文档库 最新最全的文档下载
当前位置:文档库 › 北大版高等数学向量代数与空间解析几何附标准答案习题

北大版高等数学向量代数与空间解析几何附标准答案习题

北大版高等数学向量代数与空间解析几何附标准答案习题
北大版高等数学向量代数与空间解析几何附标准答案习题

习题

5.2

1.(,,),,,,.||,||,

2.(1,2,1),(3,0,1),(2,1,2),,,,(3,0,1)(1,2,1)(4,2x

y z xy yz O x y z x y z Oxy Oyz d d d d z d x d x A B C AB BA AC BC AB =

======-

===--=-写出点分别到轴轴轴平面平面以及原点的距离已知三点求的坐标与模.解解,0),||20|(4,2,0)(4,2,0)25,(2,1,2)(1,2,1)(3,1,1),||11,(2,1,2)

(3,0,1)(1,1,1),|| 3.

3.(3,2,2),(1,3,2),(8,6,2),

1

32(9,6,6)2

AB BA AB AC AC BC BC ===-=--=-=-=--=-==--=-==-==---+a b c a b +c =1112(2,6,4)(4,3,1)(11,9,1).

4.(2,5,1),(1,2,7),,.

2,7).

(2,5,)(1,2,7)(21,5,2,7),70,7.5.,(,,)(k k xy k k k k k k k k k A B x y z x ??---+-=-==-+=-+=+-=+-++==-设分别求出沿和方向的单位向量并求常数使与平面平行1设两点的坐标分别为和解a b a b ,a b a b a b 22111222121212,,),,.111

()((,,)(,,))(,,).

222

6.(1,2,3),(5,2,1),(1)23(2)(3)cos ,.(1)2366(2)

12.(2)1(3)cos y z

A B C OC OA OB x y z x

y z x x y y

z z =+=+=+++=-=-<>?

-=-求连线中点的坐标设求解解a b a b a i a b a b =a b =a i = .

2222,|||7.||1,||3,||2,|/3,?17|()()||||||2()1

1942(3),

2

3333,cos ||||322π<>======+⊥+=+=++=++++==+++?+==?设求解a b a b |a b a b c a b +c |=a c ==a b +c |a b +c a b +c a b c a b +b c a c b c b c b c ==b c .

6

π

=

22228.||2,||6,,()()||||4360,1/3.

k k k k k k k k ==⊥--=-=-==±设试求常数使解a b a +b a b.a +b a b a b 9.(1,2,1),(1,1,3),(2,5,3)

(1)(2)(3)()(4)()(5)().(1)121(5,2,1),

113(2)253(3,0,2).

010

121(3)()11323.(4)()5212532=-=-=-????????-=---?-=-?-=-??---解a b c a b c j a b c a b c a b c i j k

a b =i j k

c j =i j k

a b c =a b c =(1,13,21).

53(5)11

3(12,9,7),()121(23,19,15).2

5

3

12

9

7

=---?-=-??=-=-----i j

k i j k

b c =a b c

10.,(2,1,0)(0,1,2),,.

(2,1,0)(0,1,2)(2,0,2),(0,1,2)(2,1,0)(2,2,2).cos ,|ABCD AB AD AC BD AC AB AD BD AD AB AC BD AC BD AC ==-<>=+=+-=

=-=--=--<>=

在平行四边形中求两对角线的夹角解00,,.

2|||||||

|||5,,,.

2

AC BD BD AC BD AB AD ABCD AC BD π

π

==<>===<>=平行四边形为菱形故两对角线的夹角解二|11.(3,4,1),(2,3,0),(3,5,1),.

(1,1,1)(1,1,1),(0,1,0),111(1,0,1),0101

2

A B C ABC AB AC AB AC ABC =---=-=?==-=已知三点求三角形的面积三角形的面积解i

j k

12.(3,4,5),(1,2,2)(9,14,16).

3

45

(,,)1

2

20,,91416

13.|1,||5,3,|.344

cos ,,sin ,,|||||sin ,15 4.||||555

======-?-<>=

=<>=?=<>=??=证明向量和是共面的因为故和是共面的.

已知|求||证解a b c a b c a b c a =b a b =a b a b a b a b a b a b a b a b

14.cos ,cos ,cos ,,(1)cos 0,cos 0,cos 0;(2)cos cos 0,cos 0;(3)cos cos cos .(1)(2)1

15.||,2

x z αβγαβγαβγαβγπαβγ=≠≠==≠==-===设向量的方向余弦在下列各情况下指出的方向特征与轴垂直是沿轴的的向量.

(3)与三个轴的夹角相等,都是设的三个方向角满足求的坐标解a a .a .a a a a

a 22222222cos 21,(2cos 1) 1.

1

cos ,2(21)1,4211,2(21)0,0,.

2cos 0,,(0,0,2

13cos ,cos ,.(1,1,0).

24416.,(75)(3),(4)(72),co x x x x x x x x x αααααπ

ααππ

ααα+=+-==+-=-+=-=====

====-⊥+-⊥-设为两非零向量且求22解2cos 2cos .

a a =a

b ,a b a b a b a b 222222

2

222s ,.

(75)(3)0,7||15||16||||cos ,0,(4)(72)0,7||8||30||||cos ,0.||||1516cos ,7,||||||||830cos ,7.

||

||716730||1516||83<>-+=-+<--=+-=a b a b a b a b a b >=b b a b >=a a b b a b >=a a b a ||1,1||

01578

71

cos ,.151628

30

==---<=

=--b a a b >

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2 222 =+y x 在空间解析几何中表示的图形为 [ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141:1+=+=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3 π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)

5.将xoz 坐标面上的抛物线x z 42 =绕z 轴旋转一 周,所得旋转曲面方程是[B ] A. ) (42y x z += B. 2 2 2 4y x z +±= C. x z y 422 =+ D. x z y 422 ±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 [B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程 222 22 x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知 a ?={0, 3, 4}, b ?={2, 1, -2},则 = b proj a ?ρ[ C ]

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

第七章空间解析几何 第一节作业 一、选择题(单选): 1. 点M(2,-3,1)关于xoy平面的对称点是: (A)( -2,3,1 );( B)( -2,-3,-1 );(C)( 2,-3,-1 );( D)( -2,-3,1 ) 答:() 2. 点M(4,-3,5)到x轴距离为: (A).. 42—(—3)2—52; (B) 3)2—52; (cr. 4252; (D) : 4252. 答:() 、在yoz面上求与A(3,1,2),B(4,-2,-2) 和C(0,5,1)等距离的点。 第二节作业 设u a b c, v a b 2c.试用a, b, c表示2u 3v. 第三节作业 一、选择题(单选): 已知两点M'2,2,?一2)和M2(1,3,0),则MM2的三个方向余弦为: 1 1 V 2 1 1 <2 1 1 42 1 1 V2 (A) , , ; (B) , , ; (C) —, , . (D) —,,. 2 2 2 2 2 2 2 2 2 2 2 2 答:() 二、试解下列各题: 1. 一向量的终点为B( 2,-1,7),它在x轴,y轴,z轴上的投影依次为4, -4,4,求这向量的起点A的坐标。

2. 设m 3i 5 j 3k, n 2i j 4k, p 5i j 4k 求向量 a 4m 3n p 在x 轴 上的投影及在y 轴上的分向量. 3. 求平行于向量a 6,7, 6的单位向量 第四节作业 一、选择题(单选): 1. 向量a 在b 上的投影为: 答:() 2. 设a 与b 为非零向量,则a b 0是: (A )a//b 的充要条件; (B )a b 的充要条件; (C ) a b 的充要条件; (D ) a //b 的必要但不充分条件 答:() 3.向量a,b,c 两两垂直,w —1- — a 1, b —1- J )2, C 3,则s a b c 的长度 为 (A)1 2 3 6; 2 2 2 (B)1 2 3 14; (C)J12 22 32 ; (D) J1 2 3 勺6. 答:() (A) (B) -a a b (D)

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

北大版高等数学第4章习题集解答

习题 4.1 3212121.()32[0,1][1,2]Rolle 0,(0)(1)(2)0,()[0,1][1,2]Rolle 620,33(0,1),(1,2),()()0.33 2.f x x x x f f f f f x x x x x x f x f x =-+==='-+===+''= ∈===2验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x)=3x 讨论下列 解1111()[1,1]Rolle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1)(1)(1)()0,(1,1),()0.1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m mx n nx c f c m f x -----∈-'==+-='=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/32 ),(0). 3 3.()ln [1,],?11 (),()(1)ln ln11(1), 1. https://www.wendangku.net/doc/6359476.html,grange (1)|sin sin |||; (2)|tan tan |||,,(/2,/2); (3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=-=='=-=-==-=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解222(0).(1)|sin sin ||(sin )|()||cos |||||.(2)|tan tan ||(tan )|()|sec ||||. (3)ln ln ln (ln )|()((,)).5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-=∈<=--证明多项式的导函数的证1,212,. ()1,2,Rolle ,,,()(2,1),(1,1),(1,2). 6.,,,:()cos cos 2cos (0,). n n P x P x c c c f x c x c x c nx π±±---=+++L L 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

北大版高数答案

习题 1.1 22 22222222222222 22. ,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p a a a b p a pb b b ====+=+=++=++======为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||(1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?-+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4. ,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11x x a l x x x x X l X a l a l l x a l X a a n n a b a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><<>=>-=-=解下列不等式或或若若若若证明其中为自然数若解(1)证5.: 6.1200001)(1)1).(,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n b b n a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m --+++><-=∈?=?=?=?≥=?≤-∈-≤-Z L 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证 7.(,),(,).1/10.|}.10n n n n a b a b m n b a A m <-=∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等代数(北大版)第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ??? ??=-=+=33 212211y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 2 233 3142y y y y ++--=, 再作非退化线性替换 ??? ? ??? ==+=3 3223112121z y z y z z y (2) 则原二次型的标准形为

()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为 ??? ? ? ? ??? =+-=++=333212321 121212 121z x z z z x z z z x (3) 于是相应的替换矩阵为 ?? ?????? ? ?-=? ?????? ??????? ??-=1002112 1 210 2110001021021100011011T , 且有 ??? ? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 2 3322221214422x x x x x x x ++++, 由配方法可得 ()()() 2 33222222121321442,,x x x x x x x x x x x f +++++= ()()2 322 212x x x x +++=, 于是可令 ??? ??=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2 221321,,y y x x x f +=, 且非退化线性替换为

向量代数与空间解析几何期末复习题高等数学下册(上海电机学院)

第七章 空间解析几何参考答案 第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点( 1,- 2,3)在 [ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2. 方程 2 x 2 y 2 2 在空间解析几何中表示的图形为 [ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3. 直线 l 1 x 1 y 1 z 1 x y 1 0 : 2 3 与 l 2 : x y z 2 ,的夹角是 [ C ] 4 A. 4 B. 3 C. D. 0 2 4. 在空间直角坐标系中,点( 1, 2,3 )关于 xoy 平面的对称点是 [ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5. 将 xoz 坐标面上的抛物线 z 2 4 x 绕 z 轴旋转一周,所得旋转曲面方程是[B ] A. z 2 4 ( x y ) B. z 2 4 x 2 y 2 C. y 2 z 2 4 x D. y 2 z 2 4 x 6. 平面 2x-2y+z+6=0 与 xoy 平面夹角的余弦是 [B ] A. 1 B. 1 C. 2 2 3 3 3 D. 3 7. 在空间直角坐标系中,点( 1, 2,3 )关于 yoz 平面的对称点是 [ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 2 2 8. 方程 x y z 2 表示的是 [ B ] a 2 b 2 A. 椭圆抛物面 B. 椭圆锥面 C. 椭球面 D. 球面 9. 已知 a ={0, 3, 4}, b ={2, 1, -2},则 proj a b [ C ] A. 3B. 1 C. -1 D. 1 3 10.已知 a , b 为不共线向量,则以下各式成立的是 D A. a 2 b 2 (a b ) 2 B. a 2 b 2 ( a b ) 2 C. (a b) 2 (a b )2 D. ( a b ) 2 ( a b ) 2 a 2 b 2

北大版高等数学课后习题答案完整版

习题 1.1 22 22222222222222 223. 33,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p p a a p a b p a pb b b ====+=+=++=++======证明为无理数若不是无理数,则为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数证明是无理数设为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||5,(1,5)(5,1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?--+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4.,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11n n n n x x a l x x x x X l X a l a l l x a l X a a a n n a a b a a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><-<>=>-=-=解下列不等式或或若若若若证明其中为自然数若显然解(1)证5.: 6.120000(1)(1)(1). (,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n n n a b b n a a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m ---+++>-<-=∈?=?=?=?≥=?≤-∈-≤-Z 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证7.(,),(,).1/10.{2|}.10n n n n a b a b m n b a A m <-=+ ∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等数学空间解析几何练习

高等数学空间解析几何 练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

向量代数与空间解析几何 第一部分 向量代数___线性运算 [内容要点]: 1. 向量的概念. 2. 向量的线性运算. 3. 向量的坐标,利用坐标作向量的线性运算. [本部分习题] 1. 指出下列各点所在的坐标轴、坐标面或哪个卦限. (2,3,5);(0,4,3);(0,3,0)A B C --- 2. 求点(1,3,2)--关于点(1,2,1)-的对称点坐标. 3. 求点(4,3,5)M --到各坐标轴的距离. 4. 一向量的起点为(1,4,2)A -,终点为(1,5,0)B -,求AB →在x 轴、y 轴、z 轴上的投影,并求||AB →。 5. 已知两点1M 和2(3,0,2)M ,计算向量12M M ??→的模、方向余弦和方向角. 6. 已知{3,5,4},{6,1,2},{0,3,4},a b c →→→==-=--求234a b c →→→-+及其单位向量. 7.设358,247,54,a i j k b i j k c i j k →→→→→→→→→→→→=++=--=--求向量43l a b c →→→→ =+-在x 轴上的投影以及在y 轴上的分向量.

第二部分 向量代数___向量的“积” [内容要点]: 1.向量的数量积、向量积的概念、坐标表示式及其运算规律。 2.向量的混合积的概念、坐标表示式及其几何意义。 3.向量垂直、平行、共面的条件. [本部分习题] 1. 设{3,1,2},{1,2,1},a b →→ =--=-求: (1);(2);(3)cos(,);(4)Pr ;(5)Pr .a b a b a b a b j b j a →→→→→→→→?? 2. 设{2,3,1},{1,1,3},{1,2,0},a b c →→→=-=-=-求: (1)();(2)();(3)();a b c a b c a b c →→→→→→→→→?????? 3. 112233a b a b a b ≥++ 其中,(1,2,3)i i a b i =均为实数,并指出等号成立的条件. 4.设{3,5,2},{2,1,9},a b →→=-=试求λ的值,使得: (1)a b λ→→+与z 轴垂直; (2)a b λ→→+与a →垂直,并证明此时||a b λ→→+取最大值。 5.已知||3,||36,||72,a b a b →→→→==?=求a b →→ ?。 6.判断向量,,a b c →→→是否共面。 (1){3,2,5},{1,1,2},{9,7,16};a b c →→→===- (2){1,2,3},{3,3,1},{1,7,5};a b c →→→=-==-

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

空间解析几何与矢量代数小练习 一填空题 5 ’x9=45 分 1、平行于向量a(6,7, 6) 的单位向量为______________. 2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________ 3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________. 4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面. 5、方程x2 y2 z 表示______________曲面. 6、x2 y2 z2 表示 ______________曲面 . 7、在空间解析几何中y x2 表示 ______________图形 . 二计算题11 ’x5=55 分 1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程. 2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程. 3、求过点 (1,2,3) 且平行于直线x y 3 z 1 的直线方程 . 2 1 5 4、求过点 (2,0,-3) x 2 y 4z 7 0 且与直线 5 y 2z 1 垂直的平面方3x 0 5、已知:OA i 3k ,OB j 3k ,求OAB 的面积。 1

参考答案 一 填空题 1、 6 , 7 , 6 11 11 11 2、 M 1 M 2 =2, cos 1 ,cos 2 ,cos 1 , 2 , 3 , 2 2 2 3 4 3 3、 ( x 1) 2 ( y 3) 2 ( z 2) 2 14 4、以 (1,-2,-1) 为球心 , 半径为 6 的球面 5、旋转抛物面 6、 圆锥面 7、 抛物柱面 二 计算题 1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、 x 1 y 2 z 3 4 、 16x 14y 11z 65 0 2 1 5 5 S 1 OA OB 19 2 2 2

相关文档
相关文档 最新文档