文档库 最新最全的文档下载
当前位置:文档库 › (全国通用)高三数学 第09课时 第二章 函数 函数的解析式及定义域专题复习教案

(全国通用)高三数学 第09课时 第二章 函数 函数的解析式及定义域专题复习教案

(全国通用)高三数学 第09课时 第二章 函数 函数的解析式及定义域专题复习教案
(全国通用)高三数学 第09课时 第二章 函数 函数的解析式及定义域专题复习教案

第09课时:第二章 函数——函数的解析式及定义域

一.课题:函数的解析式及定义域 二.教学目标:掌握求函数解析式的三种常用方法:待定系数法、配凑法、换元法,能将一

些简单实际问题中的函数的解析式表示出来;掌握定义域的常见求法及其在实

际中的应用. 三.教学重点:能根据函数所具有的某些性质或所满足的一些关系,列出函数关系式;含字

母参数的函数,求其定义域要对字母参数分类讨论;实际问题确定的函数,其定义域除满足函数有意义外,还要符合实际问题的要求.

四.教学过程:

(一)主要知识:1.函数解析式的求解;2.函数定义域的求解.

(二)主要方法:

1.求函数解析式的题型有:

(1)已知函数类型,求函数的解析式:待定系数法;

(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;

(3)已知函数图像,求函数解析式;

(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;

(5)应用题求函数解析式常用方法有待定系数法等.

2.求函数定义域一般有三类问题:

(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;

(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;

(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域: ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出.

(三)例题分析:

例1.已知函数1()1x f x x

+=-的定义域为A ,函数()y f f x =????的定义域为B ,则 ()A A B B = ()B A B ≠? ()C A B = ()D A B B =( D )

解法要点:{}|1A x x =≠,121[()]()(1)11x y f f x f f x x x

+===-+=---, 令2111x -+

≠-且1x ≠,故{}{}|1|0B x x x x =≠≠.

例2.(1)已知33

1

1()f x x x x +=+,求()f x ; (2)已知2(1)lg f x x

+=,求()f x ;

(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ; (4)已知()f x 满足1

2()()3f x f x x

+=,求()f x . 解:(1)∵3331111()()3()f x x x x x x x x +=+

=+-+, ∴3()3f x x x =-(2x ≥或2x ≤-).

(2)令21t x

+=(1t >), 则21x t =-,∴2()lg 1f t t =-,∴2()lg (1)1

f x x x =>-. (3)设()(0)f x ax b a =+≠,

则3(1)2(1)3332225217f x f x ax a b ax a b ax b a x +--=++-+-=++=+, ∴2a =,7b =,∴()27f x x =+.

(4)1

2()()3f x f x x += ①,把①中的x 换成1x ,得132()()f f x x x

+= ②, ①2?-②得33()6f x x x =-,∴1()2f x x x

=-. 注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法.

例3.设函数2

221()log log (1)log ()1

x f x x p x x +=+-+--, (1)求函数的定义域;

(2)问()f x 是否存在最大值与最小值?如果存在,请把它写出来;如果不存在,请说明理由.

解:(1)由10

1100x x x p x +?>?-??->?->??

,解得1x x p >??

当1p ≤时,①不等式解集为φ;当1p >时,①不等式解集为{}|1x x p <<, ∴()f x 的定义域为(1,)(1)p p >.

(2)原函数即2

2221(1)()log [(1)()]log [()]24

p p f x x p x x -+=+-=--+, 当112

p -≤,即13p <≤时,函数()f x 既无最大值又无最小值; 当112p p -<

<,即3p >时,函数()f x 有最大值22log (1)2p +-,但无最小值.

例4.《高考A 计划》考点8,智能训练15:已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数.又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-.

①证明:(1)(4)0f f +=;②求(),[1,4]y f x x =∈的解析式;③求()y f x =在[4,9]上的解析式.

解:∵()f x 是以5为周期的周期函数,∴(4)(45)(1)f f f =-=-,

又∵()(11)y f x x =-≤≤是奇函数,∴(1)(1)(4)f f f =--=-,

∴(1)(4)0f f +=.

②当[1,4]x ∈时,由题意可设2

()(2) 5 (0)f x a x a =-->,

由(1)(4)0f f +=得22(12)5(42)50a a --+--=,∴2a =,

∴2()2(2)5(14)f x x x =--≤≤.

③∵()(11)y f x x =-≤≤是奇函数,∴(0)0f =,

又知()y f x =在[0,1]上是一次函数,∴可设()(01)f x kx x =≤≤,而

2(1)2(12)53f =--=-,

∴3k =-,∴当01x ≤≤时,()3f x x =-,

从而当10x -≤<时,()()3f x f x x =--=-,故11x -≤≤时,()3f x x =-. ∴当46x ≤≤时,有151x -≤-≤,∴()(5)3(5)315f x f x x x =-=--=-+. 当69x <≤时,154x <-≤,∴22

()(5)2[(5)2]52(7)5f x f x x x =-=---=-- ∴2315,46()2(7)5,69

x x f x x x -+≤≤?=?--<≤?.

例5.我国是水资源比较贫乏的国家之一,各地采取价格调控等手段来达到节约用水的目的,某地用水收费的方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量a 3m 时,只付基本费8元和每月每户的定额损耗费c 元;若用水量超过a 3m 时,除了付同上的基本费和定额损耗费外,超过部分每3m 付b 元的超额费.已知每户每月的定额损耗费不超过5元. 用水量()m 根据上表中的数据,求、、.

解:设每月用水量为x 3m ,支付费用为y 元,则有 8,0(1)8(),(2)c x a y b x a c x a +≤≤?=?+-+>?

由表知第二、第三月份的水费均大于13元,故用水量153m ,223m 均大于最低限量a 3

m ,于是就有198(15)338(22)b a c b a c =+-+??=+-+?

,解之得2b =,从而 219 (3)a c =+

再考虑一月份的用水量是否超过最低限量a 3

m ,不妨设9a >,将9x =代入(2)式,得982(9)a c =+-+,即217a c =+,这与(3)矛盾.∴9a ≤.

从而可知一月份的付款方式应选(1)式,因此,就有89c +=,得1c =. 故10a =,2b =,1c =.

(四)巩固练习:

1.已知2()f x 的定义域为[1,1]-,则(2)x

f 的定义域为(,0]-∞. 2.函数1sin 21sin 2

x y x +=-的定义域为{|(1),}6k x x k k Z ππ≠+-∈.

第一讲 函数的定义域和解析式

函数的定义域和解析式 一. 知识点 1常见函数的定义域:①分母不为零;②被开偶次方的数大于等于零;③0x 中x 不等于0 ④log a x 中0,1a a >≠,0x >;⑤x a 中0,1a a >≠⑥tan x 中,2x k k Z ππ≠+ ∈ 2.抽象函数的定义域:①定义域是指自变量x 的范围;②()f 中,()内的取值范围相同。 3.同一函数的判断:两个函数有相同的定义域和解析式。 二. 常考题 1. 函数()lg 43 x y x -=-的定义域是___________ 2. 已知函数()3f x +的定义域是[]4,5-,则函数()23f x -的定义域是___________ 3. 设()2lg 2x f x x +=-,则22x f f x ????+ ? ????? 的 定义域是___________ 4. 已知函数()2lg 2194y mx m x m ??=++++??的定义域是R,则m 的取值范围是 ___________。 5. .若函数()253 x f x x -=-的值域为[)4,+∞,()f x 的定义域是. _________。 6. 已知函数()21f x x =-,()2,01,0x x g x x ?≥=?-

函数的定义域及函数的解析式解读

函数的定义域及函数的解析式 因为函数是现实世界对应关系的抽象或者说是对应关系的数学模型,它重要而且基本,不仅是数学研究的重要对象,也是数学中常用的一种数学思想,所以全面正确深刻理解函数概念则是我们教学的关键.其中函数的定义域是研究函数及应用函数解决问题的基础,即处理函数问题必须树立“定义域优先”这种数学意识.熟练准确地写出函数表达式是对函数概念理 解充分体现.下面,针对函数的定义域及函数解析式做进一步探讨. 一、函数的定义域 [例1]求下列函数的定义域 (1)y=-22 1x +1 (2)y=4 22--x x (3)x x y +=1 (4)y=241+-+-x x (5)y=3 142-+-x x (6)y=)13(1 13-+--x x x (7)y= x 1 11 11++ (8)y=3-ax (a为常数) 分析:当函数是用解析法给出,并且没有指出定义域,则使函数解析式有意义的自变量的全体所组成的集合就是函数的定义域. 解:(1)x∈R (2)要使函数有意义,必须使x2-4≠0得原函数定义域为{x|x≠2且x≠-2} (3)要使函数有意义,必须使x+|x|≠0得原函数定义域为{x|x>0} (4)要使函数有意义,必须使? ??≥-≥-0401x x 得原函数的定义域为{x|1≤x≤4}

(5)要使函数有意义,必须使?????≠-≥-0 3042x x 得原函数定义域为{x|-2≤x≤2} (6)要使函数有意义,必须使???≠-≠-0 1301x x 得原函数的定义域为{x|x≠31且x≠1} (7)要使函数有意义,必须使??????? ????????≥++≠++≠+≠01111011110110x x x x 得 原函数的定义域为{x|x<-1或x>0或- 2 1<x<0} (8)要使函数有意义,必须使ax-3≥0得当a>0时,原函数定义域为 {x|x≥a 3} 当a<0时,原函数定义域为{x|x≤a 3} 当a=0时,ax-3≥0的解集为?,故原函数定义域为? 评述:(1)求函数定义域就是求使函数解析式有意义的自变量取值的集合,一般可通过解不等式或不等式组完成. (2)对于含参数的函数定义域常常受参数变化范围的制约,受制约时应对参数进行分类讨论.例1中的(8)小题含有参数a,须对它分类讨论. [例2](1)已知函数f(x)的定义域为(0,1),求f(x2)的定义域. (2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域. (3)已知函数f(x+1)的定义域为[-2,3],求f(2x2-2)的定义域. 分析:(1)求函数定义域就是求自变量x的取值范围,求f(x2)的定义域就是求x的范围,而不是求x2的范围,这里x与x2的地位相同,所满足的条件一样. (2)应由0<x<1确定出2x+1的范围,即为函数f(x)的定义域. (3)应由-2≤x≤3确定出x+1的范围,求出函数f(x)的定义域进而再求 f(2x2-2)的定义域.它是(1)与(2)的综合应用. 解:(1)∵f(x)的定义域为(0,1) ∴要使f(x2)有意义,须使0<x2x<0或0<x

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

高中数学-函数的解析式和定义域

6 函数的解析式和定义域 一、基础训练 1.函数的定义域是. 2.已知函数的定义域为,则的定义域为. 3.在一定范围内,某种产品的购买量吨与单价元之间满足一次函数关系.如果购买1000吨,每吨800元;购买2000吨,每吨700元.那么客户购买400吨,单价应该是元. 4.已知,则. 5.若函数的定义域为,则实数的取值范围是. 6.若函数,那么. 7.(2011江西卷)若函数,则函数的定义域是. 8.若函数的定义域为实数集,则实数的取值范围是.二、例题精讲 例1.求下列函数的定义域. (1);(2); (3). 例2.已知函数的定义域为,求下列函数的定义域. (1);(2). 例3.(1)设二次函数的最大值为13,且,求的解析式;(2)已知,求的解析式和定义域. 例4.已知函数,其中.

(1)求函数的定义域; (2)若对任意,恒有,求的取值范围. 三、巩固练习 1.已知,则. 2.函数的定义域是. 3.若(),则, . 4.设函数的定义域为,函数的定义域为,若,则实数的取值范围是. 四、要点回顾 1.函数的解析式是函数的一种表示方法,求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是求出函数的定义域.求函数表达式的主要方法有:待定系数法、换元 法等.如果一直函数解析类型,可以用待定系数法.已知复合函数的表达式时,可用换元法,这时要注意“元”的取值范围. 2.函数的定义域就是使函数有意义的自变量的取值范围. (1)定义域经常作为基本条件(或工具)出现在高考题中,通过函数性质或函数应用来考察,具有隐蔽性,所以在解决函数问题时,必须树立起“定义域优先”的观点. (2)确定定义域的原则是: 1当函数用表格给出时,函数的定义域是指表格中实数的集合. 2当函数用图像给出时,函数的定义域是指图像在轴上投影所覆盖的实数的集合. 3当函数用解析式给出时,函数的定义域就是指使解析式有意义的自变量取值的集合. 4当函数用实际问题给出时,函数的定义域由实际问题的意义确定. 函数的解析式和定义域作业

求函数的定义域及解析式

高一数学必修1 编号:SX--01--06 《求函数的定义域及解析式专题》导学案 撰稿:张娜 审核: 涂珎 时间:2010.9.5 姓名: 班级: 组别: 组名:____________ 【学习目标】 1、熟练掌握求具体函数和抽象函数的定义域的一般方法; 2、熟练运用换元法、待定系数法、解方程组等方法求函数的解析式. 【重点难点】 重点:求函数的定义域及解析式 难点:求函数的定义域及解析式 【知识链接】 函数的三要素:定义域、解析式、值域 【学习过程】 知识点一:求具体函数的解析式 例1求下列函数的定义域: (1)x y 213- =; (2)x x y ---= 11; (3)30 +=x x y ; (4)11+?-=x x y . 点拨:求具体函数的定义域,其实质是求使解析式各部分有意义的未知数的取值范围. 知识点二 求抽象函数的定义域 抽象函数是没有明确给出具体解析式的函数,求抽象函数的定义域问题主要有四种题型: 题型一:已知的定义域的定义域,求 ))(()(x g f x f 解法:若b x g a x g f b x a x f ≤≤≤≤)())(()(中,则的定义域为,从中解得x 的取值范围即

为))((x g f 的定义域 例2、已知函数的定义域求的定义域为)5(],5,1[)(--x f x f . 题型二:已知的定义域的定义域,求)())((x f x g f 解法:若)()(,))((x g u x g n x m n x m x g f =≤≤≤≤的范围,设确定则由的定义域为, 则的定义域的范围即为是同一函数,所以与又)()()()(),())((x f x g x f u f u f x g f = 例3、已知函数的定义域,求函数的定义域是)(]3,0[)1(x f x f -. 题型三:已知的定义域的定义域,求))(())((x h f x g f 解法:先由的的定义域求得的定义域,再由定义域求得))(()()())((x h f x f x f x g f 定义域 例4、若函数的定义域求的定义域为)1(],2,2 1[)1(--+x f x f . 题型四:求运算型的抽象函数(由有限个抽象函数经四则运算得到的函数)的定义域 解法:先求出各个函数的定义域,再求交集 例5、若的定义域,求的定义域为 )()()(]5,3[)(x f x f x x f +-=-?.

2011届高三数学一轮巩固与练习:二次函数

练习与巩固 1.(2008年高考辽宁卷)若函数y =(x +1)(x -a )为偶函数,则a 等于( ) A .-2 B .-1 C .1 D .2 解析:选C.∵y =(x +1)(x -a )=x 2+(1-a )x -a 是偶函数 ∴1-a =0,∴a =1,故选C. 2.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( ) A .a >2或a <-2 B .-20,a 2>4即a >2或a <-2. 3.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( ) A .正数 B .负数 C .非负数 D .与m 有关 解析:选B.法一:∵f (x )=x 2 -x +a 的对称轴为x =12, 而-m ,m +1关于1 2对称, ∴f (m +1)=f (-m )<0,故选B. 法二:∵f (-m )<0,∴m 2+m +a <0, ∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0.故选B. 4.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )

解析:选D.∵a >b >c ,且a +b +c =0,得a >0,c <0(用反证法可得),∴f (0)=c <0,∴只能是D. 5.已知函数f (x )=x 2 +ax +b ,且f (x +2)是偶函数,则f (1),f (5 2), f (7 2)的大小关系是( ) A .f (52)<f (1)<f (72) B .f (1)<f (72)<f (52) C .f (72)<f (1)<f (52) D .f (72)<f (5 2)<f (1) 解析:选A.由f (x +2)是偶函数可知函数f (x )=x 2+ax +b 关于直线x =2对称,所以f (1)=f (3),又该函数图象开口向上,当x >2时单 调递增,故f (52)<f (3)=f (1)<f (7 2),故答案为A. 6.如图,有一直角墙角,两边的长度 足够长,在P 处有一棵树与两墙的距离分别为a m(0<a <12)、4 m ,不考虑树的粗细.现在想用16 m 长的篱笆,借助墙角围成一个矩形的花圃ABCD .设此矩形花圃的面积为S m 2,S 的最大值为f (a ),若将这颗树围在花圃内,则函数u =f (a )的图象大致是( )

函数的定义域、值域及解析式

函数的定义域、值域及解析式 【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 常见函数的定义域与值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)例. 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f ( x ) = (x-1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (√x)2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x2-2x+2, g ( x )=t2-2t+2 3.区间的概念

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

高中数学函数的解析式和抽象函数定义域练习题

1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ D P C P A P B

换元法(3)13)2(2++=-x x x f 待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

函数的定义域值域和解析式

函数的定义域、值域和解析式 1.函数的定义域 函数的定义域是指使函数有意义的自变量的取值范围. 2.求函数定义域的主要依据: ①分式函数:分母不为0; ②偶次方根:被开方数为非负数; ③对数函数:真数大于0,底数大于0且不为1; ④零次幂的底数不等于0 注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。 指数函数 x a y =(a >0且a ≠1) R (0,+∞) 对数函数 x y a log =(a >0且a ≠ 1) (0,+∞) R 正、余弦函数 y =sin x ,y =cos x R [-1,1] 正切函数 y =tan x {x |x ≠k π +2 π,k ∈Z} R 解析式 定义域 值域 一次函数 y =kx +b (k ≠0) R R 二次函数 c bx ax y ++=2 (a ≠0) R 当a >0时,),44( 2 +∞-a b a c 当a <0时,)44, (2 a b a c --∞ 反比例函数 x k y = (k ≠0) {x |x ≠0} {y |y ≠0} 均值函数 x b ax y + =(a >0,b >0) {x |x ≠0} (-∞,-2ab ]∪[2ab ,+∞) 常见函数的定义域与值域

,0 ||0 1?? ?>-≠+x x x ,||1 ? ??>-≠x x x 例1求下列函数的定义域 (1)1 log 1 )(2-=x x f (2))1(log 1 |2|)(2---=x x x f (3)y=x x x -+||)1(0 ; 解:(1)由题意可得???>->01log 0 2 x x 解得x >2. ∴所求定义域为(2,+∞) ?? ? ??≠->-≥--110 10 1|2|x x x 解得x ≥3 (2)由题意得 ∴所求定义域为(3,+∞) (3)由题意 化简 故函数的定义域为{x|x <0且x ≠-1}. 练习:求函数的定义域 (1) y=2 3 2 531 x x -+-; (2))34lg(1 3)(22-+-+-=x x x x x f 3.抽象函数的定义域 求复合函数y =f(t),t =q(x)的定义域的方法: ①若y =f(t)的定义域为(a ,b),则解不等式得a <q(x)<b 即可求出y =f(q(x))的定义域; ②若y =f(g(x))的定义域为(a ,b),则求出g(x)的值域即为f(t)的定义域. 例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f(x 1);(3)y=f( )31 ()31-++x f x ; 解:(1)0≤3x ≤1,故0≤x ≤3 1 , y=f(3x)的定义域为[0, 3 1] . (2)仿(1)解得定义域为[1,+∞ ). (3)由条件,y 的定义域是f )31(+x 与)3 1 (-x 定义域的交集 .

函数的解析式以及定义域的求法讲义

函数的解析式以及定义域的求法 一:学生情况及其分析:上海高一学生,不等式学完了,国庆没有上课,这节课给她巩固求解析式的方法,思维灵活,自己动手能力挺好,所以有些例题有留给她一定的思考空间。 二:教学目的: 1.学习函数的表示方法中的解析式的求法, 2.会求解简单函数以及复合函数的定义域 三:教学设计: 1,教学回顾:函数的概念是什么?函数的三要素是什么?函数的表示方法有哪些? 2,教学过程: 一、解析式的求解 (一)换元法: 已知f (g(x)),求f(x)的解析式,一般的可用换元法,具体为:令t=g(x),再求出f(t)可得f (x )的解析式。换元后要确定新元t 的取值范围。 例1.若x x x f -=1)1(,求)(x f . 分析:怎么能由)1(x f 的解析式得到)(x f 的解析式,他们的联系是什么? 练习1.已知x x x f 2)1(+=+,求)1(+x f 练习2.已知) 123f x =+,求()f x 的表达式。 思考:已知2 21)1 (x x x x f +=+,求()f x 的表达式。 分析:题型好像和上面一样,是不是能用同样的方法做出来? (二)配凑法: 把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有g(x)的形式,再把g(x)用x 代替。 一般的利用完全平方公式 例2.若x x x f 2)1(+=+,求)(x f . 分析:观察怎么才能得到f(x)? 练习1.已知) 123f x =+,求()f x 的表达式。

(三)待定系数法: 已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数 例3. 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 分析:对于一次函数的解析式,我们是不是很熟悉,那能不能先设出他的一般形式呢? 练习1.已知f (x )是二次函数,且满足f (x +1)+f (x -1)=2x 2-4x ,求f (x ). 练习2.已知一次函数()f x ,()()1223f x f x x -+=+,求函数()f x 的解析式。 (四)解方程组法: 求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f (x )的解析式 例4. 设,)1(2)()(x x f x f x f =-满足求)(x f 分析:我们用1/x 去代替x 试试看有什么惊人的效果! 练习1.若x x x f x f +=-+1)1()(,求)(x f . (五)特殊值法; 一般的,已知一个关于x,y 的抽象函数,利用特殊值去掉一个未知数y ,得出关于x 的解析式。 例5:已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f 分析:题干中信息太少?就用你能看得见的条件呗,那令谁等于0呢? 练习1.函数f(x)对一切实数x,y 均有f(x+y)-f(y)=(x+2y+1)x 成立,且f(1)=0.求f(x)的解析式。 练习2.已知(0)1,()()(21),f f a b f a b a b =-=--+求()f x 。 (六)代入法: 求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例6.已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 分析:两点关于某点对称时有什么特征?

(精心整理)高三数学复习二次函数

2.6 二次函数 ●知识梳理 二次函数的基本性质 (1)二次函数的三种表示法: y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n . (2)当a >0,f (x )在区间[p ,q ]上的最大值为M ,最小值为m ,令x 0= 2 1 (p +q ). 若- a b 2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-a b 2)=m ; 若-a b 2≥q ,则f (p )=M ,f (q )=m . ●点击双基 1.设二次函数f (x )=ax 2+bx +c (a ≠0),如果f (x 1)=f (x 2)(其中x 1≠x 2),则f (2 2 1x x +)等于 A.- a b 2 B.- a b C.c D.a b a c 442- 解析:f (221x x +)=f (-a b 2)=a b ac 442-. 答案:D 2.二次函数y =x 2-2(a +b )x +c 2+2ab 的图象的顶点在x 轴上,且a 、b 、c 为△ABC 的三边长,则△ABC 为 A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 解析:y =[x -(a +b )]2+c 2+2ab -(a +b )2=[x -(a +b )]2+c 2-a 2-b 2. ∴顶点为(a +b ,c 2-a 2-b 2). 由题意知c 2-a 2-b 2=0. ∴△ABC 为直角三角形. 答案:B 3.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的范围是 A.f (1)≥25 B.f (1)=25 C.f (1)≤25 D.f (1)>25 解析:由y =f (x )的对称轴是x =8m ,可知f (x )在[8 m ,+∞)上递增,由题设只 需

高一数学 函数的解析式、定义域和值域

函数的解析式、定义域和值域 一、知识梳理 1.函数的概念 设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作 )(x f y =,A x ∈. 函数的本质含义是定义域内任一x 值,必须有且仅有惟一的y 值与之对应. 函数的定义域与值域:函数的定义中,自变量x 取值的范围叫做这个函数的定义域;所有函数值构成的集合 {}A x x f y y ∈=),(叫做这个函数的值域. 确定一个函数的两个要素:定义域,对应法则. 函数好比数的加工厂,定义域是加工范围,值域是产品系列,f 是加工手段. 2.函数的表示法:列表法,图象法,解析法. 图象法和解析法是考查的重点. 3.映射的概念 设A ,B 是两个非空的集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射. 这时,称y 是x 在映射f 作用下的象,记作)(x f ,于是y =)(x f ,x 称作 y 的原象. 映射f 也可记为 B A f →: )(x f x → 其中A 叫做映射f 的定义域,由所有象)(x f 构成的集合叫做映射f 的值域. 二、方法归纳 求函数的解析式的一般方法:配凑法、换元法、待定系数法、特殊值法等等. 求函数的定义域的一般原则:分母不为零,偶次根下的式子不负,零的零次幂没意义,零和负数无对数,等等. 求函数的值域的常见方法:直接法、配方法、换元法、判别式法、数形结合法、反函数法、单调性法等等. 判断某“对应法则”是否为A→B 的映射,主要表现为“一对一”及“多对一”的两种特殊对应;应特别注意:①A 中任一元素在B 中应有象,且象唯一;②B 中可以有空闲元素,即B 中可以有元素没有原象. 三、典型例题精讲

函数的定义域值域及解析式

函数的定义域值域及解 析式 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

函数的定义域、值域及解析式【教学目标】 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 2.了解对应关系在刻画函数概念中的作用。 3.了解构成函数的三要素,会求一些简单函数的定义域和值域 【教学重难点】函数定义域、值域以及解析式的求法。 【教学内容】 1.定义 高中函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.如:f(x)=x2 f(x)=2x+2等 (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 2.构成函数的三要素:定义域、对应关系和值域 函数解析式定义域值域 一次函数y=ax+b(a≠0) 二次函数y=ax2+bx+c(a≠0) 反比例函数 (k为常数, k≠0) 注意:

1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 例. 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? (1)f ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x ; g ( x ) = (√x )2 (3)f ( x ) = x 2;g ( x ) = (x + 1) 2 (4)f ( x )=x 2-2x+2, g ( x )=t 2-2t+2 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间;“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”。 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. 练习、请用区间表示 (1){|12}x x <<=____________, {|01}x x ≤≤=____________, {|10}x x -≤<=____________, {|23}x x <≤=____________, (2){|}x x a ≥=____________, {|}x x a >=____________,

函数定义域值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33 y x = +- (2 )01(21)111 y x x = +-++ - 2、设函数的定义域为,则函数的定义域为_ _ _;函数 的定义域为________; 3、若函数(1)f x +的定义域为 ,则函数(21)f x -的定义域是 ;函 数1 (2)f x +的定义域为 。 4、 已知函数 的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵ y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶ x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸ 2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 )

高三数学专题01-二次函数综合问题例谈

二次函数综合问题 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((21)),1()1((2 1--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f . 例 2 设()()f x ax bx c a =++≠2 0,若()f 01≤,()f 11≤,()f -11≤, 试证明:对于任意-≤≤11x ,有()f x ≤54 . 分析:同上题,可以用()()()1,1,0-f f f 来表示c b a ,,. 解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1, ∴ ()()()()0)),1()1((2 1),0211(21f c f f b f f f a =--=--+=, ∴ ()()()()() 222102121x f x x f x x f x f -+???? ??--+???? ??+=.

第二章 解析函数

第二章 解析函数 §1 复变函数 一 、复变函数的概念 1. 定义:设D 为复平面上的点集,对?点D z ∈,按某种法则, 总有另一复数W 与之对应,则称W 是Z 的复变函数,记为)(z f w =。 其中,称W 为像;Z 为原像。 若W Z 与是一一对应,则称)(z f w =为单值函数,若W Z 与 是相互一一对应,则称)(z f w =为单叶函数;Z 对应多个W , 则称)(z f w =为多值函数。 2、复变函数与实变函数的关系 设iy x z +=,iv u y x iv y x u z f W +=+==),(),()(, 即有????=?=)()(y x v v y x u u 这说明了一个复变函数可以用 两个二元实变函数 ),(),,(y x v y x u 来表示。 例:xy i y x Z W 2)(2 2 2 +-==???=-=?xy v y x u 22 2。 ??? ????+-=+=?+-+=+-===22 2 22222221y x y v y x x u y x y i y x x y x iy x z z z z w 3.关于映射的慨念 复变函数在几何上又称为映射(或变换)。这种函数关系要用两个平面来表示。 函数)(z f w =在几何上可以看成是把z 平面上的一个点集G 映射到 w 平面上的一个点集*G 。 例 z w =,显然,它将z 平面上的点i z 321+=映射成w 平面上的 点i w 321-=,将点i z 212-=映射成w 平面上的点i w 212+=, 将三角形ABC 映射成w 平面上的三角形'''C B A .

函数的概念、定义域及解析式

函数的概念、定义域及解析式

函数的概念、定义域及解析式 一.课题:函数的概念及解析式 二.教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂. 四.教学过程: (一)主要知识: 1.对应、映射、像和原像、一一映射的定义; 映射----设A、B是两个非空集合,如果按照某种对应法则f,对于集合A 中的任意一个元素X,在集合B中都有唯一确定的元素Y与之对应,那么这样的对应关系叫做从集合A到集合B的映射。记作f:A→B. 其中X叫做Y的原象,Y叫做X的象。映射是特殊的对应,只能一对一或多对一,不能一对多。 一一映射-----在集合A到集合B的映射中,若集合B中的任意一个元素在集合A中都有唯一的元素与之对应,那么就说这样的映射叫做从集合A到集合B的一一映射。 2.函数的概念 函数的传统定义和近代定义; 传统定义-------如果在某变化过程中有两个变量X、Y,对于X在某个范围内的每一个确定的值,按照某个对应法则f,Y都江堰市有唯一的值和它对应,那么Y就是X的函数。记为Y=f(X) 近代定义-----函数是由一个非空数集另一个非空数集的映射。(或如果A、B 都是非空的数集,那么从A到B的映射f:A→B叫做A到B的函数。原象的集合A叫做函数的定义域,象的集合C叫做函数的值域)。函数是特殊的映射,只能是从非空数集到非空数集的映射。 3.函数的三要素及表示法. 函数的三要素-----定义域、值域、对应法则。(是判断两个是否为同一函数的依据)由于值域可由定义域和对应法则唯一确定,故也可说函数只有两要素,即判两个函数是否为同一函数可用定义域和对应法则来判断。 函数的表示法通常有:解析法、列表法、图象法。 4,函数的解析式:函数的解析式是指用运算符号和等号把数和表示数的字母连结而成的式子。 对应法则是函数的:“核心”它是自变量与因变量沟通的桥梁,它给出了当已知一个自变量的值时,得出对应的函数值的一种算法。求函数的解析式,本质上就是要弄清函数的对应法则。 分段函数的概念:有些函数在它的定义域中,对于自变量X的不同取值范围,对应法则不同,这样的函数通常称为分段函数。注意分段函数是一个函数而不是几个函数。故分段函数的定义域是指“各段”对应的X的范围的并集;其值域也是“各段”对应的Y值的范围的并集。 5.函数的定义域----是指使函数有意义的自变量的取值范围。 函数的定义域基本上分为两类:(1)限定定义域(2)自然定义域

相关文档
相关文档 最新文档