文档库 最新最全的文档下载
当前位置:文档库 › 决策树学习介绍

决策树学习介绍

管理学盈亏平衡分析和决策树计算题

盈亏平衡分析 某建筑工地需抽除积水保证施工顺利进行,现有A 、B 两个方案可供选择。 A 方案:新建一条动力线,需购置一台2.5W 电动机并线运转,其投资为1400元,第四年 末残值为200元,电动机每小时运行成本为0.84元,每年预计的维护费用120元, 因设备完全自动化无需专人看管。 B 方案:购置一台3.86KW 的(5马力)柴油机,其购置费用为550元,使用寿命为4年, 设备无残值。运行每小时燃料费为0.42元,平均每小时维护费为0.15元,每小 时的人工成本为0.8元。 若寿命都为4年,基准折现率为10%,试比较A 、B 方案的优劣。 解:两方案的总费用都与年开机小时数t 有关,故两方案的年成本均可表示t 的函数。 )4%,10,/(200)4%,10,/(1400F A P A C A -=t t 84.056.51884.0120+=++ t P A C B )8.015.042.0()4%,10,/(550+++= t 37.151.175+= 令C A =C B ,即518.56+0.84t=173.51+1.37t 可解出:t =651(h),所以在t =651h 这一点上, C A =C B =1065.4(元) A 、 B 两方案的年成本函数如图13所示。从图中可见,当年开机小时数低于651h ,选B 方案有利;当年开机小时数高于651h 则选A 方案有利。 图13 A 、B 方案成本函数曲线

决策树问题 55.某建筑公司拟建一预制构件厂,一个方案是建大厂,需投资300万元,建成后如销路 好每年可获利100万元,如销路差,每年要亏损20万元,该方案的使用期均为10年; 另一个方案是建小厂,需投资170万元,建成后如销路好,每年可获利40万元,如销路差每年可获利30万元;若建小厂,则考虑在销路好的情况下三年以后再扩建,扩建投资130万元,可使用七年,每年盈利85万元。假设前3年销路好的概率是0.7,销路差的概率是0.3,后7年的销路情况完全取决于前3年;试用决策树法选择方案。 决策树图示 考虑资金的时间价值,各点益损期望值计算如下: 点①:净收益=[100×(P/A,10%,10)×0.7+(-20)×(P/A,10%,10)×0.3]-300=93.35(万元) 点③:净收益=85×(P/A,10%,7)×1.0-130=283.84(万元) 点④:净收益=40×(P/A,10%,7)×1.0=194.74(万元) 可知决策点Ⅱ的决策结果为扩建,决策点Ⅱ的期望值为283.84+194.74=478.58(万元)点②:净收益=(283.84+194.74)×0.7+40×(P/A,10%,3)×0.7+30×(P/A,10%,10)×0.3-170=345.62(万元) 由上可知,最合理的方案是先建小厂,如果销路好,再进行扩建。在本例中,有两个决策点Ⅰ和Ⅱ,在多级决策中,期望值计算先从最小的分枝决策开始,逐级决定取舍到决策能选定为止。 56.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投 资160万元。两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。 试用决策树法选择最优方案。 表15 各年损益值及销售状态

R语言-决策树算法知识讲解

R语言-决策树算法

决策树算法 决策树定义 首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于 2.4cm的是setosa(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,宽度小于1.8cm的是versicolor(图中红色的分类),其余的就是 virginica(图中黑色的分类) 我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树: 这种从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树,说白了,这是一种依托于分类、训练上的预测树,根据已知预测、归类未来。 前面我们介绍的k-近邻算法也可以完成很多分类任务,但是他的缺点就是含义不清,说不清数据的内在逻辑,而决策树则很好地解决了这个问题,他十分好理解。从存储的角度来说,决策树解放了存储训练集的空间,毕竟与一棵树的存储空间相比,训练集的存储需求空间太大了。 决策树的构建 一、KD3的想法与实现 下面我们就要来解决一个很重要的问题:如何构造一棵决策树?这涉及十分有趣的细节。 先说说构造的基本步骤,一般来说,决策树的构造主要由两个阶段组成:第一阶段,生成树阶段。选取部分受训数据建立决策树,决策树是按广度优先建立直到每个叶节点包括相同的类标记为止。第二阶段,决策树修剪阶段。用剩余数据检验决策树,如果所建立的决策树不能正确回答所研究的问题,我们要对决策树进行修剪直到建立一棵正确的决策树。这样在决策树每个内部节点处进行属性值的比较,在叶节点得到结论。从根节点到叶节点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。 问题:我们如何确定起决定作用的划分变量。 我还是用鸢尾花的例子来说这个问题思考的必要性。使用不同的思考方式,我们不难发现下面的决策树也是可以把鸢尾花分成3类的。 为了找到决定性特征,划分出最佳结果,我们必须认真评估每个特征。通常划分的办法为信息增益和基尼不纯指数,对应的算法为C4.5和CART。 关于信息增益和熵的定义烦请参阅百度百科,这里不再赘述。 直接给出计算熵与信息增益的R代码:

数据挖掘之决策树方法概述

文章编号:1009-3907(2004)06-0048-04 数据挖掘之决策树方法概述 田苗苗1,2 (1.吉林师范大学信息技术学院,吉林四平 136000; 2.长春工业大学计算机科学与工程学院,吉林长春 130012) 摘 要:数据挖掘在科研和商业应用中正发挥着越来越重要的作用。分类器是数据挖掘的一种基本方法,决策树是一种最重要的分类器。本文介绍了分类器中的决策树方法及其优点,决策树表示法,决策树构造思想,并比较了各种重要的决策树算法。介绍了决策树算法的实现工具,决策树与数据仓库的结合,决策树的适用范围及应用,最后探讨了决策树的发展趋势。关键词:数据挖掘;决策树;数据仓库中图分类号:TP311113 文献标识码:B 收稿日期:2004209228 作者简介:田苗苗(1976-  ),女,吉林省双辽市人,吉林师范大学信息技术学院助教,硕士生,主要从事人工智能与数据挖掘研究。 0 引 言 数据挖掘(Data Mining )就是从大量的、不完全的、有噪声的、模糊的、随机的原始数据中,提取隐含在其中的事先未知的、但又是潜在有用的信息和知识的过程[1]。数据挖掘是一个利用各种分析工具在海量数据中发现模型和数据间关系的过程,这些模型和关系可以用来做出预测。 数据挖掘的主要任务有分类或预测模型发现、概括、聚类、回归分析、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等。分类是其中的一个非常重要的任务,目前在商业上应用最多。分类的概念是在已有数据的基础上学会一个分类函数或构造出一个分类模型,即所说的分类器(classifier )。该函数或模型能够把数据库中的数据记录映射到给定类别中的某一个,从而用于预测。实现分类任务的方法有统计学方法、机器学习方法、神经网络方法等等。其中机器学习中的决策树方法是目前重点研究的方向,研究成果较多,已经被成功地应用到从学习医疗诊断到学习评估贷款申请的信用风险的广阔领域。 决策树起源于概念学习系统C LS (C oncept Learning System )。决策树方法就是利用信息论的原理建立决策树。该类方法的实用效果好,影响较 大。决策树可高度自动化地建立起易于为用户所理解的模型,而且,系统具有较好地处理缺省数据及带有噪声数据等能力。决策树学习算法的一个最大的优点就是它在学习过程中不需要使用者了解很多背景知识。这样只要训练事例能够用“属性2值”的方式表达出来,就能使用该算法来进行学习。 研究大数据集分类问题,常用决策树方法。决策树方法速度较快,可被转换成简捷易懂的分类规则,也可转换成对数据库查询的S Q L 语句。另外,决策树分类与其他分类方法比较,具有相同而且有时有更高的精度。 1 决策树主要内容 111决策树表示法 决策树是一树状结构,它从根节点开始,对数据样本(由实例集组成,实例有若干属性)进行测试,根据不同的结果将数据样本划分成不同的数据样本子集,每个数据样本子集构成一子节点。生成的决策树每个叶节点对应一个分类。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。这种具有预测功能的系统叫决策树分类器。 图1画出了一棵典型的学习到的决策树。这棵决策树根据天气情况分类“星期六上午是否适合打 第14卷 第6期 2004年12月 长春大学学报JOURNA L OF CH ANG CH UN UNI VERSITY V ol 114 N o 16Dec.2004

决策树算法研究及应用概要

决策树算法研究及应用? 王桂芹黄道 华东理工大学实验十五楼206室 摘要:信息论是数据挖掘技术的重要指导理论之一,是决策树算法实现的理论依据。决 策树算法是一种逼近离散值目标函数的方法,其实质是在学习的基础上,得到分类规则。本文简要介绍了信息论的基本原理,重点阐述基于信息论的决策树算法,分析了它们目前 主要的代表理论以及存在的问题,并用具体的事例来验证。 关键词:决策树算法分类应用 Study and Application in Decision Tree Algorithm WANG Guiqin HUANG Dao College of Information Science and Engineering, East China University of Science and Technology Abstract:The information theory is one of the basic theories of Data Mining,and also is the theoretical foundation of the Decision Tree Algorithm.Decision Tree Algorithm is a method to approach the discrete-valued objective function.The essential of the method is to obtain a clas-sification rule on the basis of example-based learning.An example is used to sustain the theory. Keywords:Decision Tree; Algorithm; Classification; Application 1 引言 决策树分类算法起源于概念学习系统CLS(Concept Learning System,然后发展 到ID3

(完整word版)管理学决策树习题及答案

注意答卷要求: 1.统一代号:P 为利润,C 为成本,Q 为收入,EP 为期望利润 2.画决策树时一定按照标准的决策树图形画,不要自创图形 3.决策点和状态点做好数字编号 4.决策树上要标出损益值 某企业似开发新产品,现在有两个可行性方案需要决策。 I 开发新产品A ,需要追加投资180万元,经营期限为5年。此间,产品销路好可获利170万元;销路一般可获利90万元;销路差可获利-6万元。三种情况的概率分别为30%,50%,20%。 II.开发新产品B ,需要追加投资60万元,经营期限为4年。此间,产品销路好可获利100万元;销路一般可获利50万元;销路差可获利20万元。三种情况的概率分别为60%,30%,10%。 (1)画出决策树 销路好 0.3 170 90 -6 100 50 20

(2)计算各点的期望值,并做出最优决策 求出各方案的期望值: 方案A=170×0.3×5+90×0.5×5+(-6)×0.2×5=770(万元) 方案B=100×0.6×4+50×0.3×4+20×0.1×4=308(万元) 求出各方案的净收益值: 方案A=770-180=590(万元) 方案B=308-60=248(万元) 因为590大于248大于0 所以方案A最优。 某企业为提高其产品在市场上的竞争力,现拟定三种改革方案:(1)公司组织技术人员逐渐改进技术,使用期是10年;(2)购买先进技术,这样前期投入相对较大,使用期是10年;(3)前四年先组织技术人员逐渐改进,四年后再决定是否需要购买先进技术,四年后买入技术相对第一年便宜一些,收益与前四年一样。预计该种产品前四年畅销的概率为0.7,滞销的概率为0.3。如果前四年畅销,后六年畅销的概率为0.9;若前四年滞销,后六年滞销的概率为0.1。相关的收益数据如表所示。 (1)画出决策树 (2)计算各点的期望值,并做出最优决策 投资收益 表单位:万元 解(1)画出决策树,R为总决策,R1为二级决策。

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

基于决策树的分类方法研究

南京师范大学 硕士学位论文 基于决策树的分类方法研究 姓名:戴南 申请学位级别:硕士 专业:计算数学(计算机应用方向) 指导教师:朱玉龙 2003.5.1

摘要 厂 {数掘挖掘,又称数据库中的知识发现,是指从大型数据库或数据仓库中提取 具有潜在应用价值的知识或模式。模式按其作用可分为两类:描述型模式和预测型模式。分类模式是一种重要的预测型模式。挖掘分娄模式的方法有多种,如决 策树方法、贝叶斯网络、遗传算法、基于关联的分类方法、羊H糙集和k一最临近方、/ 法等等。,/驴 I 本文研究如何用决策树方法进行分类模式挖掘。文中详细阐述了几种极具代表性的决策树算法:包括使用信息熵原理分割样本集的ID3算法;可以处理连续属性和属性值空缺样本的C4.5算法;依据GINI系数寻找最佳分割并生成二叉决策树的CART算法;将树剪枝融入到建树过程中的PUBLIC算法:在决策树生成过程中加入人工智能和人为干预的基于人机交互的决策树生成方法;以及突破主存容量限制,具有良好的伸缩性和并行性的SI,lQ和SPRINT算法。对这些算法的特点作了详细的分析和比较,指出了它们各自的优势和不足。文中对分布式环境下的决策树分类方法进行了描述,提出了分布式ID3算法。该算法在传统的ID3算法的基础上引进了新的数掘结构:属性按类别分稚表,使得算法具有可伸缩性和并行性。最后着重介绍了作者独立完成的一个决策树分类器。它使用的核心算法为可伸缩的ID3算法,分类器使用MicrosoftVisualc++6.0开发。实验结果表明作者开发的分类器可以有效地生成决策树,建树时间随样本集个数呈线性增长,具有可伸缩性。。 ,,荡囊 关键字:数据挖掘1分类规则,决策树,分布式数据挖掘

届南开大学《管理学》试题及答案

17秋学期(1709)《经管学》在线作业一 一、单选题(共30道试卷,共60分。)1.(C)是进行组织设计的基本出发点。 A. 人员配备 B. 组织文化 C. 组织目标 D. 组织结构满分:2分2.领导的特质理论告诉我们. A A. 领导是天生的 B. 领导的行为决定了领导才能 C. 下属的服从是领导之所以为领导的关键 D. 领导行为是可以模仿的满分:2分3.决策方法中的“硬技术”是指(A)。 A. 计量决策方法 B. 专家意见法 C. 定性决策法 D. 决策树法满分:2分4.(B )是指企业经管系统随着企业内外部环境的变化,而不断更新自己的经营理念、经营方针和经营目标,为达此目的,必须相应的改变有关的经管方法和手段,使其与企业的经营目标相适应。 A. 激励原理 B. 动态原理 C. 创新原理 D. 可持续发展原理满分:2分5.被称为“科学经管之父”的经管学家是(A)。 A. 泰勒 B. 法约尔 C. 德鲁克 D. 西蒙满分:2分6.现在很多大公司都实行所谓的“门户开放”政策(比如IBM),即鼓励各级员工通过多种途径直接向公司高层领导反映意见、提出建议,公司总裁也会设立专门的信箱,以接收这些意见或者抱怨。这里的沟通渠道可以看成是一种(B)。 A. 下行沟通 B. 上行沟通 C. 对角沟通 D. 横向沟通满分:2分7.非程序化决策往往是有关企业重大战略问题的决策,主要由(B)承担。 A. 一线工人 B. 上层经管人员 C. 中层经管人员 D. 低层经管人员满分:2分8.下面关于内部招聘的说法不正确的是(B)。 A. 内部员工的竞争结果必然有胜有败,可能影响组织的内部团结。 B. 内部招聘人员筛选难度大,成本高。 C. 可能在组织中滋生“小集团”,削弱组织效能。 D. 组织内的“近亲繁殖”现象,可能不利于个体创新。满分:2分9.(D)是指依靠企业各级行政组织的法定权力,通过命令、指示、规定、制度、规范以及具有约束性的计划等行政手段来经管企业的方法。 A. 教育方法 B. 经济方法 C. 法制方法 D. 行政方法满分:2分10.目标经管的提出者是(C)。 A. 泰罗 B. 法约尔 C. 德鲁克 D. 巴纳德满分:2分11.解决复杂问题应采用的沟通方式是(D)。 A. 链式 B. 轮式 C. 环式 D. 全通道式满分:2分12.(D)就是对一系列典型的事物进行观察分析,找出各种因素之间的因果关系,从中找出事物发展变化的一般规律,这种从典型到一般的研究方法也称为实证研究。 A. 演绎法 B. 调查法 C. 实验法 D. 归纳法满分:2分13.泰罗经管理论的代表着作是(B)。

决策树决策过程流程图

决策树(decision tree) 又名:决策过程流程图,逻辑图,工作图 概述 决策树是指通过一系列的问题得出正确的决策或问题的解决方案。决策树是一种特殊的树图,但通常看起来像流程图。一般来说,决策树是由那些对可能重复发生情况的具有专业知识的人而绘制的,然后被那些没有专业知识并且需要独立作出决策的人所使用。 适用场合 ·当需要作出决策或需要解决方案的问题重复出现时; ·当作出决策的思维过程已知,并且能够分解成一系列的问题时; ·决策树的典型应用包括排解纷争、紧急处理,以及对那些复杂的、关键的或很少使用的步骤进行文档化。 实施步骤 1明确使用决策树的场合,并陈述需要作出的决定或需要解决的问题,然后写在卡片上放在水平工作台的最左端。 2用头脑风暴法来找出问题的答案。对每个问题而言,找出所有可能的答案。通常,答案可能有“是非”选择或是一系列的选择。把每个问题和答案写在卡片上放在工作台上。如果顺序有帮助的话,就按顺序排列问题,但是不需太在意顺序的正确性。 3确定问题是否需要按特定的顺序提问。如果不需要,选择一组有效的顺序。在工作台上通过重排卡片将问题排序,在答案和旁边的问题之间用箭头连接。 4检查决策树是否有遗漏的问题或答案,并且确信问题能够清楚地被理解和被正确地回答。 5测试树。设想反映一系列不同状况的情景,运用决策树来解决。当发现有问题时,对树进行改进。 6给没有专业知识的人设置一些情景并让他们使用决策树来作决策。如果他们不能够得出正确的决策,识别出产生错误的问题并且对树进行改进。 示例 图表5.20控制图选择树和图表5.68图形方法的决策树都是决策树的应用例子。 注意事项 ·通常情况下某些问题优先级高于其他问题。 ·如果问题没有自然顺序,选择一个在大多数情况下能够迅速得出结论的顺序,使常见情况的问题排序优先于非常见情况的。 ·在由一系列是非问题组成的决策树中,试着调整树使每个分枝中是与非的位置保持一致。否则的话,当使用者没有注意到两者位置变换时就可能出错。 END

2021年管理学决策树习题及答案

注意答卷要求: 欧阳光明(2021.03.07) 1.统一代号:P为利润,C为成本,Q为收入,EP为期望利润2.画决策树时一定按照标准的决策树图形画,不要自创图形3.决策点和状态点做好数字编号 4.决策树上要标出损益值 某企业似开发新产品,现在有两个可行性方案需要决策。 I开发新产品A,需要追加投资180万元,经营期限为5年。此间,产品销路好可获利170万元;销路一般可获利90万元;销路差可获利-6万元。三种情况的概率分别为30%,50%,20%。 II.开发新产品B,需要追加投资60万元,经营期限为4年。此间,产品销路好可获利100万元;销路一般可获利50万元;销路差可获利20万元。三种情况的概率分别为60%,30%,10%。 (1)画出决策树

(2)计算各点的期望值,并做出最优决策 求出各方案的期望值: 方案A=170×0.3×5+90×0.5×5+(-6)×0.2×5=770(万元) 方案B=100×0.6×4+50×0.3×4+20×0.1×4=308(万元) 求出各方案的净收益值: 方案A=770-180=590(万元) 方案B=308-60=248(万元) 因为590大于248大于0 所以方案A 最优。 某企业为提高其产品在市场上的竞争力,现拟定三种改革方案:(1)公司组织技术人员逐渐改进技术,使用期是10年;(2)购 销路好 0.3 170 90 -6 100 50 20

买先进技术,这样前期投入相对较大,使用期是10年;(3)前四年先组织技术人员逐渐改进,四年后再决定是否需要购买先进技术,四年后买入技术相对第一年便宜一些,收益与前四年一样。预计该种产品前四年畅销的概率为0.7,滞销的概率为0.3。如果前四年畅销,后六年畅销的概率为0.9;若前四年滞销,后六年滞销的概率为0.1。相关的收益数据如表所示。 (1)画出决策树 (2)计算各点的期望值,并做出最优决策 投资收益表单位:万元 解(1)画出决策树,R为总决策,R1为二级决策。

基于决策树的分类算法

1 分类的概念及分类器的评判 分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。 分类可描述如下:输入数据,或称训练集(training set)是一条条记录组成的。每一条记录包含若干条属性(attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(类标签)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 对分类器的好坏有三种评价或比较尺度: 预测准确度:预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。 计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。 模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用。 分类技术有很多,如决策树、贝叶斯网络、神经网络、遗传算法、关联规则等。本文重点是详细讨论决策树中相关算法。

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

管理学盈亏平衡分析和决策树计算题

盈亏平衡分析 某建筑工地需抽除积水保证施工顺利进行,现有A 、B 两个方案可供选择。 A 方案:新建一条动力线,需购置一台2.5W 电动机并线运转,其投资为1400元,第四年 末残值为200元,电动机每小时运行成本为0.84元,每年预计的维护费用120元,因设备完全自动化无需专人看管。 B 方案:购置一台3.86KW 的(5马力)柴油机,其购置费用为550元,使用寿命为4年, 设备无残值。运行每小时燃料费为0.42元,平均每小时维护费为0.15元,每小时的人工成本为0.8元。 若寿命都为4年,基准折现率为10%,试比较A 、B 方案的优劣。 解:两方案的总费用都与年开机小时数t 有关,故两方案的年成本均可表示t 的函数。 )4%,10,/(200)4%,10,/(1400F A P A C A -=t t 84.056.51884.0120+=++ t P A C B )8.015.042.0()4%,10,/(550+++= t 37.151.175+= 令C A =C B ,即518.56+0.84t=173.51+1.37t 可解出:t =651(h),所以在t =651h 这一点上, C A =C B =1065.4(元) A 、 B 两方案的年成本函数如图13所示。从图中可见,当年开机小时数低于651h ,选B 方案有利;当年开机小时数高于651h 则选A 方案有利。 图13 A 、B 方案成本函数曲 线

决策树问题 55.某建筑公司拟建一预制构件厂,一个方案是建大厂,需投资300万元,建成后如销路 好每年可获利100万元,如销路差,每年要亏损20万元,该方案的使用期均为10年; 另一个方案是建小厂,需投资170万元,建成后如销路好,每年可获利40万元,如销路差每年可获利30万元;若建小厂,则考虑在销路好的情况下三年以后再扩建,扩建投资130万元,可使用七年,每年盈利85万元。假设前3年销路好的概率是0.7,销路差的概率是0.3,后7年的销路情况完全取决于前3年;试用决策树法选择方案。 决策树图示 考虑资金的时间价值,各点益损期望值计算如下: 点①:净收益=[100×(P/A,10%,10)×0.7+(-20)×(P/A,10%,10)×0.3]-300=93.35(万元) 点③:净收益=85×(P/A,10%,7)×1.0-130=283.84(万元) 点④:净收益=40×(P/A,10%,7)×1.0=194.74(万元) 可知决策点Ⅱ的决策结果为扩建,决策点Ⅱ的期望值为283.84+194.74=478.58(万元)点②:净收益=(283.84+194.74)×0.7+40×(P/A,10%,3)×0.7+30×(P/A,10%,10)×0.3-170=345.62(万元) 由上可知,最合理的方案是先建小厂,如果销路好,再进行扩建。在本例中,有两个决策点Ⅰ和Ⅱ,在多级决策中,期望值计算先从最小的分枝决策开始,逐级决定取舍到决策能选定为止。 56.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投 资160万元。两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。 试用决策树法选择最优方案。 表15 各年损益值及销售状态

机器学习 决策树(ID3)算法及案例

机器学习--决策树(ID3)算法及案例 1基本原理 决策树是一个预测模型。它代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,每个分支路径代表某个可能的属性值,每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。一般情况下,决策树由决策结点、分支路径和叶结点组成。在选择哪个属性作为结点的时候,采用信息论原理,计算信息增益,获得最大信息增益的属性就是最好的选择。信息增益是指原有数据集的熵减去按某个属性分类后数据集的熵所得的差值。然后采用递归的原则处理数据集,并得到了我们需要的决策树。 2算法流程 检测数据集中的每个子项是否属于同一分类: If是,则返回类别标签; Else 计算信息增益,寻找划分数据集的最好特 征 划分数据数据集 创建分支节点(叶结点或决策结点)

for每个划分的子集 递归调用,并增加返回结果 到分支节点中 return分支结点 算法的基本思想可以概括为: 1)树以代表训练样本的根结点开始。 2)如果样本都在同一个类.则该结点成为树叶,并记录该类。 3)否则,算法选择最有分类能力的属性作为决策树的当前结点. 4)根据当前决策结点属性取值的不同,将训练样本根据该属性的值分为若干子集,每个取值形成一个分枝,有几个取值形成几个分枝。匀针对上一步得到的一个子集,重复进行先前步骤,递归形成每个划分样本上的决策树。一旦一个属性只出现在一个结点上,就不必在该结点的任何后代考虑它,直接标记类别。 5)递归划分步骤仅当下列条件之一成立时停止: ①给定结点的所有样本属于同一类。 ②没有剩余属性可以用来进一步划分样本.在这种情况下.使用多数表决,将给定的结点转换成树叶,并以样本中元组个数最多的类别作为类别标记,同时也可以存放该结点样本的类别分布[这个主要可以用来剪枝]。 ③如果某一分枝tc,没有满足该分支中已有分类的样本,则以样本的多数类生成叶子节点。 算法中2)步所指的最优分类能力的属性。这个属性的选择是本算法种的关键点,分裂属性的选择直接关系到此算法的优劣。 一般来说可以用比较信息增益和信息增益率的方式来进行。 其中信息增益的概念又会牵扯出熵的概念。熵的概念是香农在研究信息量方面的提出的。它的计算公式是:

决策树归纳

决策树归纳 关键词:分类,归纳,决策树,信息理论,知识获取,专家系统 摘要:通过实例的归纳推理构建基于知识的系统的技术已经在若干实际应用中成功地证明。本文总结了合成在各种系统中使用的决策树的方法,并且详细描述了一个这样的系统ID3。最近研究的结果显示可以修改该方法以处理嘈杂和/或不完整的信息的方式。讨论了报告的基本算法的缺点,并且比较了克服它的两种手段。本文结束了当前研究方向的插图。 1.介绍 由于人工智能首先在1950年代中期被认可为一门学科,机器学习已成为一个中心研究领域。可以给出这个突出的两个原因。学习的能力是智能行为的标志,所以任何将智力理解为现象的尝试都必须包括对学习的理解。更具体地,学习提供了构建高性能系统的潜在方法。 学习研究由不同的子领域组成。在一个极端,有自适应系统监视自己的性能,并尝试通过调整内部参数来改善它。这种方法,大部分早期学习工作的特点,产生了自我完善的游戏程序(Samuel,1967),平衡杆(Michie,1982),解决问题(Quinlan,1969)和许多其他领域。一个完全不同的方法认为学习是以概念形式获取结构化知识(Hunt,1962; Winston,1975),?歧视网(Feigenbaum和Simon,1963)或生产规则(Buchanan,1978)。 后一种机器学习的实际重要性已经被低估了,由基于知识的专家系统的出现。正如他们的名字所暗示的,这些系统由显式地表示而不是在算法中隐含的知识提供动力。驱动开拓性专家系统所需的知识通过领域专家和知识工程师之间的长期互动来编写。虽然通过该方法的典型的知识解释速率是每人每天的几个规则,但是用于复杂任务的专家系统可能需要数百或甚至数千个这样的规则。很明显,知识获取的面试方法不能跟上对专家系统的迅速增长的需求; Feigen-baum(1981)认为这是“瓶颈问题”。这种观点刺激了机器学习方法作为一种解释知识的手段的研究(Michie,1983)。 本文集中在一个微观的机器学习和一系列的学习系统,已被用来建立一个简单的类型的知识为基础的系统。第2节概述了这个家庭的

决策树分类-8页文档资料

基于专家知识的决策树分类 概述 基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。 如图1所示,影像+DEM就能区分缓坡和陡坡的植被信息,如果添加其他数据,如区域图、道路图土地利用图等,就能进一步划分出那些是自然生长的植被,那些是公园植被。 图1.JPG 图1 专家知识决策树分类器说明图 专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则输入、决策树运行和分类后处理。 1.知识(规则)定义 规则的定义是讲知识用数学语言表达的过程,可以通过一些算法获取,也可以通过经验总结获得。 2.规则输入

将分类规则录入分类器中,不同的平台有着不同规则录入界面。 3.决策树运行 运行分类器或者是算法程序。 4.分类后处理 这步骤与监督/非监督分类的分类后处理类似。 知识(规则)定义 分类规则获取的途径比较灵活,如从经验中获得,坡度小于20度,就认为是缓坡,等等。也可以从样本中利用算法来获取,这里要讲述的就是C4.5算法。 利用C4.5算法获取规则可分为以下几个步骤: (1)多元文件的的构建:遥感数据经过几何校正、辐射校正处理后,进行波段运算,得到一些植被指数,连同影像一起输入空间数据库;其他空间数据经过矢量化、格式转换、地理配准,组成一个或多个多波段文件。 (2)提取样本,构建样本库:在遥感图像处理软件或者GIS软件支持下,选取合适的图层,采用计算机自动选点、人工解译影像选点等方法采集样本。 (3)分类规则挖掘与评价:在样本库的基础上采用适当的数据挖掘方法挖掘分类规则,后基于评价样本集对分类规则进行评价,并对分类规则做出适当的调整和筛选。这里就是C4.5算法。 4.5算法的基本思路基于信息熵来“修枝剪叶”,基本思路如下: 从树的根节点处的所有训练样本D0开始,离散化连续条件属性。计算增益比率,取GainRatio(C0)的最大值作为划分点V0,将样本分为两个部分D11和D12。对属性C0的每一个值产生一个分支,分支属性值的相应样本子集被移到新生成的子节点上,如果得到的样本都属于同一个类,那么直接得到叶子结点。相应地将此方法应用于每个子节点上,直到节点的所有样本都分区到某个类中。到达决策树的叶节点的每条路径表示一条分类规则,利用叶列表及指向父结点的指针就可以生成规则表。

决策树

3基于决策树的数据挖掘分析 3.1决策树分类概述 决策树是一种分类技术。决策树是一种类似于流程图的树结构:其中每个 内部节点(非数叶节点)表示在一个属性上的测试,每个分支代表一个测试输出,而每个叶节点(或终节点)存放一个类标号,数的最顶层节点是根节点。决策树 的根节点是所有样本信息量最大的属性,数的中间节点是以该节点为根的子树 所包含的样本子集中信息量最大的属性。 决策树分类技术能直观的表现知识,容易理解;决策树的构造不需要任何 领域知识和参数设置,因此适合于探测式知识发现。决策树可以处理高维数据,获得的知识用树的形式表示很直观,容易理解。 3.2决策树的基本算法 决策树的算法有很多种,例如ID3、CART、C4.5、PUBLIC、SLIQ、SPRINT、C5.0等等,早期最著名的决策树算法是由1986年Quinlan提出的 ID3算法,后来经过科研工作者的共同努力,对算法进行了多方面的改善,本 文决策树模型采用C4.5算法,上说C4.5只能是ID3的一个改进算法。 ID3算法 1.概念提取算法CLS 1) 初始化参数C={E},E包括所有的例子,为根. 2) IF C中的任一元素e同属于同一个决策类则创建一个叶子 节点YES终止. ELSE 依启发式标准,选择特征Fi={V1,V2,V3,...Vn}并创建 判定节点

划分C为互不相交的N个集合C1,C2,C3,...,Cn; 3) 对任一个Ci递归. 2. ID3算法 1) 随机选择C的一个子集W (窗口). 2) 调用CLS生成W的分类树DT(强调的启发式标准在后). 3) 顺序扫描C搜集DT的意外(即由DT无法确定的例子). 4) 组合W与已发现的意外,形成新的W. 5) 重复2)到4),直到无例外为止. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。 3.3决策树的适用问题 通常决策树算法适合解决具有以下特征的问题(陈工孟,2003): (1)实例是由“属性一值“对表示的问题:实例是用一系列固定的属性和它们的值来描述的。在最简单的决策树学习中,每一个属性取少数的离散值,但扩展的算法允许处理值域为实数的属性。 (2)目标函数具有离散的输出值的问题。

管理学决策树习题及答案

. 注意答卷要求: EP为期望利润P1.统一代号:为利润,C为成本,Q为收入,2.画决策树时一定按照标准的决策树图形画,不要自创图形 3.决策点和状态点做好数字编号.决策树上要标出损益值4 某企业似开发新产品,现在有两个可行性方案需要决策。年。此间,产品销路好5I开发新产品A,需要追加投资180万元,经营期限为万元。三种情况的90可获利170万元;销路一般可获利万元;销路差可获利-6 概率分别为30%,50%,20%。年。此间,产品销路好开发新产品B,需要追加投资万元,经营期限为460II.三种情况的万元。万元;销路差可获利2050可获利100万元;销路一般可获利,10%。,概率分别为60%30%(1)画出决策树0.3 销路好 170 0.5销路一90 2 0.1 销路差-6 A 开发产品1 0.6 销路好 100 B 开发产品0.3 销路一般 3 50 0.1

销路差 20 4 / 1 . (2)计算各点的期望值,并做出最优决策 求出各方案的期望值: 方案A=170×0.3×5+90×0.5×5+(-6)×0.2×5=770(万元) 方案B=100×0.6×4+50×0.3×4+20×0.1×4=308(万元) 求出各方案的净收益值: 方案A=770-180=590(万元) 方案B=308-60=248(万元) 因为590大于248大于0 所以方案A最优。 某企业为提高其产品在市场上的竞争力,现拟定三种改革方案:(1)公司组织技术人员逐渐改进技术,使用期是10年;(2)购买先进技术,这样前期投入相对较大,使用期是10年;(3)前四年先组织技术人员逐渐改进,四年后再决定是否需要购买先进技术,四年后买入技术相对第一年便宜一些,收益与前四年一样。预计该种产品前四年畅销的概率为0.7,滞销的概率为0.3。如果前四年畅销,后六年畅销的概率为0.9;若前四年滞销,后六年滞销的概率为0.1。相关的收益数据如表所示。 (1)画出决策树 (2)计算各点的期望值,并做出最优决策 投资收益 为总决策,)画出决策树,1(解 RR1为二级决策。 4 / 2

完整word版,决策树算法总结

决策树研发二部

目录 1. 算法介绍 (1) 1.1.分支节点选取 (1) 1.2.构建树 (3) 1.3.剪枝 (10) 2. sk-learn中的使用 (12) 3. sk-learn中源码分析 (13)

1.算法介绍 决策树算法是机器学习中的经典算法之一,既可以作为分类算法,也可以作为回归算法。决策树算法又被发展出很多不同的版本,按照时间上分,目前主要包括,ID3、C4.5和CART版本算法。其中ID3版本的决策树算法是最早出现的,可以用来做分类算法。C4.5是针对ID3的不足出现的优化版本,也用来做分类。CART也是针对ID3优化出现的,既可以做分类,可以做回归。 决策树算法的本质其实很类似我们的if-elseif-else语句,通过条件作为分支依据,最终的数学模型就是一颗树。不过在决策树算法中我们需要重点考虑选取分支条件的理由,以及谁先判断谁后判断,包括最后对过拟合的处理,也就是剪枝。这是我们之前写if语句时不会考虑的问题。 决策树算法主要分为以下3个步骤: 1.分支节点选取 2.构建树 3.剪枝 1.1.分支节点选取 分支节点选取,也就是寻找分支节点的最优解。既然要寻找最优,那么必须要有一个衡量标准,也就是需要量化这个优劣性。常用的衡量指标有熵和基尼系数。 熵:熵用来表示信息的混乱程度,值越大表示越混乱,包含的信息量也就越多。比如,A班有10个男生1个女生,B班有5个男生5个女生,那么B班的熵值就比A班大,也就是B班信息越混乱。 基尼系数:同上,也可以作为信息混乱程度的衡量指标。

有了量化指标后,就可以衡量使用某个分支条件前后,信息混乱程度的收敛效果了。使用分支前的混乱程度,减去分支后的混乱程度,结果越大,表示效果越好。 #计算熵值 def entropy(dataSet): tNum = len(dataSet) print(tNum) #用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] #获取标签 if curL not in labels.keys(): labels[curL] = 0 #如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 #将标签记录个数加1 #此时labels中保存了所有标签和对应的个数 res = 0 #计算公式为-p*logp,p为标签出现概率 for node in labels: p = float(labels[node]) / tNum res -= p * log(p, 2) return res #计算基尼系数 def gini(dataSet): tNum = len(dataSet) print(tNum) # 用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] # 获取标签 if curL not in labels.keys(): labels[curL] = 0 # 如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 # 将标签记录个数加1 # 此时labels中保存了所有标签和对应的个数 res = 1

相关文档
相关文档 最新文档