/kV 额定功率/万kW 输电距离/km 投运年份安装地点及供货商卡布拉-巴萨±533 192 1360 1978 莫桑比克2南非因加-沙巴±500 112 1700 1981 扎伊尔 纳尔逊河二期±500 200 940 1985 加拿大 I.P.P ±500 192 784 1986 美国 伊泰普一期±600 315 796 1986 巴西 伊泰普二期±600 315 796 1986 巴西 太平洋联络线±500 310 1361 1989 美国 魁北克多端±500 225 1500 1986/90/92 加拿大-美国 亨德-德里±500 150 814 1992 印度东南联接±500 200 1420 2002 印度 表2.2 我国已投运的高压直流工程项目 项目额定电压/kV 额定功率/万kW 输电距离/km 单极投运年份双极投运年份葛洲坝-上海±500 120 1052 1989 1990 天生桥-广州±500 180 960 2000 2001 三峡-常州±500 300 890 2003 2003 三峡-广州±500 300 956 2003 2004 贵州-广东1回±500 300 900 2004 2004 三峡右岸-上海±500 300 950 2007 2007 贵州-广东2回±500 300 900 2007 2007 1.2 高压直流输电的发展趋势 目前HVDC输电的换流阀仍然是由半控器件晶闸管组成,使用电网换相的相控换流(Phase Control Converter,PCC)技术,因此存在以下一些固有的缺陷:

柔性直流输电技术概述

柔性直流输电技术概述 1柔性直流输电技术简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。 2. 技术特点 柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点: (1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性; (2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构

高电压绝缘技术课后习题答案

高电压绝缘技术课后习 题答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第一章 1.计算同轴圆柱电极的不均匀系数f ,其中内导体外直径为100 mm ,外壳的内直径为320 mm 。 解: d R r =- , av U E d = , max ln U E R r r = max ln av d E r f r d E r = =+ 其中 R=160mm ,r=50mm 。代入上式可得f=<2,所以此时电场是稍不均匀的。 2. 离地高度10m 处悬挂单根直径3cm 导线,导线上施加有效值工频交流电压,请计算导线表面最大场强。若将该导线更换为水平布置的双分裂导线,两导线总截面积保持与单根导线一致,线间距离30cm ,请重新计算导线表面最大场强。 解:1):等效成圆柱—板电极:由课本P9页可查的公式为 max 0.9 ln U E r d r r =+, 其中U=,d=10m ,r=。代入上式可得:max 5.858/E kV cm =。 2)由题意可知:2212r r ππ= ,可得:1 1.060.0106r cm m ===,两导线相邻S=30cm=, 10.01060.03530.3 r S == 对于二分裂导线,由课本P9页可查得公式。

所以2 112max 2 11(122) (2)ln r r U S S E H r r S +-=,其中H=10m, max 5.450/E kV cm = 3.总结常用调整电场强度的措施。 解: 1)、改变电极形状 ①增大电极曲率半径;②改善电极边缘;③使电极具有最佳外形; 2)、改善电极间电容分布 ①加屏蔽环;②增设中间电极; 3)、利用其他措施调整电场 ①采用不同的电介质;②利用电阻压降;③利用外施电压强制电压分布; 第二章 1、解:由题意:21 2 e e i m v eV ≥ ,因此: 62.7510/e v m s ≥==? ,,57.6nm i c hv eV v λλ≥=≤所以。水蒸气的电离电位为。97.712.7hc nm λ≤= 可见光的波长范围在400-750nm ,不在可见光的范围。 2、解: 194223 2212.5 1.6103 ()12.5,,9.661810()233 1.3810 i i i w w O eV w KT T K K --???=====??? 气体的绝对温度需要达到96618K 。 3、解:由/()n n e λλλ-=知

《高电压绝缘技术》

《高电压绝缘技术》学习包 第一章气体的绝缘特性 一、气体电介质的放电特性 1空气在强电场下放电特性 气体在正常状态下是良好的绝缘体,在一个立方厘米体积内仅含几千个带电粒子,但在高电压下,气体从少量电符会突然产生大量的电符,从而失去绝缘能力而发生放电现象.一旦电压解除后,气体电介质能自动恢复绝缘状态 2.带电质点的产生与消失 (1) 激发 原子在外界因素作用下,其电子跃迁到能量较高的状态 (2)游离 原子在外界因素作用下,使其一个或几个电子脱离原子核的束博而形成自由电子和正离子 (3)游离的方式a.碰撞游离b.光游离c.热游离d.金属表面游离 碰撞游离 当带电质点具有的动能积累到一定数值后,在与气体原子(或分子)发生碰撞时,可以使后者产生游离,这种由碰撞而引起的游离称为碰撞游离 引起碰撞游离的条件: : 气体原子(或分子)的游离能 光游离 由光辐射引起气体原子(或分子)的游离 称为光游离 产生光游离的条件: h:普朗克常数 ν:光的频率 热游离 气体在热状态下引起的游离过程称为热游离 产生热游离的条件: K:波茨曼常数 i W m ≥22 1υi W i W h ≥νi W KT ≥2 3

T:绝对温度 金属表面游离 电子从金属电极表面逸出来的过程称为表面游离 (4)去游离 a.扩散 带电质点从高浓度区域向低浓度区域运动. b.复合 正离子与负离子相遇而互相中和还原成中性原子 c.附着效应 电子与原子碰撞时,电子附着原子形成负离子 二.气体放电的两个理论 1.汤逊放电理论. 适用条件:均匀电场,低气压,短间隙 (1).电子崩 在电场作用下电子从阴极向阳极推进而形成的一群电子 (2).非自持放电 去掉外界游离因素的作用后,放电随即停止 (3).自持放电 不需要外界游离因素存在,放电也能维持下去 (4).自持放电条件 a.电子的空间碰撞系数α 一个电子在电场作用下在单位行程里所发生的碰撞游离数 b.正离子的表面游离系数γ 一个正离子到达阴极,撞击阴极表面产生游离的电子数 一个正离子到达阴极,撞击阴极表面产生游离的电子数 自持放电条件可表达为: (5)巴申定律 a.表达式: P:气体压力 S:极间距离 b.均匀电场中几种气体的击穿电压与ps 的关系)(PS f U F =1 )1(=-S e αγ

现代电力电子技术概述

现代电力电子技术学习报告 姓名:csu 学号: 专业:电气工程 班级:

目录 第一章现代电力电子技术的形成与发展 (1) 1.1 电力电子技术的定义 (1) 1.2 电力电子技术的历史 (1) 1.3 电力电子技术的发展 (2) 1.3.1 整流器时代 (2) 1.3.2 逆变器时代 (2) 1.3.3 变频器时代 (2) 1.3.4 现代电力时代 (3) 第二章现代电力电子计时研究的主要类容和控制技术 (4) 2.1 直流输电技术 (4) 2.2 灵活交流输电技术(FACTS) (4) 2.3 定制电力技术(DFACTS) (5) 2.4 高压变频技术 (5) 2.5 仿真分析与试验手段 (5) 第三章现在电力电子的应用领域 (6) 3.1 工业领域 (6) 3.2 交通运输 (6) 3.3 传统产业 (6) 3.4 家用电器 (7) 3.5 电力系统 (7) 第四章现代电力电子技术的发展趋势及其目前研究的热点问题 (8) 4.1 国内发展趋势 (8) 4.2 国外发展趋势 (8) 4.3 热点问题 (8)

第一章现代电力电子技术的形成与发展 1.1 电力电子技术的定义 电力电子技术,又称“功率电子学”(英文:Power Electronics),简称PE,是应用于电力领域,使用电力电子元件对电能进行变换和控制的电子技术。电力电子技术分为电力电子元件制造技术和变流技术。一般认为,1957年美国美国通用电气公司研制出第一个晶体管是电力电子技术诞生的标志。 1974年,美国的W. Newell提出:电力电子学是由电力学、电子学和控制理论三个学科交叉而行成。这一观点被全世界普遍接受。 1.2 电力电子技术的历史 随着1902年第一个整流器的问世,进而引入了功率电子学这个概念。原始整流器是一个内含液态汞的阴极放电管。这个汞蒸气型的整流器,可以将数千安培的交流电转换为直流电,其容忍电压也高达一万伏特以上。从1930年开始,这种原始的整流器开始匹配一个类似于通管技术的点阵式(或晶格结构)类比控制器,从而实现了直流电流的可控制性(引燃管,闸流管)。由于正向可通过的电压约为20伏特,进而乘于正向可通过的电流就产生了可观的电功率损失,由此而来的投资和运营成本等等也会相应的增加。因而这种整流器在现今的功率电子技术方面并不会得到广泛的应用。 随着半导体在整流方面的应用,第一个半导体整流器(硒和氧化亚铜整流器)被发明出来。 1957年,通用电气研发出第一种可控式功率型半导体,后来命名为晶闸管。之后进一步地研发出多种类型的可控式功率型半导体。这些半导体如今也在驱动技术方面得到广泛应用。

高电压与绝缘技术

高电压与绝缘技术有哪些学校 硕士点 好多学校都有的,我就是这个专业的,我是哈尔滨理工大学的硕士,今年就业,理工的这个专业是国家重点学科,有个院士。我觉得西安交大的最好,他们都去了电力系统的单位,我们学校的也很出名,国家重点学科,但是我们13个人找工作只有3个去了电力口,建议你去西安交大。东北电力也不错,重庆大学都有。如果搞绝缘只能在哈理工和西安交大选,西交高压和绝缘是分开培养的,考之前要确定你选的是高压还是绝缘。我不能搜集全的,见谅! 就我所知的我说一下吧: 东北电力,华北电力,重庆大学,清华大学,武汉大学,哈尔滨理工大学,西安交通大学,其他的就不太清楚了。 高电压技术 以试验研究为基础的应用技术。主要研究在高电压作用下各种绝缘介质的性能和不同类型的放电现象,高电压设备的绝缘结构设计,高电压试验和测量的设备及方法,电力系统的过电压、高电压或大电流产生的强电场、强磁场或电磁波对环境的影响和防护措施,以及高电压、大电流的应用等。高电压技术对电力工业、电工制造业以及近代物理的发展(如X射线装置、粒子加速器、大功率脉冲发生器等)都有重大影响。简介工程上把1000伏及以上的交流供电电压称为高电压。高电压技术所涉及的高电压类型有直流电压、工频交流电压和持续时间为毫秒级的操作过电压、微秒级的雷电过电压、纳秒级的核致电磁脉冲(NEMP)等。20世纪以来,随着电能应用的日益广泛,电力系统所覆盖的范围越来越大,传输的电能也越来越多,这就要求电力系统的输电电压等级不断提高。就世界范围而言,输电线路经历了110、150、230千伏的高压,287、400、500、735~765千伏的超高压和1150千伏的特高压(工业试验线路)的发展。直流输电也经历了±100、±250、±400、±450、±500以及±750千伏的发展。这几个阶段都与高电压技术解决了输电线路的电晕现象、过电压的防护和限制以及静电场、电磁场对环境的影响等问题密切相关。这一发展过程以及物理学中各种高电压装置的研制又促进了高电压技术的进步。60年代以来,为了适应大城市电力负荷日益增长的需要,以及克服城市架空输电线路走廊用地的困难,地下高压电缆输电发展迅速(由220、275 、345千伏发展到70年代的400、500千伏电缆线路);同时,为减少变电所占地面积和保护城市环境,全封闭气体绝缘组合电器(GIS)得到越来越广泛的应用。这些都提出许多高电压技术的新问题。内容·电力系统过电压及其限制研究电力系统中各种过电压,以便合理确定其绝缘水平是高电压技术的重要内容。电力系统的过电压包括雷电过电压(又称大气过电压、外部过电压)和内部过电压。其中雷电过电压由雷云直接或间接对变电所或输电线路(避雷线、杆塔或导线)放电造成。一般雷电过电压幅值较高,超过系统的额定工作电压,但作用时间较短,波头时间大多数为1.5~2微秒,平均波长时间为30微秒,大于50微秒的很少。雷击除了会威胁输电线路和电工设备的绝缘外,还会危害高建筑物、通信线路、天线、飞机、船舶、油库等设备的安全。因此,这些方面的防雷也属于高电压技术的研究对象。电力系统内部过电压是因正常操作或故障等原因使电磁状态发生变化,引起电磁能量振荡而产生的。其中衰减较快、持续时间较短的称为操作过电压;无阻尼或弱阻尼、持续时间长的称为暂态过电压。对110~220千伏电力系统,内部过电压水平一般取3倍最大工作电压;对330~500千伏电力系统,需要采取一些限制措施,取2~2.5倍。对特高压电力系统,进一步限制内部过电压具有巨大的经济价值,从前景来看限制到 1.5~1.8倍最大工作电压是完全可能的。·高电压绝缘特性研究高压电工设备的绝缘应能承受各种高电压的作用,包括交流和直

相关文档
相关文档 最新文档