文档库 最新最全的文档下载
当前位置:文档库 › 2012届高三一轮复习名师一号文科数学第三模块不等式推理与证明

2012届高三一轮复习名师一号文科数学第三模块不等式推理与证明

2012届高三一轮复习名师一号文科数学第三模块不等式推理与证明
2012届高三一轮复习名师一号文科数学第三模块不等式推理与证明

第三模块不等式推理与证明综合检测

(时间120分钟,满分150分)

一?选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.不等式(x-1)(2-x)≥0的解集是( )

A.{x|1

B.{x|1≤x≤2}

C.{x|x<1或x>2}

D.{x|x≤1或x≥2}

解析:(x-1)(2-x)≥0?(x-1)(x-2)≤0?1≤x≤2.

答案:B

2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )

A.使用了归纳推理

B.使用了类比推理

C.使用了“三段式”,但大前提错误

D.使用了“三段式”,但小前提错误

解析:大前提是特称量词,而小前提是全称量词,所以小前提错误.

答案:D

3.已知条件p:x≤1,条件q:1

x

<1,则q是非p成立的( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

解析:由1

x

<1,得x>1或x<0,

∴q:x>1或x<0,而非p:x>1. ∴q是非p的必要不充分条件. 答案:B

4.下列命题正确的是( )

A.当x>0且x≠1时,lgx+

1

lgx

≥2

B.当x>0时

≥2

C.当x≥2时,x+1

x

的最小值为2.

D.当x∈(0,2]时,x-1

x

无最大值

解析:A错,当0

1

lgx

<0;B正确≥2,当且仅当x=1时,取等号;C

错,当x≥2时,x+1

x

是增函数,所以当x=2时,有最小值

5

2

;D错,易知x-

1

x

是增函数,所以当

x=2时,x-1

x

有最大值

3

.

2

答案:B

5.当log2a>1时,不等式x2-(a+2)x+2a>0的解集为( )

A.{x|x2}

B.{x|x<2或x>a}

C.{x|0

D.{x|2

解析:∵log2a>1,∴a>2,x2-(a+2)x+2a>0?(x-a)(x-2)>0,∴x<2或x>a. 答案:B

6.如果f(x)=mx2+(m-1)x+1在区间(-∞,1]上是减函数,则m的取值范围是( )

A.

1

0,

3

??

?

??

B.

1

0,

3

??

?

???

C.

1

0,

3

??

??

??

D.

1

0,

3

??

?

??

解析:当m=0时,f(x)=-x+1,适合题意.

当m≠0时,若f(x)在(-∞,1]上为减函数.

0,

1

1

2

m

m

m

>

?

?

-

?

-?

?

?0

3

.

综上知0≤m≤1

3

.

答案:C

7.平面内平行于同一直线的两条直线平行,由类比推理可以得到( )

A.空间中平行同一直线的两直线平行

B.空间中平行于同一平面的两直线平行

C.空间中平行同一直线的两平面平行

D.空间中平行于同一平面的两平面平行

解析:平面与空间?直线与平面类比.

答案:D

n=( )

A.m

B.m=n

C.m>n

D.m,n大小不确定

解析:∵a≥0,∴m>0,n>0.

又m2

n2

∴m2

答案:A

9.若x,y∈R,且2x2+y2=6x,则x2+y2+2x的最大值为( )

A.14

B.15

C.16

D.17

解析:∵2x2+y2=6x,

∴y2=6x-2x2=2x(3-x)≥0,∴0≤x≤3.

∴x2+y2+2x=x2+6x-2x2+2x=-x2+8x

=-(x-4)2+16.

∴当x=3时,有最大值15.

答案:B

10.(2010·新课标全国卷)设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}=( )

A.{x|x<-2或x>4}

B.{x|x<0或x>4}

C.{x|x<0或x>6}

D.{x|x<-2或x>2}

解析:∵f(x)为偶函数,∴当x<0时,f(x)=2-x-4.

∴f(x)=

24(0), 24(0).

x

x

x

x

-

?-

?

-<

?

故f(x-2)>0同解于

220,240,x x --??->?≥或(2)20,2

40,x x ---? 解得x>4或x<0.

∴{x|f(x -2)>0}={x|x<0或x>4}.

答案:B

二?填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.

11.设a,b 为正数,且a+b=1,则112a b

+的最小值是________. 解析:∵a+b=1,∴11112222a b a b b a a b a b a b +++=+=+++

≥32

+,当且仅当

答案

:32

+12.观察下图:

1

2 3 4

3 4 5 6 7

4 5 6 7 8 9 10

………

则第________行的各数之和等于20112

.

解析:通过观察题图发现规律,每一行数字之和等于(2n-1)2.故由(2n-1)2=20112,得n=1006.

答案:1006

13.(2010·临沂模拟)已知不等式ax 2+bx+c>0的解集为{x|2

解析:由题意:

0,

6,

8,

a

b

a

c

a

?

?<

?

?

-=

?

?

?

=

??

?

0,

3

,

4

1

.

8

c

b

c

a

c

?

?<

?

?

-=

?

?

?

=

??

∴cx2+bx+a<0可化为x2+b a

x

c c

+>0,

即x2-31

48

x+>0,解得

11

|

24

x x x

??

><

??

??

或.

答案:

11 |

24 x x x

??

><

????

14.(2010·辽宁卷)已知-1

解析:画出不等式组

1

4

2

3

x y

x y

x y

x y

+>-

?

?+<

?

?

->

?

?-<

?

,表示的平面区域,如图所示.(阴影部分,不包括边界

)

平移直线2x-3y=0,当过点A(3,1)时,z=2x-3y=2×3-3×1=3为最小值,当过点B(1,-2)时,z=2×1-3×(-2)=8为最大值,故z的取值范围是(3,8).

答案:(3,8)

15.(2010·宿州模拟)如图,对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:

仿此,52的“分裂”中最大的数是________,53的“分裂”中最小的数是________.

解析:仿此规律,52可“分裂”为1,3,5,7,9;53可“分裂”为21,23,25,27,29.因此,52的“分裂”中最大的数是9,53的“分裂”中最小的数是21.

答案:9 21

三?解答题:本大题共6小题,共75分.解答应写出文字说明?证明过程或演算步骤.

16.设a+b>0,n为偶数,

求证:

11

n n

n n

b a

a b

--

+≥

11

a b

+.

证明:∵a≠0,b≠0,n为偶数, ∴a n>0,b n>0.

要证

11

n n

n n

b a

a b

--

+≥

11

a b

+,

只要证b n?b n-1+a n?a n-1≥a n-1b n+a n b n-1,

即证(a n-b n)(a n-1-b n-1)≥0.

(1)当a>0,b>0时,(a n-b n)与(a n-1-b n-1)同号,

∴(a n-b n)(a n-1-b n-1)≥0.

(2)当a,b中有一个是负数时,不妨设a>0,b<0,且a+b>0,则a>|b|>0, ∵n为偶数,∴a n>b n,a n-1>b n-1,

∴(a n-b n)(a n-1-b n-1)>0.

综上所述,原不等式成立.

17.一种计算装置,有一个数据入口A和一个运算出口B,按照某个运算程序:①当从A口

输入自然数1时,从B口得到1

3

,记为f(1)=

1

3

;②当从A口输入自然数n(n≥2)时,在B口得

到的结果f(n)是前一个结果f(n-1)的2(1)1

2(1)3

n

n

--

-+

倍.

试问:当从A口分别输入自然数2,3,4时,从B口分别得到什么数?试猜想f(n)的关系式.

解:由已知得f(n)=23

21

n

n

-

+

f(n-1)(n≥2,n∈N*).

当n=2时,f(2)=43

41

-

+

·f(1)=

1

5

×

11

315

=,

同理可求得

11 (3),(4)

3563 f f

==,

猜想

1

()

(21)(21)

f n

n n

=

-+

.

18.已知f(x)=x2+ax+b.

(1)求f(1)+f(3)-2f(2)的值;

(2)求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1

2

.

解:(1)f(1)+f(3)-2f(2)=(1+a+b)+(9+3a+b)-2(4+2a+b)=2.

(2)证明:证法一:假设|f(1)|,|f(2)|,|f(3)|都小于1

2

,

则|f(1)|+2|f(2)|+|f(3)|<2,

而|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2)=(1+a+b)+(9+3a+b)-(8+4a+2b)=2出现矛盾,∴假设不成立,

∴|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1

2

.

证法二:假设|f(1)|<1

2

,且|f(2)|<

1

2

,且|f(3)|<

1

2

,

则有

11

1

22

11

42

22

11

93

22

a b

a b

a b

?

-<++<

?

?

?

-<++<

?

?

?

-<++<

??

由①②得-4

由②③得-6

∴a不存在,解析式无意义,与已知条件矛盾. ∴假设不成立.

∴|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1

2

.

19.设f(x)

,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想,一般性结论,并给出证明.

3

===

,

(1)(2)

f f

-+=====

f(-2)+f(3)=

2

====

归纳猜想得

(n∈Z).

证明

n

==

20.某个体户计划经销A?B两种商品,据调查统计,当投资额为x(x≥0)万元时,经销A?B 商品中所获得的收益分别为f(x)万元与g(x)万元,其中

f(x)=x+1;g(x)=

2

101

(03)

1

912(35)

x

x

x

x x x

+

?

?

+

?

?-+-<

?

≤≤

,如果该个体户准备投入5万元经营这两种商品,请帮他制定一个资金投入方案,使他能获得最大收益,并求出其最大收益.

解:设投入B商品的资金为x万元(0≤x≤5),则投A商品的资金为5-x万元,并设所获得的收入为S(x)万元.

(1)当0≤x≤3时,f(x)=6-x,g(x)=

101

1

x

x

+

+

,

S(x)=6-x+

101

1

x

x

+

+

=17-

9

(1)

1

x

x

??

++

??

+

??

≤17-6=11,

当且仅当x+1=

9

1

x+

,即当x=2时取等号.

(2)当3

g(x)=-x2+9x-12.

S(x)=6-x-x2+9x-12=-x2+8x-6

=-(x-4)2+10≤10,此时x=4.

∵10<11,

∴最大收益为11万元.

答:该个体户可对A商品投入3万元,对B商品投入2万元,这样可以获得11万元的最大

收益.

21.已知a>1,命题p:a(x-2)+1>0,命题q:(x-1)2

>a(x-2)+1,若命题p 与q 同时成立,求x 的取值范围. 解:依题意得2(2)10,(1)(2)1,

a x x a x -+>??->-+? ∵a>1,∴12,()(2)0.

x a x a x ?>-???-->? ①当1

x a x a x ?>-???<>?或 而a-12a ?

?-

???=a+1a -2>0, ∴a>2-1a ,∴2-1a

2. ②当a=2时,则x>

32且x≠2. ③当a>2时,则12,2.

x a x x a ?>-???<>?或 ∴x>a 或2-

1a

?- ???

∪(2,+∞); 当a=2时,x 的取值范围是3,22?? ???

∪(2,+∞);

当a>2时,x的取值范围是

1

2,2

a

??

-

?

??

∪(a,+∞).

2019高考试题文科数学汇编:不等式

2019高考试题文科数学汇编:不等式 1.【2018高考山东文6】设变量,x y 满足约束条件22,24,41,x y x y x y +≥?? +≤??-≥-? 那么目标函数3z x y =-的取 值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3 [6,]2 - 【答案】A 2.【2018高考安徽文8】假设x ,y 满足约束条件 02323x x y x y ≥?? +≥??+≤? ,那么y x z -=的最 小值是 〔A 〕-3 〔B 〕0 〔C 〕 3 2 〔D 〕3 【答案】A 3.【2018高考新课标文5】正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 〔A 〕(1-3,2) 〔B 〕(0,2) 〔C 〕(3-1,2) 〔D 〕(0,1+3) 【答案】A 4.【2018高考重庆文2】不等式 1 02 x x -<+ 的解集是为 〔A 〕(1,)+∞ 〔B 〕 (,2)-∞- 〔C 〕〔-2,1〕〔D 〕(,2)-∞-∪(1,)+∞ 【答案】C 5.【2018高考浙江文9】假设正数x ,y 满足x+3y=5xy ,那么3x+4y 的最小值是 A. 245 B. 285 C.5 D.6 【答案】C 6.【2018高考四川文8】假设变量,x y 满足约束条件3, 212,21200 x y x y x y x y -≥-??+≤?? +≤??≥?≥??,那么34z x y =+的最 大值是〔 〕 A 、12 B 、26 C 、28 D 、33 【答案】C 7.【2018高考天津文科2】设变量x,y 满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,那么目标函数z=3x-2y 的最小值为

高中数学选修2-2推理与证明教(学)案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

备战2019高考数学选择题专题04不等式的证明理

专题04 不等式的证明 知识通关 1.基本不等式 (1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2(基本不等式):如果a ,b>0,那么 2 a b ab +≥,当且仅当a=b 时,等号成立. 用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数. (3)定理3:如果a ,b ,c 为正数,那么 3 3 a b c abc ++≥a =b =c 时,等号成立. 用语言可以表述为:三个正数的算术平均数不小于(即大于或等于)它们的几何平均数. (4)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,···,a n ,它们的算术平均数不小于(即大于或等于)它们的几何平均数,即 12123n n n a a a a a a a n ++ +≥??,当且仅当 a 1=a 2=···=a n 时,等号成立. 2.柯西不等式 (1)二维形式的柯西不等式:若a ,b ,c ,d 都是实数,则2 2 2 2 2 ()(+)()a b c d ac bd +≥+,当且仅当 ad=bc 时,等号成立. (2)柯西不等式的向量形式:设α,β是两个向量,则||||||?≥?αβαβ,当且仅当α是零向量或β是零向量或存在实数k 使α=k β时,等号成立. (3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,22 221212x x y y ++≥211222()()x y x y -+- (4)一般形式的柯西不等式:设1212,, ,,,, ,n n a a a b b b 是实数,则 (22212n a a a ++ +)(222 12n b b b + ++) ≥()2 1122n n a b a b a b +++,当且仅当a i =0或b i =0(i=1,2,···,n )或存在一个数k 使得 a i =k b i (i=1,2,···,n )时,等号成立. 3.不等式证明的方法 (1)比较法 比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2016年高考文科数学真题分类汇编:不等式

2016年高考数学文试题分类汇编 不等式 一、选择题 1、(2016年山东高考)若变量x ,y 满足2,239,0,x y x y x +≤??-≤??≥? 则x 2+y 2的最大值是 (A )4(B )9(C )10(D )12 【答案】C 2、(2016年浙江高考)若平面区域30,230,230x y x y x y +-≥??--≤??-+≥? 夹在两条斜率为1的平行直线之间,则这 两条平行直线间的距离的最小值是( ) 【答案】B 3、(2016年浙江高考)已知a ,b >0,且a ≠1,b ≠1,若4log >1b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --< D. (1)()0b b a --> 【答案】D 二、填空题 1、(2016年北京高考)函数()(2)1 x f x x x = ≥-的最大值为_________. 【答案】2 2、(2016江苏省高考) 已知实数x ,y 满足240220330x y x y x y -+≥??+-≥??--≤? ,则x 2+y 2的取值范围是 ▲ . 【答案】4[,13]5 3、(2016年上海高考)设x ∈R ,则不等式31x -<的解集为_______. 【答案】)4,2(

4、(2016上海高考)若,x y 满足0,0,1,x y y x ≥??≥??≥+? 则2x y -的最大值为_______. 【答案】2- 5、(2016全国I 卷高考)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000 6、(2016全国II 卷高考)若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则2z x y =-的最小值为 __________ 【答案】5- 7、(2016全国III 卷高考)若,x y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则235z x y =+-的最大 值为_____________. 【答案】10- 11、(2016江苏省高考)函数y 的定义域是 ▲ . 【答案】[]3,1- 三、解答题 1、(2016年天津高考)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1 车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:

高考数学高三模拟考试试卷压轴题专题六十三不等式的证明

高考数学高三模拟考试试卷压轴题专题六十三不等式的证明 【高频考点解读】 1.了解证明不等式的基本方法:比较法、综合法、分析法、放缩法、数学归纳法. 2.了解柯西不等式、排序不等式以及贝努利不等式. 3.能利用均值不等式求一些特定函数的极值. 【重点知识梳理】 一、比较法证明不等式 (1)求差比较法: 知道a>b ?a -b>0,ab 只要证明a -b>0即可,这种方法称为求差比较法. (2)求商比较法: 由a>b>0?a b >1且a>0,b>0,因此当a>0,b>0时,要证明a>b ,只要证明a b >1即可,这种方法称为求商比较法. 二、综合法与分析法 1.综合法 利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法. 2.分析法 证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法. 3.平均值不等式 定理:如果a ,b ,c 为正数,则a +b +c 3≥3 abc ,当且仅当a =b =c 时,等号成立. 我们称 a + b + c 3 为正数a ,b ,c 的算术平均值,3 abc 为正数a ,b ,c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式. 4.一般形式的算术—几何平均值不等式 如果a1,a2,…,an 为n 个正数,则a1+a2+…+an n ≥n a1a2…an ,当且仅当a1=a2=…=an 时,等号成立. 【高考考纲突破】

2021年高考文科数学总复习(第七章 第3节)不等式讲义

第3节二元一次不等式(组)与简单的线性规划问题 最新考纲 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决 . 知识梳理 1.二元一次不等式(组)表示的平面区域 不等式表示区域 Ax+By+C>0 直线Ax+By+C=0某一侧的所有点 组成的平面区域不包括边界直线 Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分 2.点P1(x1,y1)和P2(x2,y2)位于直线Ax+By+C=0的两侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)<0;位于直线Ax+By+C=0同侧的充要条件是(Ax1+By1+ C)(Ax2+By2+C)>0. 3.线性规划的有关概念 名称意义 线性约束条件由x,y的一次不等式(或方程)组成的不等式组,是对x,y的约束条件 目标函数关于x,y的解析式 线性目标函数关于x,y的一次解析式 可行解满足线性约束条件的解(x,y) 可行域所有可行解组成的集合 最优解使目标函数达到最大值或最小值的可行解 线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题[微点提醒] 1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:

(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线; (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 2.判定二元一次不等式表示的区域 (1)若B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方. (2)若B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. 基 础 自 测 1.判断下列结论正误(在括号内打“√”或“×”) (1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( ) (3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( ) 解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是z b . 答案 (1)× (2)√ (3)√ (4)× 2.(必修5P98例3改编)不等式组???x -3y +6≥0, x -y +2<0 表示的平面区域是( )

高中文科数学 不等式

第五讲、不等式 十三、 不等式 (一)不等关系 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。 (二)一元二次不等式 1.会从实际情境中抽象出一元二次不等式模型。 2.通过函数图象了解一元二次不等式与相应函数、一元二次方程的联系。 3.会解一元二次不等式。 (三)二元一次不等式组与简单线性规划问题 1.会从实际情境中抽象出二元一次不等式组。 2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。 3.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 (四)基本不等式: ,0)2 a b a b +≥> 会用基本不等式解决简单的最大(小)值问题。 不等式的概念与性质 1.实数的大小顺序与运算性质之间的关系: 0>-?>b a b a 0<-? , a b b a >?< (反对称性) (2)c a c b b a >?>>, ,c a c b b a +?>,故b c a c b a ->?>+ (移项法则) 推论:d b c a d c b a +>+?>>, (同向不等式相加) (4)bc ac c b a >?>>0,,bc ac c b a 0, 推论1:bd ac d c b a >?>>>>0,0 推论2:n n b a b a >?>>0 推论3:n n b a b a > ? >>0 算术平均数与几何平均数 1.常用的基本不等式和重要的不等式 (1)0,0,2 ≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+ ∈R b a ,,则ab b a 2≥+ (4) 2 2 2)2 ( 2 b a b a +≤+

人教A版数学高二选修1-2单元测试第二章推理与证明2

阶段质量检测(二) (时间:120分钟满分:150分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.有一段“三段论”,推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点.因为f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.以上推理中() A.小前提错误B.大前提错误 C.推理形式错误D.结论正确 2.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n(n∈N*)个等式应为() A.9(n+1)+n=10n+9 B.9(n-1)+n=10n-9 C.9n+(n-1)=10n-1 D.9(n-1)+(n-1)=10n-10 3.观察下面图形的规律,在其右下角的空格内画上合适的图形为() A.■B.△C.□D.○ 4.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面() A.各正三角形内任一点 B.各正三角形的某高线上的点 C.各正三角形的中心 D.各正三角形外的某点 5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=() A.28 B.76 C.123 D.199 6.已知c>1,a=c+1-c,b=c-c-1,则正确的结论是() A.a>b B.a

7.用火柴棒摆“金鱼”,如图所示: 按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2 D .8n +2 8.已知a n =????13n ,把数列{a n }的各项排成如下的三角形: 记A (s ,t )表示第s 行的第t 个数,则A (11,12)等于( ) A.????1367 B.????1368 C.????13111 D.??? ?13112 9.已知f (x +y )=f (x )+f (y ),且f (1)=2,则f (1)+f (2)+…+f (n )不能等于( ) A .f (1)+2f (1)+…+nf (1) B .f ?? ?? n (n +1)2 C.n (n +1)2 D.n (n +1)2 f (1) 10.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},…,依此类推,则每组内奇数之和S n 与其组的编号数n 的关系是( ) A .S n =n 2 B .S n =n 3 C .S n =n 4 D .S n =n (n +1) 11.在等差数列{a n }中,若a n >0,公差d >0,则有a 4a 6>a 3a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( ) A .b 4+b 8>b 5+b 7 B .b 4+b 8<b 5+b 7 C .b 4+b 7>b 5+b 8 D .b 4+b 7<b 5+b 8 12.数列{a n }满足a 1=12,a n +1=1-1 a n ,则a 2 016等于( ) A.1 2 B .-1 C .2 D .3 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1,在用反证法证明时,假

2019高考数学不等式真题汇总

(2019?上海7)若x ,y R +∈,且 123y x +=,则y x 的最大值为 . 【解答】 解:132y x = +… ∴298 y x =?; 故答案为:98 (2019?上海5)已知x ,y 满足002x y x y ????+? ……?,则23z x y =-的最小值为 . 【解答】解:作出不等式组002x y x y ????+? ……?表示的平面区域,由23z x y =-即23x z y -=,表示直线在y 轴上的截距的相反数的13 倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-,故答案为:6-. (2019?浙江3)若实数x ,y 满足约束条件340,340,0,x y x y x y -+??--??+? …?…则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+??--??+? …?…作出可行域如图,联立340340x y x y -+=??--=?,解得(2,2)A ,化目标函数32z x y =+为3122y x z =-+,由图可知,当直线3122 y x z =-+过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10. 故选:C .

(2019?天津文10)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03 x x +-<; 由一元二次不等式的解法“小于取中间,大于取两边” 可得:213 x -<<; 即:2{|1}3x x -<<;或2(1,)3 -; 故答案为:2(1,)3 -; (2019?天津文理13)设0x >,0y >,25x y += 的最小值为 . 【解答】解:0x >,0 y >,25x y +=, 则===; 由基本不等式有: = 当且仅当=时,即:3xy =,25x y +=时,即:31x y =??=?或232x y =???=??时;等号成立, 故答案为:

2013年全国各地高考文科数学试题分类汇编:不等式 学生版

4 2013年全国各地高考文科数学试题分类汇编6:不等式 一、选择题 1 .(2013年高考四川卷(文))若变量,x y 满足约束条件8,24,0,0, x y y x x y +≤??-≤? ?≥??≥?且5z y x =-的最大值为a , 最小值为b ,则a b -的值是 ( ) A .48 B .30 C .24 D .16 2 .(2013年高考福建卷(文))若变量y x ,满足约束条件?? ? ??≥≥≤+012 y x y x ,则y x z +=2的最大值和最小值 分别为 ( ) A .4和3 B .4和2 C .3和2 D .2和0 3 .(2013年高考课标Ⅱ卷(文))设x,y 满足约束条件 ,则z=2x-3y 的最小值是 ( ) A . B .-6 C . D .-3 4 .(2013年高考福建卷(文))若122 =+y x ,则y x +的取值范围是 ( ) A .]2,0[ B .]0,2[- C .),2[+∞- D .]2,(--∞ 5 .(2013年高考江西卷(文))下列选项中,使不等式x

高二数学选择进修2-2第二章推理与证明

高二数学选修2-2第二章推理与证明 1、 下列表述正确的是( ). ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2、下面使用类比推理正确的是 ( ). A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?” C.“若()a b c ac bc +=+” 类推出“ a b a b c c c +=+ (c ≠0) ” D.“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ?/平面α,直线a ≠ ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的, 这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 (A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。 5、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 6、利用数学归纳法证明“1+a +a 2+…+a n +1=a a n --+112 , (a ≠1,n ∈N)”时,在验证n=1 成立时,左边应该是 ( ) (A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3 7、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时

2021年高考数学第一轮专题复习- 不等式——不等式的证明

第48课时:第六章 不等式——不等式的证明(二) 课题:不等式的证明(二) 一.复习目标: 1.了解用反证法、换元法、放缩法等方法证明简单的不等式. 二.知识要点: 1.反证法的一般步骤:反设——推理——导出矛盾(得出结论); 2.换元法:一般由代数式的整体换元、三角换元,换元时要注意等价性; 3.放缩法:要注意放缩的适度,常用的方法是:①舍去或加上一些项;②将分子或分母放大(或缩小). 三.课前预习: 1.设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是 ( ) () A 1,)+∞ () B (1]-∞ () C 1,)+∞ () D (1]-∞ 2 .1A n =+++与)n N *∈的大小关系是 . 四.例题分析: 例1.已知332x y +=,求证:2x y +≤. 例2.设正有理数1a 是3的一个近似值,令21 211a a =+ +, (1介于1a 与2a 之间;

(2)证明:2a 比1a 更接近于3; (3的有理近似值的方法. 例3.在数列{}n a 中,23sin sin 2sin 3sin 2222n n n a αααα=++++,对正整数,m n 且m n >,求证:12m n n a a -< . 例4.设1a b c ++=,2221a b c ++=,a b c >>,求证:103c -<<. 五.课后作业: 1.下列三个式子22a c -,22b a -,22(,,)c b a b c R -∈中 ( ) ()A 至少有一式小于1- ()B 都小于1- ()C 都大于等于1- ()D 至少有一式大于等于1- 2设0,0,,111x y x y x y A B x y x y +>>==+++++,则,A B 的大小关系是 .

高三高考文科数学《不等式》题型归纳与训练

高考文科数学题型分类汇总 《不等式》篇 经 典 试 题 大 汇 总

目录 【题型归纳】 题型一一元二次不等式解法及其应用 (3) 题型二应用基本不等式求函数最值 (4) 题型三线性规划 (5) 题型四基本不等式的应用 (7) 【巩固训练】 题型一一元二次不等式解法及其应用 (7) 题型二应用基本不等式求函数最值 (8) 题型三线性规划 (9) 题型四基本不等式的应用 (11)

高考文科数学《不等式》题型归纳与训练 【题型归纳】 题型一 一元二次不等式解法及其应用 例1 若0a b >>,0c d <<,则一定有( ) A . a b c d > B .a b c d < C .a b d c > D .a b d c < 【答案】D 【解析】由11 00c d d c <->,又 0a b >>,由不等式性质知:0a b d c ->->,所以a b d c < 例2 关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,且2115x x -=,则a =( ) A . 52 B .72 C .154 D .15 2 【答案】A 【解析】∵由22280x ax a --< (0a >),得(4)(2)0x a x a -+<, 即24a x a -<<,∴122,4x a x a =-=. ∵214(2)615x x a a a -=--==,∴155 62 a = =.故选A . 例3 不等式 29 02 x x ->-的解集是___________. 【答案】(3,2)(3,)-?+∞ 【解析】不等式可化为(3)(2)(3)0x x x +-->采用穿针引线法解不等式即可. 例4 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

高二数学推理与证明

高二数学推理与证明 班级: 学号: 姓名: 时间:40分钟 总分:100分 一、选择题(6*7=42分) 1.若三角形能剖分为两个与自身相似的三角形,那么这个三角形的形状为( ) A .锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 2.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 3.在下列表格中,每格填上一个数字后,使每一行 成等差数列,每一列成等比数列,则a+b+c 的值是( ) A. 1 B. 2 C. 3 D. 4 4.在十进制中 ,那么在5进制中2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 5.设a c c b b a c b a 1 ,1 ,1 ),0,(,,+++-∞∈则 A 都不大于-2 B 都不小于-2 C 至少有一个不大于-2 D 至少有一个不小于-2 6. 一同学在电脑中打出如下若干个圈: ○●○○●○○○●○○○○●○○○○○●… 若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●有( )个 (A)12 (B) 13 (C)14 (D)15 二.填空题(4*7=28) 7. 在日常活动和科学推理中,常用的两种推理是 和 在直接证明法中,解决数学问题常用的思维方式是 和 8.观察下列数:1,3,2,6,5,15,14,x,y,z,122,…中x,y,z 的值依次是 9. 由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是 10已知:23150 sin 90sin 30sin 222=++ 23 125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题: _____________________________________________________= 23 三.解答题(3*10=30分) 11.设 1110,018a b a b a b ab ??+=++≥,且,求证:则 01232004410010010210 =?+?+?+?

高中数学百大经典例题—不等式证明

高中数学 典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---= 0)1lg(lg 1 2>--= x a , 所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴ .0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符 号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( )2 a b +,展开后很复杂。若使用综合法,从重要不等式:2 2 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+, 即: 44222 ()22 a b a b ++≥ (1) 又:∵ 2 2 2a b ab +≥(当且仅当a b =时取等号)

相关文档 最新文档