文档库 最新最全的文档下载
当前位置:文档库 › 吊耳计算式

吊耳计算式

吊耳计算式
吊耳计算式

CONTENTS

1GENERAL (3)

2REFERENCE DOCUMENTS (3)

3DESIGN CONDITION (4)

3.1Design Loads (4)

3.2Dimension And Materials (4)

4STRENGTH CHECK FOR TYPE I PADEYE (6)

4.1Bearing stress (Eye portion) (6)

4.2Shear stress (Eye portion) (6)

4.3Welding Check for Cheek Plate (6)

4.4Compression and Bending Stress of Padeye Plate (6)

4.5Shear Stress of Padeye Plate (8)

4.6Connection between Padeye Main Plate and Column (8)

1 GENERAL

The LD32-2 MOPA Platform is to be located in Bohai Bay, P.R. China. Following transportation to site, MOPA deck will be installed by lifting from the transportation barge.

A total of four lift points will be used for installation.

The padeye design and stress check for LD32-2 MOPA deck is performed according to API RP 2A and AISC WSD codes. The lifting arrangement and details are shown in drawings LD32-2-DWG-MOPA-ST-1006. Calculated padeye reactions and lift analysis is detailed in Report LD32-2-RPT-MOPA-ST-1006.

The results of this calculation indicate that the padeyes are adequate for lifting condition.

2 REFERENCE DOCUMENTS

1) API RP 2A Recommended Practice for Planning, Designing, and Constructing

Fixed Offshore Platforms – 21st Edition W.S.D.

2) AISC Specification for Structural Steel Buildings – Allowable Stress and Plastic

Design 9th Edition

3) AWS D1.1 Structural Welding Code – Steel

4) LD32-2-SPC-GEN-ST-0001 Specification for Structural Design

3 DESIGN CONDITION

3.1 Design Loads

There is only one type of lifting padeye in calculation. Maximum force in sling wire: P= 2490.02 kN, use 2500.00 kN. The maximum force includes dynamic load factor of 2.0.

The angle from horizontal of the sling is considered as 60 degrees.

Loads acting on padeye:

P H = 2500.00 X cos (60?) = 1250.00 kN

P V = 2500.00 X sin (60?) = 2165.06 kN ,use 2200.00 kN.

3.2 Dimension And Materials

Padeye detail:

Pin diameter: 108 mm

Hole diameter: 112 mm

Padeye main plate material: GB 712-2000 E36-Z35. Fy=35.5 kN/cm2

Other plate material: GB 712-2000 D36. Fy=35.5 kN/cm2

For drawing of Lifting padeye, see next page.

4 STRENGTH CHECK FOR TYPE I PADEYE

4.1 Bearing stress (Eye portion)

f p = 2500.00 / (10.8 x 11.4) = 20.31 kN/cm2 < 31.95 kN/cm2

Allowable bearing stress: F p

F p = 0.9Fy = 0.9 x 35.5 = 31.95 kN/cm2

4.2 Shear stress (Eye portion)

A s=2 x (35 - 11.2/2) x 5.0 + 4 x (30 - 11.2/2) x 3.2 = 606.32 cm2

f v = 2500.00 / 606.32 = 4.12 kN/cm2 < 14.2 kN/cm2

Allowable shear stress: Fv

F v = 0.4F y = 0.4 x 35.5 = 14.2 kN/cm2

4.3 Welding Check for Cheek Plate

Required weld area for cheek plate: A w1

A w1 = Pt/F w T = 2500.00 x 3.2 / (14.2 x 11.4) = 49.42 cm2

Required Weld Size: S1= 20.5 x 49.42 / 179.43 = 0.39 cm

Use 25 mm fillet weld.

4.4 Compression and Bending Stress of Padeye Plate

A =130.8 x 5.0 + (90.0-5.0) x 3.2 x 2 = 1198.0 cm2

In plane bending inertia moment I yy = 2381317.73 cm4

Out of plane bending inertia moment I zz = 390095.83 cm4

In plane bending

M y = 1250.00 x 32 = 40000.00 kN-cm

Out of plane bending

M z = 2500.00 x (32 + 11.2/2 + 30) x 0.05 = 8450.00 kN-cm

Thus,30 is the height of shackle.

Point A stress calculation:

f by =40000.00 x 65.4 / 2381317.73 = 1.10 kN/cm2

f bz =8450.00 x 5.0 / 2 / 390095.83 = 0.05 kN/cm2 Compression stress:

f a = 2200.00 / 1198.00 = 1.84 kN/cm2

F a = 0.6F y = 0.6 x 35.5 = 21.3 kN/cm2

f a/F a+f by/0.66F y+f bz/0.66F y

= 1.84 / 21.3 + 1.10 / 23.43 + 0.05 / 23.43

= 0.14 < 1.0 OK.

Point B stress calculation:

f by = 40000.00 x (50+3.2) / 2381317.73 = 0.97 kN/cm2 f bz = 8450.00 x 90 / 2 / 390095.83 = 0.89 kN/cm2 Compression stress:

f a = 2200.00 / 1198.00 = 1.84 kN/cm2

F a = 0.6F y = 0.6x35.5 = 21.3 kN/cm2

f a/F a+f by/0.66F y+f bz/0.66F y

= 1.84 / 21.3 + 0.97 / 23.43 + 0.89 / 23.43

= 0.17 < 1.0 OK.

4.5 Shear Stress of Padeye Plate

f vz = P H/A z = 1250.00 / 130.8 x 5.0 = 1.91 kN/cm2 < 14.20 kN/cm2

Allowable shear stress: F v

F v = 0.4F y = 0.4×35.5 = 14.20 kN/cm2

4.6 Connection between Padeye Main Plate and Column

A s = 3.2 x 50 x 2 = 320.00 cm2

f v = F/ A s =2200.00 / 320.00 = 6.88 kN/cm2 < 14.20 kN/cm2OK

Allowable shear stress: F v

F v = 0.4F y = 0.4×35.5 = 14.20 kN/cm2

吊装中吊耳的选择与计算

钢结构吊装吊耳的选择与计算

前言 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。

一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式: 图例1为方形吊耳,是钢构件在 吊装过程中比较常用的吊耳形式,其 主要用于小构件的垂直吊装(包括立 式和卧式) 图例2为D型吊耳,是吊耳的普 遍形式,其主要用于吊装时无侧向力较 大构件的垂直吊装。这一吊耳形式比较 普遍,在构件吊装过程中应用比较广 泛。 图例3为可旋转式垂直提升吊耳, 此吊耳的形式在国外的工程中应用比 较多,它可以使构件在提升的过程中沿 着销轴转动,易于使大型构件在提升过 程中翻身、旋转。

图例4为斜拉式D型吊耳,此 吊耳主要用于构件在吊装时垂直方 向不便安装吊耳,安装吊耳的地方与 吊车起重方向成一平面角度。 图例5为组合式吊耳之一,在 吊装过程中比较少见,根据其结构 和受力形式可用于超大型构件的吊 装,吊耳安装方向与构件的起重方 向可成一空间角度。 图例6为D型组合式吊耳,可 用于超大型构件的垂直吊装, 在D型吊耳的两侧设置劲板 可抵抗吊装过程中产生的瞬 间弯距,此外劲板还可以增加 吊耳与构件的接触面积,增加焊缝长度,增加构件表面的受力点。减少吊装过程中构件表面因过度应力集中而将母材撕裂的现象。 图例7为民建钢结构中钢骨柱安装时常用的吊耳,其特点为吊耳与钢骨柱连接耳板合二为一,快皆、方便、经济便于安装和施工,是民建钢结构中钢骨柱安装时最为常见的吊耳形式之一。如下图所示:

吊装大件吊耳受力计算

一、吊耳的计算 大型设备的吊装方案的安全平稳实现与吊耳结构形式有直接关系。当正确合理的吊装方案确定后,根据起吊设备的结构特点、外形尺寸,设计出结构合理、 利于操作、安全可靠的吊耳是一个很关键的问题。 目前所使用的吊耳主要分两大类:管式吊耳与板式吊耳,其中板式吊耳在电力建设应用很多,下面主要介绍板式吊耳的计算。 板式吊耳的基本形式如下图所示: 板式吊耳 为了增加板式吊耳的承载能力,可以在耳孔处贴上两块补强环(如下图所示),图中的肋板是为了增加板式吊耳的侧向刚度和根部的焊缝长度而设置的。 带有补强环的板式吊耳 板式吊耳的计算方法很多,据笔者统计有近10种之多,下面主要介绍两种,第一种是根据实践经验简化后的计算方法,第二种就是著名的拉曼公式。 1、简化算法

(1)拉应力计算 如上图所示,拉应力的最不利位置在 c - d 断面,其强度计算公式为: 2()P R r 其中:σ—c-d 截面的名义应力, P —吊耳荷载,N [σ]—许用应力,MPa ,一般情况下, 1.5s (2)剪应力计算 如图所示,最大剪应力在 a-b 断面,其强度计算公式为: ()p P A R r 式中:[τ]—许用剪应力,MPa , 3 (3)局部挤压应力计算局部挤压应力最不利位置在吊耳与销轴结合处,其强度计算公式为: c c P d 式中:c :许用挤压应力,MPa , 1.4c 。 (4)焊缝计算: A :当吊耳受拉伸作用,焊缝不开坡口或小坡口,按照角焊缝计算: h h e w k P h l P —焊缝受力, N

k —动载系数,k=1.1, e h —角焊缝的计算厚度,0.7e f h h ,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; h —角焊缝的抗压、抗拉和抗剪许用应力,2h ,为母材的基本许 用应力。 B :当吊耳受拉伸作用,焊缝开双面坡口,按照对接焊缝计算: (2)h h k P L 式中: k —动载系数,k=1.1; L —焊缝长度,mm ; δ—吊耳板焊接处母材板厚,mm ; h —对接焊缝的纵向抗拉、抗压许用应力,0.8h ,为母材的基本许用应力。 2、拉曼公式 目前,国内很多规范和标准采用了著名的拉曼公式, 现根据《水利水电工程 钢闸门设计规范》(SL74-95)介绍吊耳的计算. (1)吊耳的宽度、厚度与吊耳孔直径的关系(下图),可按下式选用:

焊接吊耳的设计计算

焊接吊耳的设计计算 焊接吊耳的设计计算及正确使用方法 1. 目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠, 保证安全施工。 2. 编制依据 《钢结构设计规范》(GB-1986) 3. 适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。 4. 一般规定 4.1 使用焊接吊耳时,必须经过设计计算。 4.2 吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3 吊耳孔应用机械加工,不得用火焊切割。 4.4 吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5 吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6 吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7 吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8 吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。 5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A,A断面,其强度计算公式为: σ,N,S σ?,σ, 1

式中:σ――拉应力 N――荷载 S――A-A断面处的截面积 1 ,σ,――钢材允许拉应力 σ单位:N/mm2 δ ? 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37,11.0,170,I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。 吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m?,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或 8),123.75KN(或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5,15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m?,4.5d×d,19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤)

吊耳计算

[]22 v 22k P R r f d R r σδ+=?≤- (1) 式中: k —动载系数,k=1.1; —板孔壁承压应力,MPa ; P —吊耳板所受外力,N ; δ—板孔壁厚度,mm ; d —板孔孔径,mm ; R —吊耳板外缘有效半径,mm ; r —板孔半径,mm ; []v f —吊耳板材料抗剪强度设计值,N/mm 2; 载荷P=25t 的板式吊耳,材质Q345A 。选择55t 卸扣,卸扣轴直径70mm ,取板孔r=40mm ,R=150mm ,,030mm δ=。Q345A 强度设计值[]v f =180Mpa 。 拉曼公式校核吊耳板孔强度 σ=1.1×25×9800/30×80×(22500+1600)/22500-1600)=129 Mpa <180Mpa 故安全。 a. 当吊耳受拉伸作用,焊缝不开坡口或小坡口时,属于角焊缝焊接,焊缝强度按《钢结构设计规范》中式7.1.3-1校核,即: w f f f e w N f h l σβ=≤? (2) 式中: f σ—垂直于焊缝方向的应力,MPa ; N —焊缝受力, N=kP=1.4P, 其中k=1.4为可变载荷分项系数,N; e h —角焊缝的计算厚度,0.7e f h h =,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; f β—角焊缝的强度设计增大系数,取 1.0f β=;

w f f —角焊缝的强度设计值,N/mm 2; 抬尾吊耳在受力最大时为拉伸状态,按吊耳受拉伸校核焊缝强度。 由式(2)按角焊缝校核 f =1.4×25×98000/0.7×10(600-2×10)1.22×2=34.6MPa <180Mpa

API 吊耳强度计算公式

Padeye Strength Check Calculation Padeye Details吊耳参数 Padeye thickness (t)吊耳厚度20 mm Padeye outer radius ?吊耳外圆半径45 mm Hole size (φ)吊耳孔径35 mm Width at base (W)吊耳根部宽度120 mm Height of hole (h)吊耳孔高度100 mm Material材料Q235 Shackle (selected by Owner)选用钢丝绳参数 Shackle WLL 钢丝绳额定载荷 4 T >2T OK! Pin Diameter (d) 卸扣销子直径32 mm Allowable Stress许用应力 Yield point (δy)材料屈服极限235 MPa Allowable shearing stress (0.4δy)许用切应力94 MPa Allowable bearing stress (0.9δy)许用挤压应力211.5 MPa Allowable combined stress (0.6δy)许用组合应力141 MPa Design Load 设计载荷 SWL (Q) 额定载荷 2 T Force direction to horizontal plane (θ)载荷方向与水平面夹 60 degree 角 Dynnamic load Factor (Sf)动态载荷系数 2.0 Design load on padeye (F=Sf*Q*9.81*1000)吊耳设计载荷39240.00 N Vertical Force (Fv=F*sin(θ))垂直载荷33982.84 N In-plane horizontal force (Fh=F*cos(θ))16991.42 N Out-plane horizontal force (Fh0=0.05*9.81*Q*1000) 981.00 N Shearing stress (pin tearout) 剪切应力计算 Shear stress (fv=F/(2*(R-0.5φ)*t)吊耳承受的剪切应力35.7 MPa <94MPa OK! Bearing stress at hole 挤压应力计算 Bearing stress (fp=F/(d*t)吊耳承受的挤压应力61.3 MPa <211.5MPa OK! Combined stress at base 吊耳根部综合应力计算 Tension stress (ft=Fv/(W*t)吊耳根部拉应力14.2 MPa In-plane shearing stress (fv=Fh/(W*t)) 7.1 MPa Out-plane shearing stress (fvo=Fho/(W*t) 0.41 MPa In-plane bending moment (M1=Fh) 1699141.8 N.mm Out-plane bending moment (M2=Fh0*h) 98100 N.mm In-plane bending stress (fa=M1/(t*W^2/6) 35.4 MPa Out-plane bending stress (fa0=M2/(t*W^2/6) 12.26 MPa Combined stress at padeye base 42.1 MPa <141MPa OK! (f max=SQRT(ft^2+fa^2+fa0^2+3*(fv+fvo)^2)

吊耳计算及说明(体育馆)

吊耳计算及说明:(体育馆) 1、 主梁共设置四个吊耳,布置见图,吊耳规格为—30×200×300 2、 吊耳必须与主梁横隔板及腹板焊接,设置吊耳时顶板开槽让其通过,将吊耳焊接在腹板及横隔板上。 (6)/ 2

吊耳计算及说明:(体育场西) 1、 主梁共设置四个吊耳,布置见图,吊耳规格为—30×200×300 2、 吊耳必须与主梁横隔板及腹板焊接,设置吊耳时顶板开槽让其通过,将吊耳焊接在腹板及横隔板上。 3、 吊耳的焊角尺寸必须满足设计要求,焊缝表面不得有弧坑和裂纹,且不得有损伤母材的缺陷。 V =125N/mm 2 =33N/mm 2

吊耳计算及说明:(怡景中学) 1、主梁共设置四个吊耳,布置见图,吊耳规格为—30×200×300

3>吊具选用:钢丝绳拉力T=,查表选用φ31钢丝绳6×19即可满足要求钢丝绳卸扣选用δ(6)/ 4

5 吊耳计算及说明:(松园北街) 1、 主梁共设置四个吊耳,布置见图,吊耳规格为—20*200*300 2、 吊耳必须与主梁横隔板及腹板焊接,设置吊耳时顶板开槽让其通过,将吊耳焊接在腹板及横隔板上。 3、 吊耳的焊角尺寸必须满足设计要求,焊缝表面不得有弧坑和裂纹,且不得有损伤母材的缺陷。 4、 主梁起吊时的吊耳受力情况:主梁重约26t ,平均每个吊耳承担 t ,考虑到施工荷载及起吊加速增重的影响,每个吊耳实际承受提升力Qz=*=,相应钢丝绳的拉力T=,钢丝绳与水平面夹角为51。,故吊耳还承受二个水平方向拉力; 即Qx=,Qy=,其中须校核在Q Y 和Qx 作用下吊耳的强度。 1>Q z 作用下: 2>Q X =作用下: 3>吊具选用:钢丝绳拉力T=,查表选用φ31钢丝绳6×19即可满足要求钢丝绳卸扣选用δ(6)/ 截面I-I 处:V I —I = =78N/mm 2

焊接吊耳的设计计算

焊接吊耳的设计计算及正确使用方法 1.目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠,保证安全施工。 2.编制依据 《钢结构设计规范》(GB-1986) 3.适用范围 我公司各施工现场因工作需要,需自行设计吊耳的作业。4.一般规定 4.1使用焊接吊耳时,必须经过设计计算。 4.2吊耳孔中心距吊耳边缘的距离不得小于吊耳孔的直径。 4.3吊耳孔应用机械加工,不得用火焊切割。 4.4吊耳板与构件的焊接,必须选择与母材相适应的焊条。 4.5吊耳板与构件的焊接,必须由合格的持证焊工施焊。 4.6吊耳板的厚度应不小于6mm,吊耳孔中心至与构件连接焊缝的距 离为1.5~2D(D为吊耳孔的直径)。 4.7吊耳板与构件连接的焊缝长度和焊缝高度应经过计算,并满足要 求;焊缝高度不得小于6mm。 4.8吊耳板可根据计算或构造要求设置加强板,加强板的厚度应小于 或等于吊耳板的厚度。

5 吊耳计算 5.1拉应力计算 如图所示,拉应力的最不利位置在A-A断面,其强度计算公式为: σ=N/S1σ≤[σ] 式中:σ――拉应力 N――荷载 S1――A-A断面处的截面积 [σ]――钢材允许拉应力 σ单位:N/mm2 δ ≤ 20 δ >20-40 δ >40-50 Q235 170 155 155 Q345 240 230 215 附:钢丝绳6×37-11.0-170-I 它的代表是什么?钢丝绳粗细是多少? 6股,每股37根绞成。外径11毫米。公称抗拉强度每平方毫米170公斤。钢丝的机械性能为I级。

吊装某一构件,重约55KN,现采用6*37钢丝绳作捆绑吊索,其极限抗拉强度为1700N/m㎡,求钢丝绳的直径. 1.捆绑吊索——钢丝绳有2根承重。则单根钢丝绳的载荷是55KN/2=27.5KN 取安全系数为4.5(6)(8)倍时,钢丝绳的最小破断拉力为27.5×4.5(或6)(或8)=123.75KN (或165KN)(或220KN) 经查GB20118-2006,6×37结构的纤维芯钢丝绳的破断拉力换算系数为0.295 则钢丝绳的直径为:D=((123.75×1000)/(0.295×1700))^0.5=15.7mm 同理,可以算出安全系数为6和8时的钢丝绳直径为:18.14和20.9mm 结论:当安全系数取4.5倍时,可采用……其他说明参见 2.根据国标规范6×37的钢丝绳的破断强度是4.5d×d 得出:1700N/m㎡=4.5d×d=19.4mm 得出钢丝绳直径为19.4mm 起重吊运钢丝绳的破断拉力慨约计算公式: 钢丝绳直径(mm)的平方乘以50等于破断拉力(公斤) 此公式二十年前在一本起重机方面的书上学的,工作中运用较方便。对照钢丝绳表查,基本上符合6乘19纤维芯钢丝绳公称抗拉强度1670兆帕的钢丝绳最小破断拉力。 起重吊运用时应将破断拉力除以安全系数6倍等于安全负荷。 圆形钢丝绳直径20mm,公称抗拉强度1700,求最小破断拉力???? 给你说个简单的估算公式:P=50*D*D 式中P---钢丝绳的破断拉力,单位:Kgf;D ---钢丝绳的直径,单位:毫米.适用在钢丝强度为1600-1700MPa的情况下.在吊装作业中,钢丝绳的许用拉力不能等于破断拉力,应低于破断拉力,许用拉力可按下式求得:〔P〕=P/K 式中,:〔P〕---钢丝绳的许用拉力,亦叫安全拉力,单位:Kgf;P---钢丝绳的破断拉力,单位:Kgf;K---安全系数(一般取3-6,特殊情况下,按施技术工要求去执行). 实例:寸绳:直径26-28之间,10倍安全系数可吊3.3T P=26*26*50=33800kg/10=3380kg ≈3.3T P= 10*10*50=5000kg/10=500kg

吊耳计算

吊耳计算

————————————————————————————————作者: ————————————————————————————————日期:

1)折页销轴强度校核 销轴最大受力为副斜架起吊就位瞬间,销轴直径ф130 剪应力:τ=Q/A=100×103/(13/2)2π =753.78kg/cm2〈[τ]=1000kg/cm2弯曲应力:σ=Mmax/W (销轴受力按均布载荷计算) Mmax=QL2/8 q=100×103/8.4=1.9×104kg/cm M max=1/8×1.9×104×8.42=1.676×105kg·cm W=πd3/32=3.14×133/32=215.58cm3 σ=Mmax/W=1.676×105/215.58=77744kg/cm2〈[σ] 1)100t固定折页验算 R Hmax=100T 由拉曼公式校核最薄断面A-B σ=P(D2+d2)/2sd(D2-d2) =100×103(442+13.22)/2×4×13.2(442-13.22) =1188kg/cm2〈[σ] 固定折页焊缝计算 焊缝长度Li=2×50+2×20+4=144cm 焊缝高度h=1.6cm τ=P/0.7hLi =100×103/0.7×1.6×144

500 φ400 =620kg/cm 2〈[τ]=1000kg /c m2 3)活动折页计算 主斜架起吊就位后,副斜架未起吊前,斜架主体部分底部已垫垫铁并穿上地脚螺栓,所以校核折页受力以R 3=178.82T 为准。 在A-B 截面上: R=220 A 12 60 12 φ126 B δ60 220 280 由拉曼公式σ=P (D 2+d2)/2s d(D 2-d 2)得: σ=178.82×103(442+12.62)/2×8.2×12.6(442-12.62) =1019.98k g/c m2〈[σ]=1600k g/cm 2 活动折页焊缝计算 660

钢丝绳、吊耳验算(知识材料)

吊耳 (2)选用钢丝绳 钢柱重量按3吨、吊绳与水平面夹角大于30度计算,每根钢丝绳,实际承受的拉力值P根据计算公式P=q/2cosα P——每根钢丝绳所受的拉力(N); Q——起重设备的重力(N); n——使用钢丝绳的根数; a——钢丝绳与铅垂线的夹角。 通过计算得出每根钢丝受拉值不大于1.7321吨。 该钢丝绳按作无弯曲吊索考虑,选用Φ16mm钢丝绳(6*37+1)

纤维芯钢丝绳公称抗拉强度为:1670kg/mm2 根据型号、直径和公称抗拉强度查得钢丝绳的破断拉力总和为: ∑P破=15737.4KG 。取折减系数α=0.82 P允许破断拉力=α*ΣP破=12904.7KG 则安全系数为:K=P允许破断拉力/ P=12904.7/1732.1=7.45 当钢丝绳作无弯曲吊索用时安全系数取6--7,以上计算安全系数为7.45,大于标准安全系数取值。 所以吊绳选用直径16mm钢丝绳可以满足要求。 (3)卸扣(卡环)选用:按卡环容许荷载近似计算式:[Fk]=(35~40)d2 式中:[Fk]—卡环容许荷载,取值为14.7kN; d—卡环直径); 35~40—公式系数,取37.5 可得d2=[Fk]/37.5=14700/37.5=392mm2, d≈19.8mm。 选用M-DW2.5卸扣,其d值为20mm,使用负荷为25kN>14.7kN,能满足要求。 (4)钢柱计算吊耳受力验算:

吊耳图: 根据剪应力公式: v f <=n A Q 剪应力τ Q=P/ψ P---为耳板荷载值,钢柱重3T ,每个耳板P1.5T=1500*9.8N=14700N 。 Ψ---吊装过程中产生的动荷载系数,一般取值为1.3~1.5之间,取1.5 An---剪切面面积=板厚b*剪切面长h=14mm*25mm=350mm2。 fv---吊耳材料的抗剪设计值,钢材抗剪设计强度为抗拉设计强度的0.58倍,吊耳材质为Q345B ,抗拉设计强度为470~630Mpa ,取600Mpa ,fv=0.58*600=348Mpa) τ剪应力=14700/1.5/350=29N/mm2

工艺吊耳设计规范

欢迎阅读工艺吊耳设计作业标准 1、吊耳材质要求 一般用Q345(结构钢)或AH36(船板)或同级别的钢板,不使用Q235及A级钢板; 2、下料 吊耳用数控下料; 3、坡口 5 P 进行设计,舱盖二线5.5m。并在翻身方案里规定钢丝绳长度,也不小于6m,通常取8m。钢结构产品无特殊情况,吊耳开档设计也小于6m。 吊耳受力示意图 吊耳垂直安装,在正应力一定的情况下,吊耳另增加了剪应力和弯曲应力。 图2 吊耳与钢丝绳同轴线倾斜安装后消除了剪应力和弯曲应力,仅受正应力作用,受力显着改善。

7、吊耳选型计算 两个吊耳均匀受力,倾斜安装状态: 吊耳选型重量=构件重量/2/sinα。 A、舱盖产品吊耳 如侧移式舱盖对于小于36t的舱盖,钢丝绳与构件夹角60度,主吊耳选型 =36/2/sin600=25T,需要在侧板上设置标明2个翻身主吊耳(标准吊耳D25t)标准吊耳;如钢丝绳与构件夹角68度(吊耳开档6m,钢丝绳8m),主吊耳选型=36/2/sin680=20T(标准 要保 舱盖选图3

30mm, 图5 吊离式舱盖翻身可参照上述。 折叠式舱盖按照NE系列MCG吊耳设计,见附图。最终如吊耳保留不切割,需要得到设计师及船东的确认。 B、钢结构产品吊耳 a.平面分段翻身吊耳

一般平面分段重量较小,翻身选用下面型式的B型吊耳,安装根据钢丝绳与构件的夹角,一般倾斜20~30度,吊耳反面要增加硬档。 20~30 吊耳, -1~-500 9、吊耳设计存在问题示例: 1、上下盖板尺寸过大,与卸扣干涉; 2、吊耳开档跨距过大,且没有倾斜安装,造成吊耳拉弯; 3、吊耳上部没有加三角板,吊耳拉弯。

吊耳计算书

吊耳及吊具计算书 1.钢筋吊环计算 σ=9807*G/n.A≤[σ] σ:吊环承受拉应力 n:吊环的截面个数:1个吊环2,2个吊环为4,4个吊环为6。 A:一个吊环的钢筋截面面积(mm)2。 G:构件重量(t)。 9807:(t)吨换算成牛顿(N)。 [σ]:吊环的允许拉应力,取50N/mm2,(考虑动力系数、钢筋弯折引起的应力集中系数,钢筋角度影响系数等)。(公路桥涵施工规范) (1).类型1:4个Φ16吊环能承受的最大重量: G max=6*2.011*102*50/9807=6.15 t (2).类型1:4个Φ20吊环能承受的最大重量: G max=6*3.14*102*50/9807=9.5t (3).类型2:4个Φ22吊环能承受的最在重量: G max=6*3.801*102*50/9807=11.6 t (4).类型2:4个Φ25吊环能承受的最在重量: G max=6*4.906*102*50/9807=15.0 t (5).类型3:4个Φ28吊环能承受的最在重量: G max=6*6.1544*102*50/9807=18.7t (6).类型3:4个Φ32吊环能承受的最在重量: G max=6*8.0384*102*50/9807=24.5t 2、钢板吊耳计算 a.按钢板容许拉应力计算 σ=9807*K*G/n*A≤[σ] σ:吊耳承受拉应力。 K:动力系数,取1.5。 n:吊耳的截面个数:1个吊耳2,2个吊耳为4,4个吊耳为6。 A:一个吊环的钢筋截面面积(mm)2。 G:构件重量(t)。 9807:(t)吨换算成牛顿(N)。 [σ]:钢板容许拉应力,取80N/mm2 b.按钢板局部承压计算 σ’=9807*K*G/n*A≤[σ] σ’:吊耳钢板承受压应力。 K:动力系数,取1.5。 n:吊环数量:1个吊耳1,2个吊耳为2,4个吊耳为3。 A:一个吊环的钢筋截面面积(mm)2。 G:构件重量(t)。 9807:(t)吨换算成牛顿(N)。 [σ]:吊环的容许压应力,取215N/mm2 c.按板板承受剪应力计算 τ=9807*K*G/n*A≤[σ] τ:吊耳承受剪应力。

钢结构吊装-吊耳的计算

钢结构施工总结 ——钢结构吊装吊耳的选择 前言: 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。 一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式:

图例1为方形吊耳,是钢构件在 吊装过程中比较常用的吊耳形式,其主要用于小构件的垂直吊装(包括立式和卧式) 图例2为D型吊耳,是吊耳的普 遍形式,其主要用于吊装时无侧向力较大构件的垂直吊装。这一吊耳形式比较普遍,在构件吊装过程中应用比 较广泛。 图例3为可旋转式垂直提升吊耳,此吊耳的形式在国外的工程中应用比较多,它可以使构件在提升的过程中沿着销轴转动,易于使大型构件在提升过程中翻身、旋转。 图例4为斜拉式D型吊耳,此 吊耳主要用于构件在吊装时垂直 方向不便安装吊耳,安装吊耳的 地方与吊车起重方向成一平面角

管轴式吊耳计算(36mm)

管轴材质:Q235-A 管轴规格:φ457×38mm 设备壁厚:δ=40mm 吊装重量:80000Kg 角焊缝系数:φa:0.7 动载综合系数K :1. 许用应力[]21400cm Kg =σ 吊点距设备筒壁的距离L :100mm(吊装时钢丝绳紧贴吊耳根部,计算时按100mm 考虑) 径向弯矩M [][] []2 2222223444411002801722.22117246488000002.2216.361800007.4514.36.37.0172464880000046487 .4532) 5.387.45(14.332) (8000001080000cm kg W M N A N W M cm D d D W cm Kg L Fv M y x f y f x y x =<=+=+=== ==???== <+<==?-?=-=?=?=?ττττττττσσπ焊缝核算:==吊耳根部应力核算: 吊耳截面面积: 径=径 《大型设备吊装工程施工工艺标准》(SHJ 515-90)的方法进行根部焊缝计算: []h h h h W P A P A P τααα≤???? ??++???? ??2 22cos 2sin 2cos 局部应力与补强 R=1820mm

[] [] 求,不需要补强。 结论:管轴满足应力要==周向应力:设备水平状态: =径向应力:设备竖直状态: =应力影响区: 结论 =查表: 周 周径周径σδσσδσδδγ<=????<=???=?=?+=== ===7.10146.309 .067.658000002621.6206.3055 .067.658000002627.6556.109.0,055.0125.03640457 2/5.5036 1820 22221M B M M B M cm R D B j M M R D R 焊接要求:管轴和设备焊接时应按照要求打坡口,焊接完毕后进行磁粉探伤。

板式吊耳设计计算书

抚顺石化分公司120万吨/年催化中压加氢精制(改质)装置 精制反应器(R-101)反应器吊耳设计参考 基本参数: 筒体最小壁厚135mm 封头最小壁厚:80mm 筒体内直径:3613mm 封头半径:1834mm 注:○1L2公式仅适用于标准椭圆形封头 式中:δ—封头名义厚度; h1—封头曲面高度; h2—封头直边高度; 对其它形式封头,L2由设计者自定。

吊耳板材质:Q235-A 许用应力[σ]:130Mpa 许用剪应力[τ]:91Mpa 角焊缝系数:Φn:0.7 动载综合系数:K=1.65 吊耳竖向载荷 Q=332235kg Fv=332235÷2×K=332235÷2×1.65=274093.8 kg 吊角A-A截面拉应力: σ= Fv/S(H-D)= 274093.8/(10-0.13)(53-18)= 274093.8/523.11=523.96kg/cm2σ<[σ],满足要求。 垫板焊缝剪应力: τ= Fv/0.707 a [2(L sp+ H sp )-8×2+2π2] =274093.8/0.707×3.6[2(45.5+93 )-8×2+2π2] =274093.8/696.26 =393.66 kg/cm2 τ<[τ],满足要求。 吊耳板焊缝剪应力: τ= Fv/0.707 aΦn[2(L sp-G+ L1 )+0.5πF+H-F-8r+2πr] =274093.8/0.707×3.6×0.7[2(45.58+22 )+0.5π15+53-15-8×4+2π×4] =274093.8/368.34 =744.13 kg/cm2 τ<[τ] ,满足要求。 吊耳受弯状态分析: R A=P/2(2+3λ) R B=-3Pm/2l M A=-Pm M B=Pm/2 A-C段Q X=-P M X=-Px B-C段Q X=3Pm/2l M X=-Px+R A(x-m) 计算吊耳水平状态下受力状态: P=274093kg

锅炉大件吊装手册 常用计算(吊耳、销轴部分)

锅炉大件吊装手册常用计算 目录 一、吊耳的计算 二、销轴的计算 三、梁 四、支撑腿 五、双承重粱 六、水压试验堵板 一、吊耳的计算 大型设备的吊装方案的安全平稳实现与吊耳结构形式有直接关系。当正确合理的吊装方案确定后,根据起吊设备的结构特点、外形尺寸,设计出结构合理、利于操作、安全可靠的吊耳是一个很关键的问题。 目前所使用的吊耳主要分两大类:管式吊耳与板式吊耳,其中板式吊耳在电力建设应用很多,下面主要介绍板式吊耳的计算。 板式吊耳的基本形式如下图所示: 板式吊耳 为了增加板式吊耳的承载能力,可以在耳孔处贴上两块补强环(如下图所示),图中的肋板是为了增加板式吊耳的侧向刚度和根部的焊缝长度而设置的。 带有补强环的板式吊耳

板式吊耳的计算方法很多,据笔者统计有近10种之多,下面主要介绍两种,第一种是根据实践经验简化后的计算方法,第二种就是著名的拉曼公式。 1、简化算法 (1)拉应力计算 如上图所示,拉应力的最不利位置在c -d 断面,其强度计算公式为: []2()P R r σσδ=≤- 其中:σ—c-d 截面的名义应力, P —吊耳荷载,N [σ]—许用应力,MPa ,一般情况下, [] 1.5s σσ= (2)剪应力计算 如图所示,最大剪应力在a-b 断面,其强度计算公式为: []()p P A R r ττδ==≤- 式中:[τ]—许用剪应力,MPa , [] στ= (3)局部挤压应力计算 局部挤压应力最不利位置在吊耳与销轴结合处,其强度计算公式为: []c c P d σσδ=≤? 式中:[]c σ:许用挤压应力,MPa ,[][]1.4c σσ=。 (4)焊缝计算:

橇块吊耳计算书

橇块吊耳应力计算书 1.目的 规范工程施工中吊耳的设计和使用,确保吊耳使用安全可靠,保证安全施工。 2.编制依据 《钢结构设计规范》(GB50017-2003) 3.设计标准 《化工设备吊耳及工程技术要求》(HG/T 21574-2008) 4.吊耳计算(厚度为20mm) 3.1拉应力计算 如图所示,拉应力的最不利位置在A-A断面,其强度计算公式为: σ=N/S1σ≤[σ] 式中:σ――拉应力 N――荷载 S1――A-A断面处的截面积 [σ]――钢材允许拉应力 σ=N/S1=50×103(N)/1.82×103(mm2)=27.5(N/mm2)<205(N/mm2)

3.2剪应力计算 如图所示,剪应力的最不利位置在B-B 断面,其强度计算公式为: τ= N /S 2 τ≤[τ] 式中:τ――剪应力 N ――荷载 S 2――B-B 断面处的截面积 [τ]――钢材允许剪应力 σ=N /S 2=50×103 (N)/ 2.47×103 (mm 2)=20.24(N/mm 2)<120(N/mm 2) 3.3 局部挤压应力计算 局部挤压应力的最不利位置在吊耳与销轴的结合处,其强度计算公式为: F =N /(t ×d )υ F ≤[σ] 式中:F ――局部挤压应力 N ――荷载 t ――吊耳厚度 d ――销轴直径,按28mm 计算 υ――局部挤压系数,按1.0计算 [σ]――钢材允许压应力 F =N /(t ×d )υ=50(kN)/20(mm)×28(mm) (mm 2)=89(N/mm 2) <120(N/mm 2) 4.3 角焊缝计算 在各种力综合作用下,σf 和τf 共同作用时, w f f f f f ≤+???? ??22 τβσ 其中:σf ――垂直于焊缝长度方向的应力; τf ――沿焊缝长度方向的剪应力; βf ――对承受静荷载时取1.22 h ――焊缝的计算厚度,按焊脚尺寸×0.7,焊脚尺寸按焊件厚度×0.7。 l ――焊脚的计算长度

钢结构吊装吊耳的计算

钢结构施工总结——钢结构吊装吊耳的选择 前言: 在钢结构吊装过程中,构件吊耳的计算、制作、形式的选择是一个很重要的环节。在以往的工程中构件吊装中吊耳的制作、选择并没有明确的理论依据和计算过程,常凭借吊装经验来制作吊耳,这样常常会出现大吊耳吊装小构件的现象,造成一些人力、物力等方面的资源浪费,而且未经计算的吊耳也会给吊装带来无法预计的安全隐患。因此,通过科学计算确定吊耳的形式是保证施工安全的重要条件。 由于吊耳与构件母材连接的焊缝较短、短距离内多次重复焊接就会造成线能量过大,易使吊耳发生突发性脆断。因此,吊耳与构件连接处焊缝的形式以及强度的计算对整个吊装过程同样起到决定性作用。 结合钢结构吊装的难点、重点以及形式的差别,同时为积累经验,适应钢结构在建筑市场的发展方向,现将吊耳形式的选择、制作安装、以及吊耳焊缝的计算做一下阐述。 一、钢结构构件吊耳的形式 钢结构构件的吊耳有多种形式,构件的重量、形状、大小以及吊装控制过程的不同都影响构件吊耳的选择。下面根据构件在吊装过程中的不同受力情况总结一下常用吊耳的形式:

图例1为方形吊耳,是钢构件 在吊装过程中比较常用的吊耳形式,其主要用于小构件的垂直吊装(包括立式和卧式) 图例2为D型吊耳,是吊耳的普 遍形式,其主要用于吊装时无侧向力较大构件的垂直吊装。这一吊耳形式比较普遍,在构件吊装过程中应用比 较广泛。 图例3为可旋转式垂直提升吊耳,此吊耳的形式在国外的工程中应用比较多,它可以使构件在提升的过程中沿着销轴转动,易于使大型构件在提升过程中翻身、旋转。 图例4为斜拉式D型吊耳, 此吊耳主要用于构件在吊装时垂直方向不便安装吊耳,安装吊耳的地方与吊车起重方向成一平面

实用吊耳计算.doc

吊耳强度计算 α β 角度弧度 α25 0.436332313 β65 1.134464014 γ 15 0.261799388 示意图 吊耳板材质: 吊耳板许用拉应力[σL ]: 吊耳板许用剪应力[τL ]: 角焊缝系数: 垫板、筒体材质: 垫板、筒体材质许用拉应力: 动载综合系数 K: 设备重量(空重) G: 重力加速度 g, 式中: L- 吊耳孔中心线至垫板中心的距离: R-吊耳板端部的圆弧, D-吊耳板中心孔直径, t- 吊耳板厚度, 1竖向载荷 计算公式: Fv=G×g×1.65 2横向载荷 计算公式: F H= Fv ?tan α 3吊索方向载荷 计算公式; F L=Fv/Cosα 4径向弯矩 计算公式; M= F H?L 式中: L- 吊耳孔中心线至垫板中心的距离。 5吊耳板吊索方向的最大拉应力: 计算公式:σL =F L/ [(2R-D)*S] 式中: R吊耳板端部的圆弧, D吊耳板中心孔直径, S吊耳板厚度, 6吊耳板吊索方向的最大剪应力: 计算公式:σL =τL 7吊耳板角焊缝应力校核 F V= F H= F L= M= σL= σL<σ L τL =σL= σL<σ L Q235-B 113 MPa 79.1 MPa 0.7 0Cr18Ni9 137 MPa 1.65 20000 KG 9.806 100 mm 90 mm 60 mm 60 mm 323598 N 150896.2256 N 357050.8878 N 15089622.56 N*mm 49.59040109 MPa 满足要求 49.59040109 MPa 满足要求

角焊缝面积: 计算公式: A=2*(tan γ+R)*S 角焊缝的拉应力: 计算公式:σa =F V/A 角焊缝的剪应力: 计算公式:τa =F H/A 角焊缝的弯曲应力: 2 计算公式:σab =6M/(t*(2*(L*tanγ+R))) 组合应力: 计算公式:σab =(( σa +σab ) 2 +4τ2) 1/2 角焊缝的许用应力: 计算公式: 0.7* [σL] 结论 A= σa= τa= σab = σab = σ= 吊耳强度计算: 2 8864.101538 mm 36.5065764 MPa 17.02329615 MPa 27.65479758 MPa 72.63506286 MPa 79.1 MPa 满足要求

TPP-设备吊耳计算讲解

角度弧度α300.523598776β60 1.047197551γ150.261799388 吊耳板材质: Q235-B 吊耳板许用拉应力[σL ]:113MPa 吊耳板许用剪应力[τL ]:79.1MPa 角焊缝系数: 0.7垫板、筒体材质: 0Cr18Ni9 垫板、筒体材质许用拉应力:137MPa 动载综合系数K: 1.65设备重量(空重G:26000KG 重力加速度g, 9.806 式中:L-吊耳孔中心线至垫板中心的距离: 70mm R-吊耳板端部的圆弧,25mm D-吊耳板中心孔直径,25mm t-吊耳板厚度,8mm 1竖向载荷 计算公式:Fv=G×g×1.65 F V = 420677.4N 2横向载荷 计算公式:F H = Fv ?tan α F H =242878.2101N 3吊索方向载荷

计算公式;F L =Fv/Cos α F L =485756.4203N 4径向弯矩 计算公式;M= F H ?L 式中:L-吊耳孔中心线至垫板中心的距离。 M=17001474.71N*mm 5吊耳板吊索方向的最大拉应力:计算公式:σL =F L /[(2R-D*S] 式中:R吊耳板端部的圆弧,D吊耳板中心孔直径,S吊耳板厚度, σL =2428.782101MPa σL <σ L 不满足要求 6吊耳板吊索方向的最大剪应力:计算公式:σL =τL 示意图 吊耳强度计算

τL=σL=2428.782101MPa σL<σL不满足要求 7吊耳板角焊缝应力校核 角焊缝面积: 计算公式:A=2*(tanγ+R*S A=3924.871077mm2角焊缝的拉应力: 计算公式:σa=F V/A σa=107.182476MPa 角焊缝的剪应力: 计算公式:τa=F H/A

相关文档