文档库 最新最全的文档下载
当前位置:文档库 › 管道泄漏及放空计算(参考)

管道泄漏及放空计算(参考)

管道泄漏及放空计算(参考)
管道泄漏及放空计算(参考)

根据一元气体流动基本方程式,推导了孔口泄漏在绝热过程下泄漏流量计算的小孔模型和适合管道完全断裂的多变过程泄漏流量计算的管道模型,联合两种模型计算任何泄漏孔口直径下的泄漏流量,讨论了燃气最大泄漏流量的限制,进行了实例计算并对比了不同模型的计算结果。

关键词:泄漏流量计算;管道模型;小孔模型;管道小孔综合模型;流量限制

Calculation of Leakage Rate from Gas Pipeline HUANG Xiao-mei,PENG Shini,XU Hai-dong,YANG Mao-hua Abstract:According to the basic equations of one-dimensio n gas flow,a hole model for calculation of hole leakage r ate in adiabatic process and a pipeline model for calculat ion of leakage rate in variable process suited to full rup ture of pipeline are deducted. These two kinds of models a re combined to calculate the leakage rate from leakage hol es with different diameters. The limitation of the maximum gas leakage rate is discussed,the example calculation is carried out,and the calculation results of different mode ls are compared.

Key words:calculation of leakage rate;pipeline model;ho le model;combined model of pipeline model and hole model:limitation of flow rate

1 概述

在燃气管道事故定量风险评价、事故抢险预案制定和漏气损失评估时,首先要计算泄漏流量。燃气管道在事故破损时,燃气可通

过两种途径进入到大气中,一种是燃气直接泄漏到大气环境中,另一种是泄漏到土壤中,通过土壤渗透进入大气环境。前者可以通过理论推导得出泄漏流量的计算公式,后者理论计算比较复杂且不确定性很大。本文主要分析和讨论前一种情况下的泄漏流量计算。第三方破坏是城市燃气管道泄漏的主要原因之一,其主要表现是挖掘机器、钻孔机器破坏管道,在这种情况下,燃气通常直接泄漏到大气中。此外,架空管道泄漏也是直接泄漏到大气中。

2 小孔模型的推导

管道泄漏示意图见图1。小孔模型是将泄漏孔口当作孔径很小的小孔,从而建立泄漏流量计算的模型。

图中点1——管道起点

点2——泄漏口入口点

点3——泄漏口出口截面上的点

点4——点2上游附近的某点

L——泄漏点至管道起点的距离,m

q

V,U

——泄漏点上游管道体积流量,m3/h

q

V

——泄漏体积流量,m3/h

图1中,点1通常为该管道上游的调压器出口,其压力通常保持不变。假设点4的断面流量及其平均流速方向不受泄漏影响,而点4下游至泄漏口处的任何点管道断面平均流速由于受到泄漏影响而不再沿管道轴线方向,点4至点2的距离非常小,可以忽略不计,因而点4的压力近似等于点2的压力。

小孔模型假设管内燃气全部从该小孔泄漏,即管道上游无支管或支管燃气流量为0,这样假设是为了保证从小孔泄漏的燃气流量是最大值;由于泄漏小孔孔径较小,泄漏流量有限,因而忽略管道沿程阻力,认为泄漏处的管内压力等于管道起点压力,即:

p

2=p

1

(1)

式中p

2

——图1中点2的绝对压力,Pa

p

1

——图1中点1的绝对压力,Pa

在泄漏孔处,燃气流速一般较快,燃气没有足够的时间与环境进行热量交换,因此燃气泄漏过程,即从点2到点3的燃气流动过程可被视为可压缩气体绝热流动过程,可见泄漏孔口与喷嘴相似。孔口泄漏瞬间的流动可以看作是一维流动,气体的一元流动欧拉运动微分方程为[1]:

式中p——燃气绝对压力,Pa

ρ——燃气密度,kg/m3

v——燃气断面平均流速,m/s

因为泄漏过程为绝热过程,所以有[2]:

式中κ——燃气的等熵指数

C

——常量

1

κ是温度的函数,在常温下理想气体的κ可近似当作定值[2],对于天然气等由多原子分子组成的气体,κ取1.29。

因为城市燃气压力大多在1.6MPa以下,燃气温度为常温,所以燃气可以看作理想气体[2],因此有:

式中R

——燃气的气体常数,J/(kg·K)

con

T——燃气的温度,K

将式(3)代入式(2)并在小孔入口点2和小孔出口点3进行积分,然后将式(4)代入整理可得:

——点3的燃气断面平均流速,即为燃气的泄漏出口流速,m 式中v

3

/s

——点2沿管道泄漏口轴线方向的流速,m/s

v

2,L

——点2处的燃气温度,K

T

2

——点3的绝对压力,Pa

p

3

p

3

可按式(6~8)计算[2]:

式中p

a

——环境压力,Pa

p

c

——临界压力,Pa

β——临界压力比

在小孔模型下,v

2,L 一般很小或近似为0,因而v

2,L

2远远小于v

3

2;,

可以忽略不计,因此式(5)可简化为:

泄漏孔出口压力与入口压力的比值等于临界压力比时的泄漏出口燃气流速称为临界流速,将式(7)、(8)代入式(9)有:

式中v

c

——泄漏出口燃气临界流速,m/s

当p

3达到临界压力p

c

后,点3的流速v

3

就等于临界流速秽,。

根据孔口出流的质量流量公式,可得出泄漏质量流量为:

q

m

=0.25μπd2ρ3v3 (11)

式中q

m

——泄漏质量流量,kg/s

μ——流量系数,可取0.90~0.98

d——泄漏孔口当量直径,m

——点3处的燃气密度,kg/m3

ρ

3

不规则孔口当量直径按下式计算:

式中A

——泄漏孔口面积,m2

j

将式(4)、(6)、(9)、(10)代入式(11)并整理可得:

当时:

当时:

在小孔模型下,认为式(1)成立,且由于管内流速小,管内流动可视为等温过程,因而对于任一管道,只要知道管道起点压力、管内燃气温度和泄漏孔口当量直径,便可按照式(12)和(13)计算泄漏质量流量。

3 管道模型的推导

管道模型适合于管道完全断裂的情形[3],即泄漏当量直径等于管道内径,点2即为管道末端,点2和点3重合,管道泄漏流量就等于管输流量,此时可按管道水力计算公式来计算管道流量。

燃气泄漏过程中,管道上游阀门关闭之前,管内燃气流动可以视为稳定流动。在燃气管道完全断裂泄漏情况下,燃气流速较大,管内燃气可能没有足够的时间和周边环境进行充分的热交换,管内流动也不能看作等温过程,而只能看作多变过程,因而对于管内燃气流动过程有:

式中n——多变指数

C

——常量

2

仍然假设从管道起点至泄漏点之间的管段上没有支管,或所有支管的流量都为0,同时考虑到管内燃气流速较大时,不能忽略对流项㈨,将文献[4]提供的管内流动基本微分方程组联合式(14)可以推导得到式(15)。

——泄漏点上游管道内燃气的质量流量,kg/s 式中q

m,U

D——管道内径,m

λ——摩擦阻力系数,可按文献[4]或[5]提供的公式计算

式(15)中n=1时,表示管内流动为等温过程,此时认为管内燃气与周边环境有充分的热交换,管内温度等于环境温度且保持不变;当n=κ时,表示管内流动为绝热过程,此时认为管内流速太快或者管道太短,管内燃气完全没有和环境进行热交换;实际上这两种理想状况都不存在,n的值在1和κ之间,为了简化计算,通常在管

内燃气流速较小,管道较长时,n取1,而在管道流速很大或者管道很短时,n取κ。

在管道模型下,点2为管道末端且暴露于大气环境中,因而泄漏口处的压力等于大气环境压力,即:

p

2=p

a

(16)

此时只要知道管径、泄漏处至管道起点的距离、管道起点的压

力,选取适当的值,便可按照式(15)计算管道的质量流量q

m,U

4 管道-小孔综合模型

当燃气管道完全断裂时,按管道模型计算泄漏流量比较准确,当燃气管道只有孔径很小的破损孔时,按小孔模型计算泄漏流量比较准确。但在实际情况下,特别是由于施工开挖导致的断裂,泄漏口既不是小孔,也不是完全断裂,因此用这两种模型都不准确。管道一孔综合模型就是将管道模型和小孔模型结合起来进行泄漏流量计算㈨。

事实上,在小孔模型下,只要有燃气泄漏,管道内燃气就会流动,由于摩擦的存在,管道内必然会有沿程阻力,因此式(1)并不成

立,实际的p

2

还需要根据式(15)计算。前面已经假设管输燃气全部从小孔泄漏,这种假设对于风险评价和事故应急抢险来说是保守的,因而有:

q

m =q

m,U

(17)

式(17)中q

m

可根据式(12)和(13)计算,式(12)和(13)中的咒可

由式(4)和(14)联立求得,q

m,U

可以根据式(15)计算,因此联立式(4)、

(12)、(13)、(14)、(15)、(17)便可计算出泄漏质量流量q

m

、泄漏

处的管内压力p

2及管内温度T

2

。该模型对于任何泄漏口尺寸的稳定

泄漏过程都比较准确,计算时需要利用计算机语言编程求解。

为了符合工程习惯,通常需要将泄漏质量流量转换成泄漏体积

流量:

式中ρ

——标准状态下燃气密度,kg/m3

5 最大泄漏流量限制的讨论

燃气在管道内的最大流量有限制,并不是按照管道模型或者管道一小孔模型计算得到的结果就一定是实际流量,而必须对计算结果进行两个方面的校验:一是调压器最大通过能力的限制,二是管内临界流量的限制。

①调压器最大通过能力的限制

城市燃气管道都与上游调压器相连,管道内的流量和泄漏流量

都不能大于上游调压器的最大通过能力q

V,max

,调压器说明书通常都

给出了该调压器在各进口压力下的q

V,max

值,因此无论用哪种模型计

算,泄漏流量的计算结果最大只能取q

V,max

②管内燃气临界流量的限制

与泄漏孔处的绝热流动相似,燃气管内流动也存在临界流量问题。由于沿程摩擦阻力对燃气运动参数的影响,实际气体一元运动微分方程为:

将式(14)代入式(19),参照文献[1]推导可得:

式中Ma——马赫数

马赫数按式(22)计算:

式中c——当地声速,m/s

管道起始端流速一般较小,马赫数远小于1,因而有:

n-κMa2>0 (24)

由式(20)和(21)可知,随着流动距离的增长,压力不断减小,速度不断增加,但压力不可能无限降低,流速不可能无限增大,即n-κMa2不可能为0,因此式(25)恒成立:

又根据管内稳定流动质量流量方程有:

0.25μπd2ρv=q m,U (26)

将式(14)、(23)、(26)代入式(22),整理可得:

在等内径稳定管道流动中,式(27)中参数除断面平均流速移外均为常数,因而马赫数随刨增大而增大,图1中点4处马赫数最大。有:

式中Ma

4

——点4处的马赫数

将式(4)、(14)、(27)代入式(28),整理可得:

式中p

4

——点4处的燃气绝对压力,Pa

T

1

——点1处的燃气温度,K

根据图1中的假设有:

p

4=p

2

(30)

将式(30)代入式(29)并转化成体积流量,则有:

令管内临界体积流量q

V,c,P

为:

式中q

V,c,P

——管内燃气临界体积流量,m3/h

无论按照何种模型计算所得的体积流量必须校验是否满足式(3

1),若计算得到的泄漏体积流量大于q

V,c,P ,则只能取q

V,c,P

6 实例计算

某管道受施工破坏而连续泄漏,泄漏口近似为圆形。该管道上

游调压器出口绝对压力为0.5MPa,调压器最大通过能力为35000m3 /h,泄漏点距离调压器1km,管道内径为200mm。已知天然气密度为0.76kg/m3,管道周边环境温度为288K。分析在不同泄漏当量直径下的泄漏流量。

①最大流量限制

在管道完全断裂时泄漏流量最大,此时p

2

=101325Pa。由于燃气

流速较大,假设管内流动为绝热过程,n取1.29,将p

2

代入式(32)计算得到管道内燃气临界体积流量为:

q

V,c,P

=53184m3/h

而该管道上游调压器最大通过能力为35000m3/h,因此最大泄漏体积流量限制为35000m3/h。

②管道模型计算

管道完全断裂情况下,根据式(4)、(14)、(15)、(16)编程计算,可得燃气泄漏的体积流量为21314m3/h,小于最大泄漏体积流量限制值,因此该值为管道在此位置的最大可能泄漏体积流量。

③管道-小孔综合模型与小孔模型计算比较采用管道-小孔综

合模型时,可联立式(4)、(12)、(13)、(14)、(15)、(17)编程计算,其中n按式(33)确定:

式(33)假设多变指数与泄漏孔口面积成线性关系,当管道完全断裂时,管内流动为绝热过程,而当泄漏孔口非常小的时候,为等温过程。

经计算,泄漏孔口当量直径从1mm增加到200mm,管道-小孔综合

模型泄漏体积流量q

V 、泄漏处的管内压力p

2

泄漏处的管内温度T

2

泄漏孔口当量直径的变化规律分别见图2、3、4中的曲线1,小孔模型计算结果则分别见图2、3、4中的曲线2。

④不同泄漏位置最大泄漏体积流量计算

本文推导的管道模型与文献[4]或[5]中提供的管道水力计算公式相比,考虑了管内流动的温度变化和对流项的影响。为了比较这两个公式计算结果的差别,在本例中假设泄漏当量直径等于管道内径,分别用两个公式计算管道不同泄漏位置的泄漏体积流量,结果对比见图5。当泄漏处至管道起点较远时,两者计算结果基本一致(前者计算结果比后者略高),而当泄漏处距管道起点较近时,前者计算结果比后者低,曲线1前段为直线是由于考虑了最大流量的限制而形成的。

7 结论及建议

燃气管道泄漏流量计算是燃气管道风险评价的重要环节,也是事故应急抢险的重要依据,利用合理假设推导的管道-小孔综合模型

计算泄漏流量,同时考虑泄漏流量的限制条件,能够得到比较精确的结果,能够满足风险评价和应急抢险的需要。

本文的模型没有考虑非稳定过程,实际工程中,在管道开始泄漏瞬间和当泄漏管道的上游阀门被关闭后,燃气流动是非稳定流动,但在燃气持续泄漏期间,燃气流动可看作稳定流动,在风险评价和事故应急抢险过程中,往往关心的是这种持续泄漏的影响,因此可不必进行复杂的非稳定流动计算。若需要更为精确的计算结果,则需要建立管内燃气与周边环境之间的传热关系,建立非稳定流动和传热方程组,确定边界条件,采用计算流体力学方法计算。

天然气长输管道的知识

关于天然气长输管道知识普及 随着我国天然气勘探开发力度的加大以及人民群众日益提高的物质和环保需要,近年来天然气长输管道的发展十分迅速。随着管道的不断延伸,管道企业所担负的社会责任、政治责任和经济责任也越来越大。因此,对于天然气长输管道知识普及显得尤为重要。 一、线路工程 输气管道工程是指用管道输送天然气和煤气的工程,一般包括输气线路、输气站、管道穿(跨)越及辅助生产设施等工程内容。 线路工程分为输气干线与输气支线。输气干线是由输气首站到输气末站间的主运行管线;输气支线是向输气干线输入或由输气干线输出管输气体的管线。 线路截断阀室属于线路工程的一部分,主要设备包括清管三通、线路截断球阀、上下游放空旁通流程、放空立管等,功能是在极端工况或线路检修时,对线路进行分段截断。阀室设置依据线路所通过的地区等级不同,进行不同间距设置。 阀室系统包括手动阀室和RTU阀室两大类。 二、工艺站场 输气站是输气管道工程中各类工艺站场的总称。一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。 输气站是输气管道系统的重要组成部分,主要功能包括调压、过滤、计量、清管、增压和冷却等。其中调压的目的是保证输入、输出

的气体具有所需的压力和流量;过滤的目的是为了脱除天然气中固体杂质,避免增大输气阻力、磨损仪表设备、污染环境等;计量是气体销售、业务交接必不可少的,同时它也是对整个管道进行自动控制的依据;清管的目的在于清除输气管道内的杂物、积污,提高管道输送效率,减少摩阻损失和管道内壁腐蚀,延长管道使用寿命;增压的目的是为天然气提供一定的压能;而冷却是使由于增压升高的气体温度降低下来,保证气体的输送效率。根据输气站所处的位置不同,各自的作用也有所差异。 1、首站 首站就是输气管道的起点站。输气首站一般在气田附近。 2、末站 末站就是输气管道的终点站。气体通过末站,供应给用户。因此末站具有调压、过滤、计量、清管器接受等功能。此外,为了解决管道输送和用户用气不平衡问题,还设有调峰设施,如地下储气库、储气罐等。 3、清管站 清管站是具有清管器收发、天然气分离设备设施及清管作业功能的工艺站场。 4、压气站 压气站是在输气管道沿线,用压缩机对管输气体增压而设置的站。 5、分输站

天然气放空立管的设计说明

天然气放空立管的设计说 明 Prepared on 22 November 2020

放空系统设计 1输气管道的放空 a) 线路截断阀上下游均宜设置放空管。放空管应能迅速放空两截断阀之间管段内的气体,放空阀直径与放空管直径应相等。放空立管应设在阀室围墙内。 b) 应根据下游用户最低用气压力要求确定管道放空压力,有压气站的管道应经压缩机抽气,将压力降至压缩机最低允许压力后再放空,放空时间宜满足12h 放完的要求。 c) 阀室放空立管不设点火设施。 d) 阀室旁通管线宜采用管卡固定。 e) 输气站放空过程:当站内设备超压时联锁关闭进出站阀门(ESD);安全阀放空量为站内管道及容器内气量,按15min内压力降至50%计算气体流量,且管内流速不超过马赫数,安全阀背压不超过10%计算放空管径。 2放空立管的布置 2.1防火规范要求 “表放空立管距离人员聚集区、相邻厂矿企业、独立变电所60米,距铁路、高速路、架空电力线、一二级通信线40m,距其他公路、其他通信线 30m。” “放空管放空量等于或小于×104m3/h时,距离站场不应小于10m;放空量大于×104/h 且等于或小于4×104m3时,不应小于40m。” “天然气密闭隔氧水罐和天然气放空管排放口与明火或散发火花地点的防火间距不应小于25m,与非防爆厂房之间的防火间距不应小于12m。” “进站场天然气管道上的截断阀前应设泄压放空阀。” “放空管道必须保持畅通,并应符合下列要求: 1)高压、低压放空管宜分别设置,并应直接与火炬或放空总管连接;(高压放空气量较小或高、低压放空的压差不大(例如其压差为~)时,可只设一 个放空系统,以简化流程。) 2)不同排放压力的可燃气体放空管接入同一排放系统时,应确保不同压力的放空点能同时安全排放。” 注:放空管道不能设切断阀,对可能存在的积液,及由于高压气体放空时压力骤降或环境温度变化而形成冰堵,应采取消除措施。 高低压管道同时放空会对低压管道造成超压破坏。当高低压放空管道压差在(~)时可设一个放空系统,并计算同时泄放各放空点的背压。在确定放空管系尺寸时,应使可能同时泄放的各安全阀后的累积回压限制在该安全阀定压的10%左右。

天然气放空立管的设计说明

放空系统设计 1输气管道得放空 a) 线路截断阀上下游均宜设置放空管。放空管应能迅速放空两截断阀之间管段内得气体,放空阀直径与放空管直径应相等。放空立管应设在阀室围墙内。 b) 应根据下游用户最低用气压力要求确定管道放空压力,有压气站得管道应经压缩机抽气,将压力降至压缩机最低允许压力后再放空,放空时间宜满足12h 放完得要求。 c) 阀室放空立管不设点火设施。 d) 阀室旁通管线宜采用管卡固定。 e) 输气站放空过程:当站内设备超压时联锁关闭进出站阀门(ESD);安全阀放空量为站内管道及容器内气量,按15min内压力降至50%计算气体流量,且管内流速不超过0、2马赫数,安全阀背压不超过10%计算放空管径。 2放空立管得布置 2.1防火规范要求 “表4、0、4 放空立管距离人员聚集区、相邻厂矿企业、独立变电所60米,距铁路、高速路、架空电力线、一二级通信线40m,距其她公路、其她通信线30m。” “4、0、8 放空管放空量等于或小于1、2×104m3/h时,距离站场不应小于10m;放空量大于1、2×104/h 且等于或小于4×104m3时,不应小于40m。” “5、2、5天然气密闭隔氧水罐与天然气放空管排放口与明火或散发火花地点得防火间距不应小于25m,与非防爆厂房之间得防火间距不应小于12m。” “6、1、1 进站场天然气管道上得截断阀前应设泄压放空阀。” “6、8、6 放空管道必须保持畅通,并应符合下列要求: 1)高压、低压放空管宜分别设置,并应直接与火炬或放空总管连接;(高压放空气量较小或高、低压放空得压差不大(例如其压差为 0、5~1、0MPa)时,可只

设一个放空系统,以简化流程。) 2)不同排放压力得可燃气体放空管接入同一排放系统时,应确保不同压力得放空点能同时安全排放。” 注:放空管道不能设切断阀,对可能存在得积液,及由于高压气体放空时压力骤降或环境温度变化而形成冰堵,应采取消除措施。CK P。 高低压管道同时放空会对低压管道造成超压破坏。当高低压放空管道压差在(0、5~1、0MP A)时可设一个放空系统,并计算同时泄放各放空点得背压。在确定放空管系尺寸时,应使可能同时泄放得各安全阀后得累积回压限制在该安全阀定压得10%左右。QU PXD。 “6、8、7 火炬设置应符合下列要求: 1 火炬得高度,应经辐射热计算确定,确保火炬下部及周围人员与设备得安全。 2 进入火炬得可燃气体应经凝液分离罐分离出气体中直径大于300μm得液滴;分离出得凝液应密闭回收或送至焚烧坑焚烧。 3 应有防止回火得措施。 4 火炬应有可靠得点火设施。 5 距火炬筒30m范围内,严禁可燃气体放空。 6 液体、低热值可燃气体、空气与惰性气体,不得排入火炬系统。” “6、8、8 可燃气体放空应符合下列要求: 1 可能存在点火源得区域内不应形成爆炸性气体混合物。 2 有害物质得浓度及排放量应符合有关污染物排放标准得规定。 3 放空时形成得噪声应符合有关卫生标准。 4 连续排放得可燃气体排气筒顶或放空管口,应高出20m范围内得平台或建筑物顶2、0m以上。对位于20m以外得平台或建筑物顶,应满足图6、8、8得要求,并应高出所在地面5m。 5 间歇排放得可燃气体排气筒顶或放空管口,应高出10m范围内得平台或建筑物顶2、0m以上。对位于10m以外得平台或建筑物顶,应满足图6、8、8得要求,并应高出所在地面5m。” 火炬与与石油天然气站场得防火间距,应经辐射热计算确定,可能携带可燃

管道工程量计算规则【最新版】

管道工程量计算规则1、工程量计算顺序 工艺管线工程量计算尽量以以下顺序计算:管道安装 管件安装 阀门安装 法兰安装 管道压力试验 无损探伤及焊口热处理 管道支架制作安装 管口充氩保护、套管制作安装

设备安装(泵、电机等) 2、管道安装 2.1 压力等级:低压0 中压1.6 高压10。 2.2 连接方式:电弧焊、氩弧焊、氩电联焊、螺栓连接、埋弧自动焊、氧乙炔焊、热风焊、承插粘接等 2.3 工程量计算:工艺管线以施工图纸标明的延长米计算,不扣除管件、阀门、法兰长度,主材消耗量是扣除管件、阀门、法兰长度后加损耗的量。方型补偿器不单独提取工程量,工程量包含在管道工程量及管件工程量中。 3、管件安装 3.1 管件种类:弯头、三通、异径管、管帽(盲板)、管接头、挖孔制三通;

3.2 各种管件连接均按压力等级、材质、连接方式以10个(个也行)为单位计算工程量,主管上挖眼制三通应以管件安装计算工程量,如:挖眼制三通DN500*350 20 个 2.5MPa,不另计主材费,挖眼制三通支线管径小于主管径1/2时,不计算管件工程量,若支管线较短相当于管接头及凸台时,应按配件管径计算工程量(相当于管件); 3.3 对于仪表而言,管道开孔不计算工程量,以预留考虑,但压力表表弯制作,凸台制作安装、温度计扩大管制作安装应分别计算工程量,均以个为单位,应注明管径大小; 3.4 焊接盲板工程量以“个”为单位,执行管件连接乘以系数0.6(造价用)。 4、阀门安装 4.1 应注明压力等级、规格型号、安装方式(法兰连接、焊接、螺纹连接等),以个为单位;

4.2 各种法兰及阀门安装的配套法兰安装应分别计算工程量,螺栓、透镜垫的安装费已包括在定额内,本身材料费应另行计算,在阀门安装或法兰安装工程量后提供其数量(主材费不计的可以不予考虑); 4.3 直接安装在管道上的仪表流量计应归入阀门安装中,以个为单位,执行阀门安装乘以系数0.7(造价用)。 5、法兰安装 5.1 法兰安装应按照不同压力、材质、规格和种类以“副”为计量单位,1副=2片,配法兰的盲板应提供数量,但只计算主材费。 6、管道压力试验、吹扫与清洗 6.1 管道压力试验、吹扫与清洗按不同压力、规格不分材质以100m或m为计算单位; 6.2 临时用空压机、水泵作功进行试压、吹扫、清洗管道连接临时管线、盲板、阀门、螺栓等材料摊销量不用计算。管道之间的串通临时管口及管道排放口至排放点的临时管,其工程量应按施工方案另

给排水工程量计算方法总结

给排水工程量计算方法总结 一、主要分项工程内容 1、给水工程 1.1、室内给水管网; 1.2、给水附件; 1.2.1、控制附件 1.2.2、配水附件 1.3、支架,套管,法兰。 2、排水工程 2.1、排水管网;

2.2、清通设备(支管:地面扫除口,法兰端盖;干管:检查口;室外排水井。)注:地面扫除口是未计价材料,需要单独列项。 2.3、土建类配件。 3、卫生设备 4、零星类土建工程 二、室内给水管网 1、列项:区分室内外、管材、连接方法、规格计算 2、分界线:室内外(检查井、阀门井、水表井或外墙皮1.5m 作为分界) 3、计算规则: 3.1、以标注为准; 3.2、计算至卫生设备中心; 3.3、以室内内墙皮为准。

4、注意:管道与设备的分界线,以标准图为准。 三、排水管网 1、列项:区分室内外、管材、连接方法、规格计算 2、分界线:室内外(排水检查井或外墙皮1.5m 作为分界) 3、计算规则: 3.1、以标注为准; 3.2、计算至卫生设备中心。 4、注意:管道与设备的分界线,以标准图为准。 注:如果卫生设备的水封(存水弯)在楼面以上,分界线以标注或楼面为准;如果卫生设备的水封(存水弯)在楼面以下,分界线以排水横管为准; 四、计算 1、管道水平长:根据平面图(标准、轴线、卫生设备位置推算)

2、管道垂直长:系统图(用标高计算) 3、给水附件: 3.1、控制附件:阀门等 3.2、配水附件:水龙头等。 4、套管: 4.1、镀锌铁皮套管:定额已包含安装费,按被穿管径确定规格。 4.2、钢套管: A、执行室外焊接钢管定额,以延长米计算。 B、按被穿管径加2 号确定规格。 C、厚度计算:穿墙套管以墙厚度确定;穿楼板以下面平,上面加20-30mm 确定长度。 4.3、防水套管:执行第六册定额。

管道工程量计算规则

管道工程量计算规则 1、 工程量计算顺序: 工艺管线工程量计算尽量以以下顺序计算: 管道安装 管件安装 阀门安装 法兰安装 管道压力试验 无损探伤及焊口热处理 管道支架制作安装 管口充氩保护、套管制作安装 设备安装(泵、电机等) 2、 管道安装 2.1 压力等级:低压0 中压1.6 高压10。 2.2 连接方式:电弧焊、氩弧焊、氩电联焊、螺栓连接、埋弧自动焊、氧乙炔焊、热风焊、承插粘接等

2.3 工程量计算:工艺管线以施工图纸标明的延长米计算,不扣除管件、阀门、法兰长度,主材消耗量是扣除管件、阀门、法兰长度后加损耗的量。方型补偿器不单独提取工程量,工程量包含在管道工程量及管件工程量中。 3、 管件安装 3.1 管件种类:弯头、三通、异径管、管帽(盲板)、管接头、挖孔制三通; 3.2 各种管件连接均按压力等级、材质、连接方式以10个(个也行)为单位计算工程量,主管上挖眼制三通应以管件安装计算工程量,如:挖眼制三通 DN500*350 20 个 2.5MPa,不另计主材费,挖眼制三通支线管径小于主管径1/2时,不计算管件工程量,若支管线较短相当于管接头及凸台时,应按配件管径计算工程量(相当于管件); 3.3 对于仪表而言,管道开孔不计算工程量,以预留考虑,但压力表表弯制作,凸台制作安装、温度计扩大管制作安装应分别计算工程量,均以个为单位,应注明管径大小;

3.4 焊接盲板工程量以“个”为单位,执行管件连接乘以系数0.6(造价用)。 4、 阀门安装 4.1 应注明压力等级、规格型号、安装方式(法兰连接、焊接、螺纹连接等),以个为单位; 4.2 各种法兰及阀门安装的配套法兰安装应分别计算工程量,螺栓、透镜垫的安装费已包括在定额内,本身材料费应另行计算,在阀门安装或法兰安装工程量后提供其数量(主材费不计的可以不予考虑); 4.3 直接安装在管道上的仪表流量计应归入阀门安装中,以个为单位,执行阀门安装乘以系数0.7(造价用)。 5、 法兰安装 5.1 法兰安装应按照不同压力、材质、规格和种类以“副”为计量单位,1副=2片,配法兰的盲板应提供数量,但只计算主材费。 6、 管道压力试验、吹扫与清洗

工业管道安装工程量计算规则与说明

工业管道安装工程量计算规则与说明 定额是确定工程造价的依据,是由国家权威机构编制的,具有法律依据。因此在编制预算时,定额的应用中,尽量套用定额。没有特殊情况不要任意修改定额,若需编制补充定额,需经有关部门的审批方可使用。 1、熟悉定额说明:统一定额的说明分两部分,一是册说明:内容包括本册定额的适用范围,定额的编制依据,人工、机械、材料的表现形式和内容,与其它分册定额的关系等。其次是章说明:内容包括定额适用范围,定额内所包括的工序内容和不包括的内容,以及必要的数据。如脚手架、超高费。 2、熟悉统一定额的工程量计算规则:要与统一定额的编制原则、应用方法相吻合,是预算人员共同遵守的准绳,应正确理解、熟练运用。 3、定额项目内未计价材料,量的表现形式。定额中括号内的数字,也称主材,其中包括施工损耗。 一、工艺管道工程定额编制册说明 1、第六册《工艺管道工程》适用于新建、扩建项目中厂区范围内的车间、装置、站、罐区及其相互之间各种生产用介质输送管道的安装工程。厂区第一个连接点以内的生产用(包括生产与生活共用)给水、蒸汽、煤气输送管道。其中给水以入口水表井阀池为界;排水以厂区围墙外第一个污水井为界;蒸汽和煤气以进厂第一个计量表或阀门为界。锅炉房、水泵房以墙皮为界。 2、下列内容执行其他册相应定额: ①单件重100kg以上的管道支架、管道预制钢平台的搭拆执行第五册《静止设备与工艺金属结构制作安装工程》。 ②管道和安装支架的喷砂除锈、刷油、绝热防腐蚀、衬里等执行第十一册《刷油、防腐蚀、绝热工程》。

③埋地管道的管沟开挖土石方和砌筑工程,执行土建工程预算定额。 ④附属在管道上的仪表部件安装、温度计扩大管制造安装、节流装置执行本章定额的有关项目。直接安装在管道上的流量计、自动阀门套用本册阀门安装定额的有关项目。 3、本定额内不包括下列内容: ①单体和局部试运转所需的水、电、蒸汽、气体、油、燃气等。 ②配合局部联动试车费。 ③管道安装完后的充气保护和防冻保护。 ④设备、材料、成品、半成品、构件等在施工现场范围以外的运输费用。 厂站工艺管道不适用大于42MPa的超高压管道及设备本体所属管道。 4、关于下列各项费用的规定: ①单独承担的埋地管道工程,不计取脚手架费用。 ②厂外运距超过1公里时,其超过部分的人工和机械乘以系数1.1。 ③车间内整体封闭式地沟管道,其人工和机械乘以系数1.2(管道安装后盖板封闭地沟除外)。 ④超低碳不锈钢管执行不锈钢管项目,其人工和机械乘以系数1.15,焊条消耗量不变,单价可以换算。 ⑤高合金钢管执行合金钢管项目,其人工和机械乘以系数1.15,焊条消耗量不变,单价可以换算。 5、本定额管道压力等级的划分:低压0

管道泄漏及放空计算(参考)

根据一元气体流动基本方程式,推导了孔口泄漏在绝热过程下泄漏流量计算的小孔模型和适合管道完全断裂的多变过程泄漏流量计算的管道模型,联合两种模型计算任何泄漏孔口直径下的泄漏流量,讨论了燃气最大泄漏流量的限制,进行了实例计算并对比了不同模型的计算结果。 关键词:泄漏流量计算;管道模型;小孔模型;管道小孔综合模型;流量限制 Calculation of Leakage Rate from Gas Pipeline HUANG Xiao-mei,PENG Shini,XU Hai-dong,YANG Mao-hua Abstract:According to the basic equations of one-dimensio n gas flow,a hole model for calculation of hole leakage r ate in adiabatic process and a pipeline model for calculat ion of leakage rate in variable process suited to full rup ture of pipeline are deducted. These two kinds of models a re combined to calculate the leakage rate from leakage hol es with different diameters. The limitation of the maximum gas leakage rate is discussed,the example calculation is carried out,and the calculation results of different mode ls are compared. Key words:calculation of leakage rate;pipeline model;ho le model;combined model of pipeline model and hole model:limitation of flow rate 1 概述 在燃气管道事故定量风险评价、事故抢险预案制定和漏气损失评估时,首先要计算泄漏流量。燃气管道在事故破损时,燃气可通

天然气放空立管的设计说明

放空系统设计 1输气管道的放空 a) 线路截断阀上下游均宜设置放空管。放空管应能迅速放空两截断阀之间管段内的气体,放空阀直径与放空管直径应相等。放空立管应设在阀室围墙内。 b) 应根据下游用户最低用气压力要求确定管道放空压力,有压气站的管道应经压缩机抽气,将压力降至压缩机最低允许压力后再放空,放空时间宜满足12h 放完的要求。 c) 阀室放空立管不设点火设施。 d) 阀室旁通管线宜采用管卡固定。 e) 输气站放空过程:当站内设备超压时联锁关闭进出站阀门(ESD);安全阀放空量为站内管道及容器内气量,按15min内压力降至50%计算气体流量,且管内流速不超过0.2马赫数,安全阀背压不超过10%计算放空管径。 2放空立管的布置 2.1防火规范要求 “表4.0.4 放空立管距离人员聚集区、相邻厂矿企业、独立变电所60米,距铁路、高速路、架空电力线、一二级通信线40m,距其他公路、其他通信线30m。” “4.0.8 放空管放空量等于或小于1.2×104m3/h时,距离站场不应小于10m;放空量大于1.2×104/h 且等于或小于4×104m3时,不应小于40m。” “5.2.5天然气密闭隔氧水罐和天然气放空管排放口与明火或散发火花地点的防火间距不应小于25m,与非防爆厂房之间的防火间距不应小于12m。” “6.1.1 进站场天然气管道上的截断阀前应设泄压放空阀。” “6.8.6 放空管道必须保持畅通,并应符合下列要求: 1)高压、低压放空管宜分别设置,并应直接与火炬或放空总管连接;(高压放空气量较小或高、低压放空的压差不大(例如其压差为0.5~1.0MPa)时,

可只设一个放空系统,以简化流程。) 2)不同排放压力的可燃气体放空管接入同一排放系统时,应确保不同压力的放空点能同时安全排放。” 注:放空管道不能设切断阀,对可能存在的积液,及由于高压气体放空时压力骤降或环境温度变化而形成冰堵,应采取消除措施。 高低压管道同时放空会对低压管道造成超压破坏。当高低压放空管道压差在(0.5~1.0MP A)时可设一个放空系统,并计算同时泄放各放空点的背压。在确定放空管系尺寸时,应使可能同时泄放的各安全阀后的累积回压限制在该安全阀定压的10%左右。 “6.8.7 火炬设置应符合下列要求: 1 火炬的高度,应经辐射热计算确定,确保火炬下部及周围人员和设备的安全。 2 进入火炬的可燃气体应经凝液分离罐分离出气体中直径大于300μm的液滴;分离出的凝液应密闭回收或送至焚烧坑焚烧。 3 应有防止回火的措施。 4 火炬应有可靠的点火设施。 5 距火炬筒30m范围内,严禁可燃气体放空。 6 液体、低热值可燃气体、空气和惰性气体,不得排入火炬系统。” “6.8.8 可燃气体放空应符合下列要求: 1 可能存在点火源的区域内不应形成爆炸性气体混合物。 2 有害物质的浓度及排放量应符合有关污染物排放标准的规定。 3 放空时形成的噪声应符合有关卫生标准。 4 连续排放的可燃气体排气筒顶或放空管口,应高出20m范围内的平台或建筑物顶2.0m以上。对位于20m以外的平台或建筑物顶,应满足图6.8.8的要求,并应高出所在地面5m。 5 间歇排放的可燃气体排气筒顶或放空管口,应高出10m范围内的平台或建筑物顶2.0m以上。对位于10m以外的平台或建筑物顶,应满足图6.8.8的要求,并应高出所在地面5m。” 火炬和与石油天然气站场的防火间距,应经辐射热计算确定,可能携带可燃

工业管道工程工程量计算规则及定额使用注意事项重点

管道安装工程定额的使用 一、《工业管道工程》(第六册) 总说明: (一) 《工业管道工程》 (GYD-206-2000 )适用范围 《工业管道工程》 (GYD-206-2000 )适用于新建、扩建项目中厂区范围的车间、装置、站、罐区 及其相互之间各种生产用介质输送管道, 厂区第一个连接点以内的生产用 (包括生产与生活共同) 给水、排水、蒸汽、煤气输送管道的安装工程,其中,给水以入口水表井为界,排水以厂区围墙 外第一个污水井为界,锅炉房、水泵房以墙皮为界。本定额(工艺管道)不适用于大于 的超高压管道;设备本体所高的管道、民用给排水、采暖、卫生、煤气管道以及 距 离输送管道。 (二) 下列内容执行其它相应定额 1、 单体重量在100 kg 以上的管道支架、管道预制钢平台的摊销,均执行《静置设备与工艺金属 结构制作安装工程》 。 2、 管道和安装支架的喷砂除锈、刷油漆、绝热,执行《刷油漆、防腐蚀、绝热工程》 3、 地沟和埋地管道的土石方及砌筑工程,执行《全国统一建筑工程基础定额》 (三) 本定额内不包括的内容 1 、单体和局部试运转所需的水、电、蒸汽、气体、油(油脂) 2、配合局部联动试车费。 3、 管道安装完成的保护和防冻保护。 4、 设备、材料、成品、半成品、构件等在施工现场范围以外的运输费用。 (四) 关于下列各项费用的规定 1 、脚手架搭拆费按人工费的 7%计算,其中人工工资占 25%( 单独承担的埋地管道工程,不计取 脚手架费用 )。 2、 厂外运距超过1km 时,其超过部分的人工和机械乘以系数 3、 车间内整体封闭式地沟管道,其人工和机械乘以系数 外)。 4、 超低碳不锈钢管项目,其人工和机械乘以系数 1.15 , 5、 高合金钢管执行不锈钢项目,其人工和机械乘以系数 6、 安装与生产同时进行增加的费用,按人工费的 10%计 算。 7、 在有害身体健康的环境中施工增加的费用,按人工费的 10%计算。 (五) 计算规则 1 、本定额管道压力划分 低压:0< pw 1.6 Mpa ;中压:1.6 MPa9Mpa 工作温度> 500 C 时为高压。 2、定额 中各类管道适用材质范围 (1) (2) (3) (4) (5) (6) 3 、定额中的材料用量,凡注明“设计用量”者应为施工图工程量,凡注明“施工用量”者应为 32Mpa 10KM 以上的长 、燃气等。 I . I O 1.2 (管道安装后,再用盖板封闭地沟除 焊条消耗量不变,单价可以换算。 1.15 ,焊条消耗量不变,单价可以换算。 碳钢管适用于焊接钢管、无缝钢管、 16Mu 钢板卷管。 不锈钢管除超低不锈钢管按定额说明外,适用于各种材质。 碳钢板卷管安装适用于低压螺旋钢管、 16MU 钢板卷管。 铜管适用于紫铜、黄铜、青铜等。 管件、阀门、法兰适用参照管道材 质。 合金钢管除高合金钢管按定额说明计算外,适用于各种材质。

给排水工程量计算规则(修订)

目 录  工程量通用计量规则  一.  (一)给排水、采暖、燃气工程  1、室内外界线划分1) 给水管道:A. 室内外界线:阀门或外墙皮1.5m;B. 与市政管道界线以水表井为界,无水表井者,以与市政管道碰头点为界。2) 排水管道:A. 室内外以出户第一个排水检查井为界;B. 室外管道与市政管道界线以与市政管道碰头井为界。另设在高层建筑内的泵房间管道与本章界线,以泵房外墙皮为界(泵房内管道阀件套用工艺管道定额章节)。 2、管道安装 1).各种管道,均以设计施工说明材质按递增或递减步距分不同管材,均以施工图所示中心长度,以?°m?±为计量单位,不扣除阀门、管件所占的长度(室外管道不扣除井所占长度)。另设置于管道间、管廊内的管道(含相关连接件),其定额人工乘以系数1.3;主体结构为现场浇注采用钢模施工的工程:内外浇注的定额人工乘以系数1.05,内浇外砌的定额人工乘以系数1.03。 2)?°卫生器具安装?±的支管管道安装工程量计算规定(1)各种卫生器具的给水管道安装工程量均计至各卫生器具供水点(镶接点)。(2)淋浴器的给水管道安装工程量计至阀门中心。排水管道安装工程量计算规定(1)蹲式大便器安装:A、采用铸铁P存水弯的,管长算到楼地面(扣除存水弯长度),计算主材时另加铸铁存水弯与陶瓷存水变的价差。B、采用陶瓷存水弯,管长算到楼地面。(2)坐式大便器安装:管长计算到楼地面。(3)立式小便器安装:只计算其水平管道长度,立管不计。(4)挂式小便器安装:管长计算到楼地面。(5)扫除口安装:管长计算到楼地面。(6)浴盆安装:管长计算到楼地面(扣除存水弯长度)。(7)排水栓安装:A、不带存水弯的,管长计算到楼地面。B、带S存水弯的,管长计算到楼地面上0.1M;另计0.15M短管主材。C、带P存水弯的,管长计算到P弯接口点。(8)地漏安装:A、不带存水弯的,管长计算到楼地面下0.1M。B、带存水弯的,管长计算到楼地面下0.1M(扣除存水弯长度)。(9)洗脸盆、洗涤盆安装:A、S型存水弯的,算到楼上0.1M。B、P型存水弯的,算到P弯接口点。 3). 套管安装计算:(1)刚性或柔性防水套管一般都是穿越地下式的管道才使用,一般情况不用。穿楼板套管是:穿卫生间套管高出地平5cm,套管总长25cm,其他房间2cm套管总长度20cm.穿墙与两边墙平,套管总长度30cm。设计无说明时,一般钢管穿钢套管,塑料管

给排水管道工程工程量计算及定额应用技巧

给排水管道工程工程量计算及定额应用技巧 (一)给排水管道界线划分 1、给水管道(如图4-1) (1)室内管道与室外管道的划分界线,是以建筑物外墙皮外1.5m为界,如果入口处设阀门者以阀门为界。 (2)室外管道与市政管道划分界线,是以水表井为界,如无水表井,以与市政管道碰头点为界。 2、排水管道(如图4-2)

(1)室内管道与室外管道的划分界线,是以出户第一个排水检查井为界。 (2)室外管道与市政管道的划分界线,是以室外管道与市政管道碰头点为界。 由以上的划分规定,把给排水工程划分为三部分:室内给排水工程、室外给排水工程、市政给排水工程。由于市政给排水工程属于市政工程预算的范围,本课程不涉及,下面我们就围绕室内外给排水工程预算的编制进行讲解。 (二)给排水管道安装的工程量计算及定额应用(以全国统一安装工程基础定额为参考) 1、室内给水管道安装工程量计算及定额应用 (1)工程量计算 室内给水管道安装工程量均应区分不同材质、连接方式、接头材料(铸铁管)、公称直径分别按施工图所示管道中心线长度以“m”为单位计算,不扣除阀门及管件(包括减压器、疏水器、水表、伸缩器等组成安装)所占的长度。

管道长度的确定:水平敷设管道,以施工平面图所示管道中心线尺寸计算;垂直安装管道,按立面图、剖面图、系统轴测图与标高尺寸配合计算。 (2)室内给水管道安装预算定额套用 1)定额子目范围:8-87~8-168 2)定额已包括以下工作内容: ①管道及接头零件安装; ②水压试验或灌水试验; ③室内DN32以内(包括DN32)的钢管包括了管卡及挂钩制作安装; ④钢管包括弯管制作安装(伸缩器除外); ⑤穿墙及过楼板铁皮套管安装人工。 3)定额中不包括以下工作内容,应另行计算。 ①室内外管道沟土方及管道基础,应执行土建工程预算定额; ②管道安装中不包括法兰、阀门及伸缩器的制作安装,按相应定额子目另计; ③室内外给水铸铁管安装,包括接头零件所需人工,但接头零件价格另计; ④DN32以上的钢管支架按管道支架另计; ⑤过楼板的钢套管的制作、安装,按室外钢管(焊接)项目计算。 4)未计价材:管子为未计价材。 2、室内排水管道安装工程量计算及定额应用 (1)室内排水管道工程量计算 管道安装工程量区分不同材质、连接方式、公称直径、接头材料分别以“m”计算,不扣除管件所占长度。 (2)室内排水管道预算定额套用 铸铁排水管、雨水管及塑料排水管均包括管卡及托吊支架、臭气帽、雨水漏斗制作安装。室内外雨水铸铁管,包括接头零件所需人工,但接头零件价格另计;

天然气管道计算

一、天然气计量原理及计算方法 测量原理:天然气流经节流装置时,流速在孔板处形成局部收缩,从而使流速增加,静压力降低,在孔板前后产生静压压差,气流的流速越大,孔板前后产生的差压越大,从而可通过测量差压来衡量天然气流经节流装置的流量大小。(注:这种测量流量的方法是以能量守恒定律和流动连续性方程为基础的。) 1、天然气流量的计算方法 1)公式引用SY/T6143—1996 标准 Q n= A s CEd2F G∑F z F T√p1△p 其中:Q n——体积流量Nm3/h 标准状态:0.101325Mpa A s——计量系数 1.145X10-2 C——流出系数0.6 E——渐进速度系数 1 d——孔板开孔直径 F z——超压缩因子 1.1 F G——相对密度系数 1.1 ∑——可膨胀性系数 1 F T——流动温度系数 1 经过推导和实践中运用,找出各个系数与本站输气计量中的关系。推导出了经验公式,简便了运算,便于掌握。 输气站流量计算经验公式: Q n = 8.4×10-3d2√p1△p

注意: (1)上述公式系数取值要精确,计算误差在5%左右。 (2)天然气计量中对孔板上端面,锐角等要求较严格,孔板必须经检验合格方可使用。 (3)上述公式是对于确定的孔板可推出孔板的测量范围。如反过来,知道了一定的流量,也可算出需要多大的孔板。2、输气管线储气量的计算 输气管线储气量的计算(引用《输气管道设计与管理》) Q储= VT0/P0T(P1m/Z1-P2m/Z2) 式中:Q储——管道的储气量m3 V——管道的容积m3 V=53275.56 m3(轮库输气管线长192.4km、管径 610mm、壁厚7—8mm) T0——293.15k P0——0.101325Mpa P1m P2m——分别为计算管内气体的最高、最低平均 压力(绝压)MPa,一般P2m为0。 Z1Z2——对P1m P2m气体压力下的压缩系数。(Z1=Z2) T——气体的平均温度k 注:上式可作为压力P1降到P2可有多少m3的天然气计算式。

管道工程量计算规则7066608[15页].doc

管道工程量计算规则 管道工程量计算规则 1、工程量计算顺序: 工艺管线工程量计算尽量以以下顺序计算: 管道安装管件安装阀门安装法兰安装管道压力试 验无损探伤及焊口热处理管道支架制作安装管口充氩保护、套管制作安装设备安装(泵、电机等) 2、管道安装 2.1 压力等级:低压0

天然气长输管道培训试题

培训试题(A) 日期:姓名:成绩:一、填空题: 1.天然气的输送有和非管道输送两种。 2.天然气中的气体杂质主要是和。 3.我国天然气的气质标准要求硫化氢含量小于,水分应无。 4.脱硫的方法一般分为和湿法两大类。 5.天然气脱硫主要指脱出天然气中的、有机硫化物和CO2,脱硫后的天然气质量达到管输气质标准。 6.脱出天然气中水分的主要方法有干醇法、和氯化钙水溶液法。7.计算机的工作原理是原始数据及程序通过输入设备进入,在控制器的控制下,由计算机进行计算,最后由输出设备输出计算结果。 8.计算机不仅可以加、减、乘、除等基本的计算,还可以进行基本逻辑计算,实现逻辑判断的比较以及数据的传送和等操作。 9.存储器具有记忆功能,是存放和指令的部件。 10.微机测算天然气流量系统包括采样、变送、、微机计算、输出等五部分。 11.位于孔板前10D、孔板后________的直管段称为测量管。 12.测量范围为0~4.0MPa,其最大绝对误差为0.06MPa,则此精度等级为________级。 13.球阀只能作全开或全关,不能作________。 二、选择题 1. 在常温常压下,天然气的爆炸限为( )。 (A)5%---10% (B)5%----15% (C)4%---74.2% (D)58% 2. 天然气的( )是输气过程中重要的控制参数,是监视和调节生产的依据,也是 企业生产经营中经济核算的主要数据。

(A)温度、压力、流量(B)压力、流量、液位 (C)流量、压力、流速(D)温度、压力、流速 3. 我国天然气的气质标准规定Ⅱ类气体中硫化氢的含量是()mg/m3。 (A)20 (B)10 (C)5 (D)2 4. 天然气流经节流装置时,流速和静压的变化是( ) (A)流速增加、静压降低(B)流速减小、静压降低 (C)流速减小、静压增加(D)流速增加、静压增加 5. 标准孔板两端面应符合()的技术要求。 (A)平行、光滑(B)平行、平整 (C)平行、无可见损伤(D)平行、平整、光滑、无可见损伤6. 清管站的主要任务是()清管器。 (A)发送(B)监测(C)收发(D)组装 7. 正常生产时,孔板及导板处在孔板阀的()中。 (A)上阀体(B)中阀体(C)下阀体(D)(A)和(C)8.孔板阀分( )两种取压方法. (A)环室取压和法兰取压(B)环室取压和角接取压 (C)角接取压和法兰取压(D)法兰取压和压力表取压 9.下列办法中不能建立推球压差的是()。 (A)随天然气速度自动建立(B)调整发球站压力 (C)同时排放球前天然气和球后天然气(D)调整收球站压力 10.在所有用气场合,如发生火灾时,应首先()。 (A)报警(B)关闭气源及有影响的电源 (C)关闭气源(D)组织灭火器材灭火 三、判断题 ()1. 仪表的测量误差,就是仪表的测量值与真实值之间的差值。 ()2. 球阀可半开半闭作为节流阀用。 ()3. 闸阀开关完后,应将手轮反向回转1—2圈。 ()4. 管输天然气过程中不能出现液态水。 ()5. 天然气流量计算的结果要求保留小数点后两位。

市政管道工程工程量计算规则

2012年《北京市建设工程计价依据一预算定额》市政管道工程 土方工程说明 一、本章包括:沟槽土方、基坑土方、回填土方、土方运输共四节24个子目。 二、本定额已综合考虑了各种土质(山区及近山区除外)使用时不得调整。 三、附录一每米管道土方数量表内包括放坡系数、分层开挖所增加的土方量。 四、土方工程定额中包括了自然方、压实方、虚方之间的换算因素,挖、运、回填土方工程量均按自然方计算。 五、土方工程定额按机械土方与人工土方两种施工方法编制。使用中根据施工方式套用相应定额子目。当采用机械挖土施工时,槽底人工清底执行人工土方定额子目。 六、基底处理执行回填土方相应定额子目。 七、借土及倒运土运输执行土方运输相应定额子目。 八、现场不具备放坡条件,采用支撑方式进行土方开挖时,不得参考附录一每米管道土方数量表计算土方工程量。按实际开槽断面面积乘以设计桩号长度计算,执行土方相应定额子目。支撑费用在措施费中计取。 九、本章不含现场障碍物清理、占地费、渣土消纳费、占道费、道路挖掘修复费,发生时另行计算。 十、土方开挖沟槽长度在12m以内时执行基坑土方相应定额子目。 工程量计算规则 一、沟槽及基坑挖土按沟槽或基坑开挖的断面面积(或参照每米管道土方数量表)乘以设计桩号长度计算。 二、开挖断面的计算: 1.槽深:同一结构断面的沟槽按管道纵断图折点分段,挖土深度从实际自然地面标高算至管道基底标高(有垫层时算至垫层底)。管道工程与道路工程同期施工时,且管道位于新建道路下,管道沟槽深度从设计道路路床底标高(若自然地面标高低于设计路床底标高时从自然地面标高)算至管道基底标高(有垫层时算至垫层底)。 2.槽底宽:

工程量统计案例1---新建管道工程工程量计算

新建管道工程工程量计算 新建管道工程图1-1(a)为管道沟截面示意图, 管道沟为一立型(底宽0. 65m),混凝土管道基础为一立型宽350mm、C15,图1-1(b)为管道工程施工图,图1-1(c)为人孔横截面示意图,在管道建设过程中,需要进行人孔抽水(弱水流),现场浇筑上覆。对于一个新建管道工程来说,主要工程量有施工测量、开挖路面、开挖与回填管道沟及人(手)孔坑、手推车倒运土方、管道基础(加筋或不加筋)、敷设管道(塑料、水泥、镀锌钢管)、管道包封、砖砌人(手)孔、防护工程等内容,土质为普通土,路面开挖方式采用人工开挖。下面将对照相关施工图纸对其进行逐一解答。 (a)管道沟截面示意图 (b)管道工程施工图 (c)人孔横截面示意图 图1-1 管道工程相关工程图 (1)施工测量:由图1-1(b)可知,小号直通1# 至2#之间距离为120m,即为1.2百米。 (2)开挖混凝土路面面积:由图1-1(b)可知混凝土路面厚度为150mm,经查询第五册《通信管道工程》预算定额手册的附录十可知:开挖定型人孔(小号直通)上口路面面积为即该工程开挖人孔上口路面面积为26. .38m2,即该工程开挖管道沟上口路面面积为26.38×2=52.76m2;同时查询附录九可知:开挖100m 长一立型(底宽

0. 65m)、沟深为1. 2m、放坡系数为0. 33的管道沟上口路面面积为144.2 m2,即该工程开挖管道沟上口路面面积为144.2×1.2=173.04m2.因此,本次工程开挖混凝土路面的总面积S=52. 76+173. 04=225.8 m2,即为2.258百平方米。 (3)人孔坑抽水(弱水流):数量=2个。 (4)开挖土方体积:查询第五册《通信管道工程》预算定额手册的附录十可知:开挖定型人孔(小号直通型) 51.4m3,即该工程开挖定型人孔(小号直通型)的土方体积为51.4×2=102.8m3; 同时查询附录八可知: 开挖100m 长一立型(底宽为0. 65m )、沟深为1. 2m、放坡系数为0. 33的管道沟土方体积为125.5 m3,即该工程开挖道沟土方体积为125.5×1.2=150.6 m3。因此,本次工程开挖土方体积V=102.8+150.6=253.4m3,即为2.534百立方米。 (5)回填土方体积:一般来说,通信管道工程的回填土方体积只计取管道沟的回填部分,人孔坑的回填部分忽略不计。管道沟的回填土方体积为管道沟开挖土方体积减去管群体积,即:管道体积=0. 41×0.41×120=20.172m3,管道沟的回填体积V=150.6-20.172=130.428m3,即为1.30428百立方米。 (6)手推车倒运土方体积:通信管道工程的倒运土方体积等于人孔坑的倒运土方体积与管道沟的倒运土方体积之和。其中,人孔坑的倒运土方体积等于人孔坑的开挖土方体积,即为102. 8m3;管道沟的倒运土方体积等于管群体积, 即为20.172m3。因此手推车倒运土方体积V=102. 8+20.172=122. 972m3,即为1.22972百立方米。 (7)混凝土管道基础(一立型350mm宽,C15): 数量=120m,即为1.2百米。 (8)敷设塑料管道(4孔(2×2)): 数量=120m,即为1.2百米。 (9)管道混凝土包封体积:根据模块一中通信管道建设有关包封的计算公式可知,V= [(0. 08-005) ×008×2+025×008×2+0.08× 2 +0.08×(0.08+0.25+0.08)]=9.312 m3。 (10)砖砌人孔(小号直通型,现场浇筑上覆):数量=2个。 (11) (11)防水砂浆抹面面积:从图9-4(c)可知:小号直通型人孔内长为1.7m,内宽为 1.2m,净高为 1.8m,则单个人孔内抹面面积为(1.7+1.2)×2×1.8+1.7×1.2=12.48 m2, 外抹面面积为(1.7+0.48+1.2+0.48)×2×1.8=13.896 m2,单个人孔的防水砂浆抹面总面积为12.48+13.896=26.376 m2,则两个人孔的抹面总面积S=26.376×2=52.752 m2。 本实例是按照预算定额手册的附录参考值进行近似计算,实际上也可运用模块一中相关计算公式进行精确计算。 现将上述计算出来的数据用工程量表格表示,如表1-1所示。

相关文档
相关文档 最新文档