文档库 最新最全的文档下载
当前位置:文档库 › 核医学成像设备

核医学成像设备

核医学成像设备
核医学成像设备

第八章核医学成像设备

§8-1 概述

概念:是一种以脏器内外或脏器正常组织与病变组织之间的放射性浓度差别为基础的脏器或病变组织的显像方法。

一、核医学成像的过程和基本条件:

(1)、先把某种放射性同位素标记在药物上,形成放射性药物并引人人体内,当它被人体的脏器和组织吸收后,就在体内形成了辐射源。

(2)、用γ射线检测装置可以从体外检测体内放射性核素在衰变过程中放出的γ射线,从而构成放射性同位素在体内分布密度的图像。

由于放射性药物与一般天然元素或其他化合物一样,能够正常地参与机体的物质代谢,因此核医学成像的图像不仅反映了脏器和机体组织的形态,更重要的是提供了有关脏器功能及相关的生理、生化信息。

二、核医学成像的基本特点如下:

(1)、核医学成像是以脏器内、外,或脏器内各部分之间的放射性浓度差别为基础,显示的静态和动态图像,该图像不仅反映了人体组织、脏器和病变的位置、形态、大小,而且还提供了包括整体或局部组织功能,以及脏器功能的每个微小局部变化和差别。

(2)、核医学成像具有多种动态成像方式。由于脏器对放射性药物的摄取、吸收、排泄等作用,使脏器、病变的血流和功能情况得以动态且定量地显示出来,同时提供多种功能参数以反映机体及组织的血流功能、代谢和受体等方面的信息。

(3)、一些放射性核素具有向脏器或病变的特异性聚集,由此而获得的核素成像具有较高的特异性,可显示不同组织类型的肿瘤、各种神经受体、炎症、转移

灶等组织器官的影像。而这些单靠形态学检查常常难以实现。

三、核医学成像设备分类及特点

(一)、γ相机

1、组成:

(1)、闪烁探头:包括准直器、闪烁探测器、光电倍增管等。

(2)、电子线路:包括前置放大器、单脉冲高度分析器、校正电路等。

(3)、显示装置:示波器、照相机等。

(4)、附加设备:

2、特点:(见书P226)

(1)、通过连续显像,追踪和记录放射性药物通过某脏器的形态和功能进行动态研究;

(2)、由于检查时间相对较短,方便简单,特别适合儿童和危重病人检查;

(3)、由于显像迅速,便于多体位、多部位观察;

(4)、通过对图像相应的处理,可获得有助于诊断的数据或参数。

(二)、单光子体层成像设备(SPECT )

1、成像原理:

利用γ照相机围绕着诊断感兴趣的人体区域,采集各种不同角度上放射出的γ光子并计数,然后利用X-CT 中所使用的图像重建方法,得到人体某一体层上的放射性药物浓度的分布,即可得到多层面的各方位的体层图像或三维立体像。

目前SPECT 的能量测量范围为50~600keV ,空间分辨率6~11mm 。

2、与X-CT 的区别:

(1)、图像粗造,空间分辨率低。

(2)、属发射型体层摄影;

(三)、正电子发射体层成像设备(PET)

1、使用发射正电子的放射性核数,如:O N C 151311,,等都是人体组织的基本元素,易于标记各种生命必需的化合物及其代谢产物或类似物而不改变它们的生物活性,且可参与人体的生理、生化代谢过程;其次这些核素的半衰期都比较短,检查时可给予较大的剂量,从而提高图像的对比度和空间分辨力。因此它所获得

的图像是反映人体生理、生化或病理及功能的图像。

2、由于采用的是发射正电子的放射性核素,电子在物质中射程短并只能瞬间存在,不足以穿透较厚的脏器或组织,故测定正电子的基本方法是测量湮没辐射产生的γ光子;

缺点:

推广应用方面受到以下两点的制约:①由于发射正电子的放射性核素半衰期短,且都是由迥旋加速器生产的,故使用PET的单位附近,应有生产这些短半衰期放射性核素的医用迥旋加速器;②应有快速制备这些短半衰期核素标记放射性药物的设备和实验室。

§8-2 核医学成像物理学基础

原子核是由两种质量几乎相等的基本粒子组成——质子和中子。凡质子相同的原子为同一种元素。把属于同一种化学元素,但具有不同中子数的元素称为同位素。若原子核在不受外力的作用时,核内的成分及能级不发生变化,为稳定性核素。若原子核需要通过核内结构或能级调整才能趋于稳定,这种核素被称为不稳定核素。这种核内能级和结构的调整过程称为核衰变(nuclear decay)。核衰变的同时,将释放出一种或一种以上的射线,这种性质叫做放射性。因此,不稳定的核素又称为放射性核素,在自然界中放射性同位素大约有1300种,人工制造的同位素都有放射性。

放射性同位素的核衰变主要包括:α衰变、β口衰变、γ衰变等。核素在上述的衰变过程中相应释放α粒子、β粒子、正电子或γ射线。从电磁波的角度来看,X射线和γ射线几乎具有相同的频段,但两种射线的来源不同。x射线来自核外,而γ射线则来自核内。

放射性衰变的发生是随机的。放射性衰变的过程中,放射性核素的量随时间的增加而减少,不同的放射性核素原子核衰变速率不同,有的核素衰变快,有的核素衰变慢,这是放射性核素的一个特征。核衰变的速率按指数规律衰减,任何一种放射性核素经过一段时间后,其强度可表示为:

t

Iλ-

=

I

e

式中:I为时间t=0时的射线强度;I为经过一定时间t以后(即t时刻)的射

线强度;λ为该放射性核素的衰变常数。

因为放射线强度与原子核数成正比,所以原子核数可由下式求出:

t e N N λ-=0

式中:N 0为t=0时放射性核素的原子核数;N 为经过一定时间t 的放射性核素的原子核数。

任何放射性原子核数衰减到原来的一半所需要的时间,称为该核素的物理半衰期21T ,由上面的式子可得λ/2ln 2

1=T 。 在核医学中放射性同位素或放射性化合物除了物理半衰期之外,还有生物半衰期。当进入人体后,放射性药物由于排泄、分泌使其在体内的含量减少到原来的一半所用的时间,称为生物半衰期。所以放射性药物在体内的有效半衰期应由物理衰变和生物体代谢衰变共同决定。

放射性核素在他们的衰变过程中要产生放射性射线,射线中只有γ射线穿透力较强,引人体内后能在体表检测到,同时它在体内的电离密度较低,引起的电离辐射损伤较小,所以核医学成像中主要是检测γ射线。

§8-2 核医学成像设备

一、 γ相机

(一)、基本结构:

整个系统构成由准直器、γ射线检测器的检测介质(闪烁晶体)、光电倍增管阵列、前置放大器、位置计算电路、脉冲高度分析器、图像处理电路及显示装置等。

(二)、基本原理:

1、人体吸收放射性药物后放射出γ光子,经准直器入射到闪烁晶体上。闪烁晶体紧贴在准直器后面,将入射的γ光子转换为光电子。

2、由于光电子的能量很低,不能用于照相,因此在检测介质后面用光电倍

增管阵列,它可以有效地将输入的光电子信号放大。光电倍增管输出的电脉冲信号的幅度与入射的γ光子能量相对应,同时还带有与入射的γ射线位置相关的信息。

3、光电倍增管输出的电脉冲信号经前置放大器放大后分成两路,一路经“高精度坐标计算装置”进一步处理,可得到了光子入射到闪烁晶体介质上的准确坐标;另一路信号送入能量信号通道,脉冲总和电路输出的Z 信号(其大小与闪烁光的荧光量成正比)经过脉冲高度分析器的处理,除去大部分的散射γ射线和天然本底,按预先设定的能量范围对信号进行能量的加工处理。

4、将能量信号与位置坐标信号结合起来,X 、Y 信号决定了闪烁点的位置, Z 信号决定了显像点的光的亮度。形成γ相机的图像信号。图像既可以显示在监视器的屏幕上,又可以用光学照相机把显示图像记录在胶片上。

(三)、位置计算电路:

每个光电倍增管都分别被连接到各自的前置放大器上,放大器输出信号电压分别接到4个权重电阻-+-+Y Y X X R R R R ,,,上,各电阻的阻值根据管的位置不同而异。以19个光电倍增管阵列为例,经过权重电阻后19个输出被连在一起形成4个合成的电信号:-+-+Y Y X X ,,,。这4个信号分别同时送入位置通道和能量通道。位置通道分x 坐标位置电路和y 坐标位置电路两部分,两部分的电路结构相同。由放大器输出的-+-+Y Y X X ,,,信号,经位置坐标电路,根据信号的大小,就可以计算出闪烁点的坐标位置x 和y ,即:

-+-+-+-++++=-=-=Y Y X X Z Z

Y Y Y Z

X X X /)(/)((式8-2-1)

X ,Y 为位置信号,Z 为能量信号。 例1:对于P10光电倍增管,4个相连接的权重电阻阻值各为20k ,则根据8-2-1计算:

80202020200

20200

2020=+++==-==-=Z Y X

例2:对于P8光电倍增管,K Y Y X X 20,40,0====-+-+,代入8-2-1计算:

(略)

(四)、准直器:

1、作用:

滤除非规定范围和非规定方向的γ射线。

2、准直器分类:

(1)、根据几何形状分类:

1)、针孔形:灵敏度低;

2)、平行孔型:灵敏度高;

3)、扩散型:扩大了有效视野,但周边部位的灵敏度和分辨率低。

4)、汇聚型:放大倍数小,灵敏度和分辨率高。

(2)、根据适用的γ射线能量分类:

(3)、根据灵敏度和分辨力分类:

3、准直器的主要性能参数:

(1)、空间分辨率:

(2)、灵敏度:

(3)、适用能量范围:

二、 单光子发射型计算机体层设备

(一)、γ相机和SPECT 设备的对比:

γ相机所提供的图像是放射性药物在三维人体组织中分布情况的二维投影图像,其中不足的是前后组织的放射性分布重叠。由于计算机辅助体层技术在核医学中的应用,在20世纪70年代的后期核医学成像设备有了新的发展。在1979

年第一台实用的单光子发射型计算机体层成像设备研制成功,它继承了γ照相机的优点和功能,而又实现了类似X线CT的体层成像。SPECT利用从体外不同角度检测采集到的二维图像数据,经计算机处理后重建图像。SPECT图像首先是消除了复杂结构的重叠,给出了一个体层或多个体层的定向图像,该图像表示出生理放射性同位素示踪的三维分布。经过20余年的技术发展和经验积累,SPECT已成为心、脑显像,尤其是脑血流和功能显像不可缺少的重要方法。

(二)、什么是单光子

单光子的概念是相对于双光子而言的。在放射性核素成像中,γ光子的检测有两种方法:

一是单光子检测法(SPC);

二是符合检测法,也称双光子检测法(ACD)。

131这类的放普通的γ照相机使用的放射性核素一般是用反应堆生产的,如I

射性核素,是富中子的。因为在生产过程中,由于中子轰击母靶,使母核得到了多余、过剩的中子而变得不稳定,母核在衰变过程中发生了中子和质子的转化,

β粒子(称为-β衰变),即n(中子)——〉P(质一个中子转化为质子,同时产生一个-

β。-β衰变后的原子核从高能级的能量跃迁到基态时,释放出多余的能量,子)+-

多余的能量以光子的形式放出,由此产生的γ光子是单方向的,也是单个的,即单光子。

(三)、分类:

1、多探头环形:

该类机型的探头结构为多探头环型,结构与X线CT类似,由数量众多的探头围成环状,同时分别检测各个方向的γ射线。成像时探头做平动和转动两种运动,首先检测器沿病人某一层面在不同方向上做直线扫描,将每一条线上的体内示踪核素放出的射线总和记录下来,形成一个投影数据(放射性药物沿投影线浓度分布的线积分),这些投影数据的集合形成一个“投影截面”;然后探头旋转一

定角度,再作直线扫描,取得另一个“投影截面”。γ相机旋转各个不同的角度,检测器按患者不同的截面进行直线扫描,再由计算机将不同的截面的采样数据进行处理,重建体层图像。该设备具有体层灵敏度高、空间分辨率好、成像时间短等优点,甚至可以进行快速动态体层成像,但价格昂贵,而且不能全身显像和平面显像兼顾,因此不易推广。

2、γ照相机型:

它是利用通用的γ照相机实现的体层成像。探头的安装采用固定型和旋转型两类。旋转型的SPECT又分为单探头和多探头两种情况。

1)、探头固定型SPECT

它是由4台γ照相机互成90o角固定安装而成。检测准直器采用多针孔准直器或旋转斜孔准直器,采集不同角度的γ射线投影进行图像重建。由于角度有限,空间分辨率和均匀度都较差,容易产生伪影。

2)、探头旋转型SPECT

γ照相机的探头围绕身体旋转360o或180o进行完全角度或有限角度取样,所得到的投影数据量丰富,可以重建各个方向的符合临床要求的体层影像。这种旋转的γ照相机型的SPECT,同时兼有平面显像、体层显像和全身显像的功能,是当今SPECT的主流。

(四)、基本成像原理:

γ相机在各个不同的角度旋转,取得各种投影数据,经计算机处理后重建图像。

(五)、机架:略

(六)、控制台和计算机:略

三、正电子发射型计算机体层设备

(一)、正电子和正电子放射性核素:

从回旋加速器生产的放射性核素,多数是贫中子(也即是富质子的)的,在

β粒子和一个中微子,中微子其衰变过程中发生质子和中子的互相转换,放出+

β粒子称为正电子,正电子是一种带有正电荷、逸出体外没有作用,不能检出。+

有一定质量和能量的带电粒子。正电子与组织中的负电子相撞失去能量,正负电子相结合而发生湮灭。湮灭把正电子和负电子的质量转变为能量,并以γ射线的形式放出。为了保证能量和质量,主要衰减模式是两个γ光子,分别为511keV 的能量以相差180o 的方向发射。

正电子放射性核素可由回旋加速器、直线加速器及正电子放射性核素发生器产生。医学上所用的正电子放射核素多数由回旋加速器生产,用于临床核医学的正电子放射性核素有F O N C 18151311,,,。这些放射性核素半衰期短,可以给予较大的剂量而使人体接受的辐射剂量较小。在生物体内积分剂量低,静态显示可以加大剂量,改善图像质量。动态检查时,能迅速完成显像功能,所以可以重复观察。

(二)、正电子成像的基本原理:

1、用质子、氘核或氦核在回旋加速器中轰击稳定元素的核,所用的发射正电子的核素,如F O N C 18151311,,,等(其中C 、N 、O 是人体组织的基本元素),是易于标记各种生命必需的化合物及其代谢产物,而不会改变它们的生命活性的物质。

2、将这些核素的标记物引入到要研究的人体部位和器官,它们在空间的分布反映人体和器官的机能和代谢状态。

3、放射性核素发生+β衰变,并发射一个正电子,正电子所带能量的大小决定了正电子在组织中消失的射程。正电子在组织中运动很短的距离(几毫米),就会与组织中的电子结合而发生湮灭,转换成一对向相反方向射出、能量为511keV 的γ光子。

4、由于正电子只能瞬态存在,不能直接测量,只能通过测量湮灭辐射的γ光子来检测正电子的存在。由安装在人体周围的旋转检测器、环型检测器以及多边形检测器阵列,收集到所有视角上的可以检测到的数据,并应用符合检测电路将各个角度检测的投影数据组合起来,就可以用常规的图像重建算法做出截面图像。最终图像上的密度(包括数据修正)反映了组织中正电子核素的浓度,如果放射性核素在人体中的运动学已知,即可构造出示踪迹的运动模型。

(三)、湮灭符合探测装置:

1、符合事件测定区:

2、电子准直:

(四)、PET的基本结构略:

影像医学与核医学专业临床能力考核内容和要求

影像医学与核医学专业临床能力考核内 容和要求 申请临床医学硕士专业学位 申请人在获得医学学士学位后,应从事本专业(放射医学、核医学、超声医学三者之一)临床工作三年以上,完成本专业基础和专业知识的学习,了解本学科领域的国内外研究动态和新进展。 一、影像医学 (一)理论知识 1、掌握 (1)影像医学的发展史及现状。 (2)影像医学诊断仪器的基本构成、部件名称、功能及成像原理。 (3)人体各系统影像学应用解剖,各种影像学象征与病理的关系。 (4)人体各系统常见疾病的X线及CT诊断,鉴别诊断。 2、熟悉 (1)介入放射的原理,以及对常见、多发疾病的诊断、鉴别诊断及治疗原理。 (2)造影剂副反应的处理和抢救治疗。 (3)相关临床医学的基础和专业理论知识。 1、了解 (1)放射防护知识、规则和要求。

(2)影像学新进展。 (二)临床技能 1、掌握 (1)X线造影与检查技术。 (2)检查技术。 (3)消化道检查技术。 (4)人体各系统急诊影像检查方法的选择、诊断及鉴别诊断。 (5)造影剂副反应的处理与抢救技术。 2、熟悉X线投照技术。 二、核医学 (一)理论知识 1、掌握 (1)放射性核物理知识及各项成像原理。 (2)核医学各项检查的适应证、禁忌证和注意事项的原理,以及出现反应时的处理抢救方法。 (3)心、脑、肺、肝胆、肠胃、骨骼系等脏器的解剖和病理生理影像特征。 (4)各项核医学检查对疾病的诊断与鉴别诊断。 (5)放射性核素治疗甲亢、甲癌、骨肿瘤的原理。 2、熟悉相关临床医学的基础和专业理论知识。 3、了解放射防护基本常识和防护规则与要求。 (二)临床技能

1、掌握 (1)放射性药物的标记、分装、测量、注射方法与技术。 (2)体外分析技术及质控。 (3)核医学仪器的操作,包括摆位、采集、图像处理和核素治疗的技术。 (4)核医学仪器的基本校正。 (5)独立正确分析各项核医学检查结果,书写报告。 2、熟悉放射性废物的处理原则和规定。 三、超声医学 (一)理论知识 1、掌握 (1)超声医学的发展史及现状。 (2)超声影像医学成像原理以及相关物理基础知识。 (3)超声检查的适应证,禁忌证。各种影像学方法的优选及综合使用。 (4)人体解剖,尤其要求对局部解剖、断面解剖有深入了解。对全身正常声像图、常见病理超声征象的成像理论有正确认识。 (5)全身常见疾病的灰阶和彩色多普勒超声影像诊断和鉴别诊断。 (6)常用的临床检查方法及其临床意义。 2、熟悉 (1)临床医学的基础和专业理论知识。

影像医学与核医学考核试题库_川大

影像医学与核医学复习提纲答案 一、名词解释: 1、放射性核素 凡原子核内质子数、中子数和能量状态均相同的一类原子,称为一种核素。按其能量状态,分为稳定性核素和放射性核素。放射性核素指能自发的发生核内成分或能态的改变而转变为另一种核素,同时释放出一种或一种以上的射线,即能进行放射性核衰变的核素。 2、同位素 具有相同质子数,不同中子数的同一化学元素的多种原子,在周期表上占有同一位置,其化学行为几乎相同,但原子质量或质量数不同,其质谱行为、放射性转变和物理性质不同。 3、天然放射性本底 天然放射性本底是指在辐射测量中,被测源之外的其它天然辐射源,包括宇宙射线和来自天然放射性核素如钾-40、碳-14、镭-226、钍-232及衰变产物等所产生的总辐射水平。 4、甲状腺冷结节 甲状腺结节与邻近正常甲状腺组织相比放射性减低或缺损,表明结节组织分化不良,无功能或功能低下,常见于甲状腺囊肿、钙化、纤维化、出血、甲状腺癌等,此类结节恶变率较高。 5、甲状腺热结节 甲状腺结节与邻近正常甲状腺组织相比放射性增高,表明结节组织功能亢进,常见于功能自主性甲状腺腺瘤。 6、利尿肾图 应用利尿剂通过利尿作用得到的肾图称利尿肾图。有助于鉴别机械性尿路梗阻和非梗阻性尿路扩张,非梗阻性尿路扩张患者利尿肾图表现为C段曲线迅速下降,机械性梗阻患者利尿肾图与与常规肾图无显著变化。 7、三时相骨显像 显像仪置低能通用型准直器,成人静脉“弹丸式”注射99TC-MDP15-25mci,即刻开始显像采集,首先以1帧/1-3秒速度采集60s,获得动脉灌注像即“血流相”

然后以1帧/分或300-500k/帧采集1-5帧,获得血池相,2-6小时后采集静态显像,为“延迟相”,通常称为三时相骨显像。 8、左心室射血分数每搏输出量占心室舒张末期容积量的百分比。 9、交叉性小脑失联络 脑梗死时,梗死区同侧或对侧的局部脑组织呈现低血流灌注,而此类低血流灌注并非是由于脑的器质性病变所引起,而是一种血管神经反应。最常见到的是“交叉性小脑失联络”(CCD),即:运动皮质的脑卒中将干扰皮质脑桥小脑束的传导,引起病变对侧小脑半球的血流与放射性代谢的减低。 10、肺灌注显像 经肺静脉注射大于毛细血管直径的放射性颗粒后,这些颗粒与肺动脉血混合均匀并随机地一过性嵌顿在毛细血管或肺小动脉内,其在肺内的分布与局部血流量成正比,通过体外测定肺内放射性分布并进行肺显像即可反映局部肺血流灌注情况,故称肺灌注显像。 11、骨显像的“过度曝光征” 即超级骨显像,是显像剂异常浓聚的特殊表现,显像剂在中轴骨和附肢骨近端呈均匀,对称性异常浓聚,或广泛异常浓聚,组织本地很低,骨骼影像异常清晰,肾脏和膀胱影像常缺失,常见于以成骨为主的肿瘤广泛性骨转移,甲旁亢等患者,产生的机制可能为疾病引起的全身骨骼广泛性反应性成骨,引入体内的显像剂多为代谢旺盛的骨骼摄取,很少经泌尿系统排泄。 12、放射化学纯度 放射性标记化合物的放射性活度占该样品的总放射性活度的百分比。 放化纯度(%)=标记物的放射性活度/样品总的放射性活度x100% 13、肝血池显像中的过度填充 肝血池显像平衡相病变部位放射性高于周围正常肝组织,有时可近于心血池,这种现象称“过度填充”,常见于肝血管瘤,可显示放射性明显高于周围正常肝组织的血管瘤体影像。 14、放射免疫分析中的非特异结合率

【2020年整理】核医学大型影像设备发展趋势

上海医疗器械高等专科学校 核医学大型影像设备发展趋势

核医学大型影像设备发展趋势 摘要 随着各种“组学”、“工程学”和“循证医学”的发展,临床医学从原始的“经验化治疗”、“同类疾病统一治疗”发展成为“个体化治疗”的分子病因诊断和分子靶向治疗的新时代[1]。个体化治疗的前提是在体准确识别病因靶[2]。因此,多种影像技术(设备)融合的分子影像技术,已经成为并将在未来20-30年内继续成为医学影像学发展的主要方向。本文根据中华医学会核医学分会2010年普查结果,参考近期文献和与国外专家直接交流获得的信息,重点介绍PET/CT 和PET/MR的技术进展。 关键词:核医学,PET/CT;PET/MR

目录 摘要 (1) 目录 (2) 第一章融合影像技术发展的基本条件 (3) 第二章 PET/CT设备的发展 (3) 第三章 PET/MR融合技术 (4) 3.1 PET/MR与PET/CT的比较 (4) 3.2 PET/MR的临床价值 (4) 3.3 PET/MR的技术难点与要求 (5) 五、关于融合设备未来的预测 (5) 参考文献 (8)

第一章融合影像技术发展的基本条件 1.以PET/CT为代表的融合影像依赖于现代科学技术的支持。材料、制造、电子、计算机与信息技术不断为PET/CT技术发展注入活力;生物技术、药学、医学的进步,使PET/CT的科学和临床价值得到充分体现。 2.分子影像显示体内疾病靶分子的能力,源于所选用的分子探针。各种“组学”、“工程学”发现的病因靶,经过处理、筛选,与信号源连接形成分子探针,能够在体内与病因靶动态结合,同时能释放信号用于测定和成像。多种物质可作为信号源(如纳米粒子、微泡、发光物质与磁物质等),但以放射性核素,特别是正电子类核素标记技术最成熟。其发展快、应用广、效果肯定,是PET/CT保持技术领先地位的重要条件。分子探针是融合影像技术今后的主要发展重点之一。 3.PET/CT的价格较高,必须严格适应证,充分考虑价格益比。大量数据证明,通过PET/CT对肿瘤的早期诊断、准确分期和及时监测疗效,可以降低医疗成本,为国家和社会节省卫生资源。多项大样本(数万例)研究证实,PET/CT对各种肿瘤的临床决策影响率均超过30%。目前国内PET/CT服务价格偏高,无医疗保险覆盖,阻碍PET/CT推广。组织多中心临床研究,获得循证医学证据,适当降低收费,争取医疗保险支持,对中国PET/CT事业发展十分重要。 4.知识结构和人员素质是保证融合影像诊断准确性的基本条件。PET和CT的融合产生了影像判断的革命性转变。根据图像模式的转变,拓宽相关影像专业知识,重视使用、操作、判断的规范,特别是对所有相关技术人员的不断培训和继续教育,通过临床路径,结合医疗保险是确保PET/CT技术健康发展、正确使用的必要条件。 第二章 PET/CT设备的发展 提高采集速度,最大程度利用分子探针的信息,减少处理的复杂性,改进同步采集能力,制造最大程度发挥PET/CT技术潜能的设备,并通过融合、多探针方式满足临床不同需要,是PET/CT在今后15-20年内的主要发展方向。 1.改善探测元器件。探测器负责捕捉正电子湮灭光子、能量转换及光电转换,并输出电脉冲,是PET的“眼球”。 晶体:将高能光子转变为可探测的低能光子。理想的晶体性能包括:入射光子阻滞率高、初级闪烁光子量大、光衰减快、光子输出量高、能量合适、光衰减小等。早期的碘化钠、锗酸铋等,均未满足上述需求。 光电元件:将晶体输出的低能光子转化成电信号。光电倍增管的型号增益达106-107倍。线性好,技术成熟。近年来还有位置敏感型、多道型等上市,在3-5年内,PMT任可以保持主力地位,但PMT存在工作电压高、体积大、速递慢、易受磁场干扰等缺点。 理论上讲,光电元件与晶体块最好是1:1配置,因工艺和价格显示,PMT无法达到这一配比,所有才有组块式,anger式和四分式等设计。 2.获得更多测量信息。探测器输出的幸好,经过分析、甄别、校正、最后通过图像重建实现成像。这一过程中电路、程序可以加以改进,以提高整机性能。 TOF技术:是通过测定湮灭光子到达对向放置探测器的时间差别判定湮灭事件位置的技术。根据光速(2.9*108m/S)可以换算出:光子到达时间差1ns=29.9cm空间差。 作业深度:与晶体不垂直的高能射线可能斜穿透数个晶体后才能被吸收,其吸收点与实际入射点位置信息偏离,成为作用深度。利用入射光自在晶体不同深度作用产生的点扩展函数,可以确定作用深度。

(影像医学与核医学)硕士专业学位考试大纲

(影像医学与核医学)硕士专业学位考试大纲

同等学力人员申请临床医学(影像医学与核医学)硕士专业学位 学科综合水平全国统一考试大纲 影像医学与核医学 I.考试范围 要求考生系统掌握医学影像专业基础知识及各系统大体解剖、正常影像解剖和变异。掌握各种影像检查方法(X 线、DSA、CT、MRI、B 超、核医学)的特点、基本成像原理、适应证和禁忌证、图像质量控制及图像后处理技术、对比剂的使用、毒副作用的表现及抢救原则。了解各种介入治疗方法的治疗原则、适应证和禁忌证。了解各系统疾病的病因、病理学改变、临床特点、实验室相关检查项目的临床意义、治疗原则及相关临床学科知识,掌握并能综合应用各系统常见疾病的影像学表现、影像诊断和鉴别诊断,了解各系统少见疾病或疑难疾病的影像学表现、影像诊断和鉴别诊断。 II.考试要求 要求考生系统掌握影像医学中最主要的基础理论、基本知识和基本技能,并且能运用它们来分析和解决实际问题。

【能力要求】主要测试考生以下几个方面的能力: 1.对医学影像学领域中最主要的基本理论、基本知识和基本技能的掌握程度2.运用这些基本理论、基本知识和基本技能对有关的理论和实际问题做出综合判断和评 论的正确程度3.分析解决实际问题的能力 III.考试形式及试卷结构 一、答卷方式 闭卷、笔试。 二、考试时间 180 分钟(试卷满分为100 分)。三、题型分数比例 选择题A1 型选择题85 题约42.5% A2 型选择题40 题约20% B 型选择题50 题约25% X 型选择题25 题约12.5% IV.大纲内容 第一部分放射医学 一、医学影像检查技术

1. X 线成像(掌握) 2.数字减影血管造影(DSA)(识记) 3.计算 机断层成像(CT)(掌握) 4.磁共振成像(MRI)(掌握) 二、呼吸系统 1.检查方法(掌握)? 2.正常影像解剖及基本病变影像学表现(掌握) 3.肺部肿瘤病因病理(识记)、临床特点(识记)、影像学表现(应用)、诊断和鉴别诊断(应用) 4.肺部感染性疾病(肺炎、肺结核、肺脓肿等)病因病理(识记)、临床特点(识记)、影像学表现(应用)、诊断和鉴别诊断(应用) 5.气管和支气管疾病病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握) 6.支气管及肺先天性病变病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握) 7.胸部外伤病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握) 8.肺间质性疾病病因病理(识记)、临床特点(识记)、影像学表现(掌握)、诊断和鉴别诊断(掌握)

核医学成像设备

第八章核医学成像设备 §8-1 概述 概念:是一种以脏器内外或脏器正常组织与病变组织之间的放射性浓度差别为基础的脏器或病变组织的显像方法。 一、核医学成像的过程和基本条件: (1)、先把某种放射性同位素标记在药物上,形成放射性药物并引人人体内,当它被人体的脏器和组织吸收后,就在体内形成了辐射源。 (2)、用γ射线检测装置可以从体外检测体内放射性核素在衰变过程中放出的γ射线,从而构成放射性同位素在体内分布密度的图像。 由于放射性药物与一般天然元素或其他化合物一样,能够正常地参与机体的物质代谢,因此核医学成像的图像不仅反映了脏器和机体组织的形态,更重要的是提供了有关脏器功能及相关的生理、生化信息。 二、核医学成像的基本特点如下: (1)、核医学成像是以脏器内、外,或脏器内各部分之间的放射性浓度差别为基础,显示的静态和动态图像,该图像不仅反映了人体组织、脏器和病变的位置、形态、大小,而且还提供了包括整体或局部组织功能,以及脏器功能的每个微小局部变化和差别。 (2)、核医学成像具有多种动态成像方式。由于脏器对放射性药物的摄取、吸收、排泄等作用,使脏器、病变的血流和功能情况得以动态且定量地显示出来,同时提供多种功能参数以反映机体及组织的血流功能、代谢和受体等方面的信息。 (3)、一些放射性核素具有向脏器或病变的特异性聚集,由此而获得的核素成像具有较高的特异性,可显示不同组织类型的肿瘤、各种神经受体、炎症、转移

灶等组织器官的影像。而这些单靠形态学检查常常难以实现。 三、核医学成像设备分类及特点 (一)、γ相机 1、组成: (1)、闪烁探头:包括准直器、闪烁探测器、光电倍增管等。 (2)、电子线路:包括前置放大器、单脉冲高度分析器、校正电路等。 (3)、显示装置:示波器、照相机等。 (4)、附加设备: 2、特点:(见书P226) (1)、通过连续显像,追踪和记录放射性药物通过某脏器的形态和功能进行动态研究; (2)、由于检查时间相对较短,方便简单,特别适合儿童和危重病人检查; (3)、由于显像迅速,便于多体位、多部位观察; (4)、通过对图像相应的处理,可获得有助于诊断的数据或参数。 (二)、单光子体层成像设备(SPECT ) 1、成像原理: 利用γ照相机围绕着诊断感兴趣的人体区域,采集各种不同角度上放射出的γ光子并计数,然后利用X-CT 中所使用的图像重建方法,得到人体某一体层上的放射性药物浓度的分布,即可得到多层面的各方位的体层图像或三维立体像。 目前SPECT 的能量测量范围为50~600keV ,空间分辨率6~11mm 。 2、与X-CT 的区别: (1)、图像粗造,空间分辨率低。 (2)、属发射型体层摄影; (三)、正电子发射体层成像设备(PET) 1、使用发射正电子的放射性核数,如:O N C 151311,,等都是人体组织的基本元素,易于标记各种生命必需的化合物及其代谢产物或类似物而不改变它们的生物活性,且可参与人体的生理、生化代谢过程;其次这些核素的半衰期都比较短,检查时可给予较大的剂量,从而提高图像的对比度和空间分辨力。因此它所获得

影像医学与核医学-xzhmu

影像医学与核医学 Medical Imaging and Nuclear Medicine (专业代码100207) Ⅰ. 医学学术学位硕士研究生培养方案 一、培养目标 为适应医药卫生事业发展的需要,培养德、智、体全面发展的二十一世纪医药卫生高层次专门人才,影像医学与核医学科学术学位培养目标如下: 1.坚持四项基本原则,热爱社会主义祖国,遵纪守法,具有高尚医德医风和为社会主义现代化建设和祖国医学事业献身的精神。 2.了解和掌握科研工作的全过程,在导师指导下能进行科研设计,确立科研路线及分析方法、总结科研结果,并训练有一定的教学能力。 3.系统掌握本专业的基础理论、基本知识和基本技能,了解本专业国内外进展,在临床工作上,能掌握基本操作及常见病的诊断。 4.熟练掌握一门外语,具有较强的听、说、读、写的能力,能熟练地阅读专业外文资料。 5.身心健康。 二、学习年限和总体时间安排 学习年限为三年。 第一学期集中学习公共必修课、指定选修课、专业必修课及选修课等,参加研究生学术例会。 第二至四学期开始临床培训,为期12个月。第一学期结束前开始作文献综述报告、开题报告及评议。第二学期结束前完成文献综述、开题报告及评议。 第五至六学期进行科学研究和答辩12个月。第二学期中期举行预答辩,6月初举行答辩。 研究生第二、三年级均不享受寒暑假,两年中休假日为40天,即每年20天,由研究生申请,导师安排。具体培养进程参照研究生学院颁发的《徐州医学院硕士研究生培养工作进程表》。 三、研究方向 1.影像诊断新技术的开发和应用 2.放射诊断的基础与应用研究

3.介入放射学的基础与应用研究 4.超声诊断的基础与应用研究 5.临床核医学的基础与应用研究 四、课程设置与要求 (一)课程设置(见课程设置表) 包括公共必修课、指定选修课、专业必修课及选修课(根据研究方向不同在导师指导下选择以下各类课程)。 备注:大学英语六级考试未通过的研究生必须选修英语(普通班),通过的研究生可根据自身需要选

2015考研南开大学医学院105107影像医学与核医学考试科目及研究方向考研真题解析

1/15 【育明教育】中国考研考博专业课辅导第一品牌官方网站: https://www.wendangku.net/doc/636734222.html, 1 育明教育天津分校2015年天津地区15所高校考研辅导必备 天津分校地址南京路新天地大厦2007 专注考研专业课辅导8年天津地区专业课辅导第一品牌 天津分校王老师与大家分享资料 育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。更多详情可联系育明教育天津分校王老师。 2015考研南开大学医学院105107影像医学与核医学考试科目及研究方向考研真题解析 105107影像医学 与核医学(专业学 位) ①101思想政治理论②201英语一③306西医综合④--无专业硕士。不允许少数民族骨干计划、强军计划和国防生报考。本专业只招收本科专业为临床医学专业的考生。医学院专业硕士(含各个专业学位)共招生 15名,不含在医学院计划录取的33人中。_01神经影像诊断 与磁共振应用 _02腹盆部疾病的 影像诊断

2/15 【育明教育】中国考研考博专业课辅导第一品牌官方网站:https://www.wendangku.net/doc/636734222.html, 2 人其实是一种习惯性的动物。无论我们是否愿意,习惯总是无孔不入,渗透在我们生活的方方面面。不可否认,每个人身上都会有好习惯和坏习惯,正是这些好习惯,帮助我们开发出更多的与生俱来的潜能。站在考研的角度上,好的学习习惯是有共通之处的。在此王老师谈谈考研路上特别需要的那些好的学习习惯。1.制定科学合理的复习计划 每个人的学习情况不一样,复习计划也会有所不同。但是在复习计划里一定要明确一点:多长时间内,完成什么内容的复习。并且要尽量将这样的计划做细一些,最好细致到一周内(甚至一天内)完成什么内容的复习。这样详细的计划会让你的复习更有目标感,落实起来有据可依也会更好。此外,在制定复习计划时一定要找到自己的薄弱科目,为薄弱科目的复习多安排些时间。总之,考研复习就像马拉松,以一定的步伐有节奏地坚持跑下去,才能取得好成绩。 2.及时完成规定的学习任务 制定完复习计划之后,一定要严格执行,要在规定的时间完成规定的复习任务。把每个规定的复习时间分成若干时间段,根据复习内容,为每个时间段规定具体的复习任务,并要求自己必须在一个时间段内完成一个具体的复习任务。这样做,可以减少乃至避免学习时走神或注意力涣散的情况,有效地提高学习效率。还可以在完成每个具体的复习任务后,产生一种成功的喜悦,使自己愉快地投入

核医学成像设备分类、特点及核医学成像过程简介

核医学成像设备分类、特点及核医学成像过程简介 核医学成像设备是指探测并显示放射性核素药物(俗称同位素药物) 体内分布图像的设备。核医学成像是一种以脏器内外或脏器正常组织与病变组织之间的放射性浓度差别为基础的脏器或病变组织的显像方法。核医学成像检查ECT与CT、MRI等相比,能够更早地发现和诊断某些疾病。核医学成像属于功能性的显像,即放射性核素显像。 一、核医学成像设备分类及特点核医学成像设备(一)、相机 1、相机组成: (1)、闪烁探头:包括准直器、闪烁探测器、光电倍增管等。 (2)、电子线路:包括前置放大器、单脉冲高度分析器、校正电路等。 (3)、显示装置:示波器、照相机等。 (4)、相机附加设备。 2、特点: (1)、通过连续显像,追踪和记录放射性药物通过某脏器的形态和功能进行动态研究; (2)、由于检查时间相对较短,方便简单,特别适合儿童和危重病人检查; (3)、由于显像迅速,便于多体位、多部位观察; (4)、通过对图像相应的处理,可获得有助于诊断的数据或参数。 核医学成像设备(二)、单光子体层成像设备(SPECT) 1、成像原理:利用照相机围绕着诊断感兴趣的人体区域,采集各种不同角度上放射出的光子并计数,然后利用X-CT中所使用的图像重建方法,得到人体某一体层上的放射性药物浓度的分布,即可得到多层面的各方位的体层图像或三维立体像。 目前SPECT核医学成像设备的能量测量范围为50~600keV,空间分辨率6~11mm。 2、与X-CT的区别:(1)、图像粗造,空间分辨率低。 (2)、属发射型体层摄影; 核医学成像设备(三)、正电子发射体层成像设备(PET) 1、使用发射正电子的放射性核数,如:等都是人体组织的基本元素,易于标记各种生命

浅析数字化医学影像设备的应用与发展

龙源期刊网 https://www.wendangku.net/doc/636734222.html, 浅析数字化医学影像设备的应用与发展 作者:严镕璇 来源:《科技风》2016年第18期 摘要:随着述x线、CT、MRI、放射学及分子影像技术越来越好,医疗设备也必须跟随着时代前进,进行及时更新及完善,使得医疗在临床上能够更好发挥作用。相比之下,目前现有的很多医疗设备里面,数字化的医学影像设备毫无疑问是这些仪器中的领头羊,而且在临床治疗的方式有非常重大的影响,对医生护士的常规工作也能有很大的裨益。影像设备技术应用与发展,能够使得医疗工作者获得更广泛、更精准的医学影像的信息,使得诊治结果更加精准,在目前,医学影像数字化对肿瘤的治疗、心脏病的研究、神经病的诊断、器官移植及新药研发等各大领域有着重要的意义。研究数字化医学影像设备的应用与发展,在获得较全面的资料和数据外,还能知晓现今医疗设备的缺点,从而使得医疗技术得到提升。 关键词:数字化;医学影像;发展;应用 一、CT 成像技术的应用与发展 在医学临床上,CT成像技术已使用30多年。探测器、球管、计算机系统及伪影校准算法是CT主要硬件技术。CT成像的质量越来越高以及数据功能多种多样得益于多层CT的产生。通过三维数据的采集让CT获得数据后的处理性能在不断完善,其成图能够使任意面和立体的。 (一) CT心脏成像 CT心脏成像是在医学影像临床应用上的里程碑。在这之前,想要通过CT成像寻找心脏 部位的病症情况,均难以得到较好的结果。经过专家们长期对数字化医学影像设备探究,目前所存在的CT心脏成像能够对心脏进行细致观测及病情变化的研究。另外,少数研究学者们还认识到了“时间准确性”的想法,理论分析,时间计算的准确性对临床检查是否成功和患者心率覆盖的范围有较大影响。在现今所有的成像设备当中,常见的技术是多排螺旋CT及电子束CT,他们还可以对心脏的状态、冠状动脉进行成像,所得到的图像比较具有说服力。 (二) CT血管成像 血管造影术的检查可通过单排和多排螺旋CT得以实现。CTA可以清晰表示出动脉瘤体位置、大小及分布状态,并能够对其容积进行准确计算,仿真内窥镜可对瘤体有无穿支血管进行观察,为临床治疗提供足够依据。根据以上可以判断,CT血管成像技术在临床使用上已经非常有把握了,为患者的在医学影像上的检查有了巨大的贡献。 (三) CT功能学成像

影像医学与核医学专业

影像医学与核医学专业 一、培养目标 根据培养方案总则,结合本学科特点,特别提出以下要求: (一)硕士专业学位 具有较强的临床分析和思维能力,能独立诊断本学科领域内的常见病,掌握本学科各种检查技术,并能对下级医师进行业务指导,达到高年住院医师的临床工作水平。 (二)博士专业学位 具有较严密的逻辑思维和较强的分析问题、解决问题的能力,熟练地掌握本学科的临床技能,能独立诊断本学科常见病及某些疑难病症,能对下级医师进行业务指导,达到初年主治医师的临床工作水平。 二、第一阶段:时间二年 (一)学位课程 1.公共必修课:同培养方案总则。 2.专业课:3学分,自学与专题讲座相结合的方式进行,参加研究生院组织的专业课考试。(1)自学参考书及相关文献: ①《放射诊断学》荣独山 ②《放射学综合教科书》NICER ③《全身CT诊断学》李果珍 ④《现代超声诊断手册》张武 ⑤《腹部超声诊断学图谱》董宝玮 ⑥《临床核医学》潘中允 ⑦《核医学诊断操作规程》卫生部医政司主编 ⑧《中华核医学杂志》期刊 ⑨《中华放射学杂志》、Radiology期刊 (2)专题讲座:参加本学科组织的专题讲座,题目见附1。 3.专业基础课:至少2门,必须修满3-5学分。重点要求病理、解剖及实验核医学方面的研究生课程。 (二)临床能力训练 1.通过本阶段的培训,掌握本学科坚实的基础理论与系统的专业知识,具有较强的临床分析与思维能力,能独立诊断本学科领域内的常见病,并对下级医师能进行业务指导,达到高年住院医师的临床工作水平。 (1)X线诊断学12个月的要求: ①初步掌握X线投照技术和暗房工作(2-4周); ②掌握本科常用X线机的操作方法和机器维护保养知识; ③熟悉并掌握放射防护规则和要求; ④基本掌握人体各系统正常X线解剖学; ⑤基本掌握胸部、骨关节系统常见病及急腹症的有关X线诊断,并书写规范的X线报告; ⑥基本掌握消化道检查方法; ⑦于6个月后可参加急值班工作(但需有上级医师值二线班)。 (2)X线诊断学9个月的要求:

核医学影像物理师专业考试大纲16页

2010年医用设备使用人员业务能力考评 核医学影像物理师专业考试大纲 (2008年版) 中华人民共和国卫生部 人才交流服务中心 说明 为更好地贯彻落实《大型医用设备管理办法》(卫规财发[2004]474号文)精神,中华医学会和卫生部人才交流服务中心自2004年开始分别组织对全国医用设备使用人员进行培训和专业技术知识统一考试。 为使应试者了解考试范围,卫生部人才交流服务中心组织有关专家编写了《全国医用设备资格考试大纲》,作为应试者备考的依据。考试大纲中用黑线标出的为重点内容,命题以考试大纲的重点内容为主。 全国医用设备资格考试 核医学影像物理师专业考试大纲 第一章核医学总论 1.核医学定义与内容 (1)定义 (2)内容 (3)发展简史 2.放射性核素示踪技术 (1)示踪剂的概念

(2)示踪技术的原理 (3)示踪技术的优点 (4)示踪技术的缺点与局限性(5)示踪实验的设计 (6)示踪技术的主要类型及应用3.放射性核素显像技术 (1)显像原理 (2)脏器或组织摄取显像剂的机理(3)显像条件及其选择 (4)显像类型 (5)图像分析方法及要点 (6)图像质量的评价 (7)核医学影像及其他影像的比较第二章原子核与放射性 1.原子及原子核 (1)原子结构 (2)原子核结构 (3)结合能 (4)放射性与放射性核素 2.核的放射性衰变 (1)α衰变 (2)β衰变

(3)β+衰变 (4)电子俘获 (5)γ衰变 (6)内转换 3.放射性活度 (1)放射性活度定义 (2)活度单位 (3)放射性浓度 4.衰变规律 (1)衰变规律 (2)衰变常数 (3)半衰期 (4)递次衰变 5核反应 (1)核反应概述 (2)核反应分类 (3)核反应遵从的守恒定律(4)反应能 (5)反应道 (6)核反应截面 (7)核反应产额 (8)回旋加速器实现的核反应

影像医学与核医学-首都医科大学说课材料

影像医学与核医学博士科学学位培养方案 一、培养目标 见总则。 二、学科简介 影像医学与核医学专业分为放射学(包括X线、CT、磁共振和介入放射学)、超声医学及核医学三部分。本学科研究内容包括:1.器官的正常影像学表现及其解剖基础,2.各个系统疾病的影像表现、影像表现的病理基础、疾病的影像学诊断和鉴别诊断。3.正常和病理组织的功能成影和分子影像学,4.介入放射学在疾病诊断和治疗的应用。5.医学影像的图像处理,6. 影像医学与核医学新技术的开发和应用。 三、研究方向 1、放射诊断学; 2、超声诊断学; 3、核医学; 4、介入放射学; 5、医学影像新技术的研究。 四、学习年限及时间安排 见总则。 五、课程学习要求 研究生课程学习实行学分制,科学学位博士生课程学习学分要求为7.0学分。 1、公共必修课共5.0学分 中国马克思主义与当代36学时 2.0学分外语(英语)72学时 3.0学分 2、必选课至少2门至少2.0学分 生命科学理论课程一门,至少1.0学分,由导师与研究生根据研究方向,从以下几门课程中选择: 细胞生物学研究进展18学时 1.0学分 分子生物学研究进展18学时 1.0学分 免疫学研究进展18学时 1.0学分 神经科学研究进展18学时 1.0学分 实验技术课程或专业基础课程一门,至少1.0学分,由导师与研究生根据研究方向,从以下几门课程中选择: 神经解剖学54学时 2.5学分 头颈解剖学29学时 1.5学分

胸腹解剖学29学时 1.5学分 脊柱、四肢解剖学29学时 1.5学分 骨盆会阴解剖学18学时 1.0学分 神经病理学28学时 1.5学分 临床医学影像学36学时 2.0学分 医学图像处理与分析54学时 2.5学分 医学影像设备学36学时 2.0学分 磁共振成象原理36学时 2.0学分 SPSS for Windows在医学统计中的应用54学时 2.5学分 3、选修课不做要求 六、临床工作要求 医学博士科学学位研究生结合课题进行本专业的临床工作,时间半年。根据博士导师具体情况,分别将神经影像学、头颈部影像学、心血管影像学、呼吸影像学、腹部影像学、骨与关节影像学、儿科疾病影像学、介入放射学、超声及核医学列为本专业的重点三级学科。 目的:掌握各系统常见病和多发病的影像表现、影像诊断和鉴别诊断,各种影像学检查技术的临床应用;熟悉少见病和疑难病例的诊断和鉴别诊断。 具体要求:结合课题研究,通过临床相关科室的实践工作,掌握本专业常见病和多发病的病因、病理、临床表现、影像学表现、影像诊断和鉴别诊断等,能够正确书写X 线、CT、MRI、超声及核医学的诊断报告,熟练完成各系统的影像检查操作等。 七、学位论文要求 见总则。 八、学位评定与授予 见总则。 九、培养方式与要求 见总则。 影像医学与核医学博士专业学位培养方案 一、培养目标 见总则。 二、学科简介 同前,略。 三、研究方向 1、放射诊断学;

影像医学与核医学

姓名:程木华,教授、主任医师、博士生导师 行政职务:核医学科主任 专业领域:影像医学与核医学。 研究方向:分子核医学影像与AI分析,着重专注于神经精神疾病的分子核医学影像基础与临床研究,以及图像人工智能分析;核素分子靶向治疗,着重专注于难治性甲状腺癌核素分子靶向治疗的基础与临床研究。 学术任职:中国核医学医师分会科普与信息化工作委员会副主任委员,中国抗癌协会肿瘤核医学专业委员会治疗学组副组长,中德医学协会核医学专业委员会常委,中国医师协会核医学医师分会委员,中华医学会核医学分会治疗学组委员,中国医学影像技术研究会核医学分会委员,广东省中西医结合学会核医学专业委员会副主任委员,广东省医疗行业协会医学影像管理分会的副主任委员,广东省医学会核医学分会常委,广东省辐射防护协会医学专业委员会常委,多个国外杂志特邀审稿专家。 学术成果:先后获得国家自然科学基金以及省部科研基金等支持的多个科研项目,并参与多项国家、省市科研课题。发表学术论文100多篇,其中SCI杂志收录论文20多篇,参编6本专著或教材。获广东省医疗科技成果奖1项目,实用专利2项,软件著作权1项。 博士后招收条件:研究方向:1.分子核医学影像研究;2.核素分子靶向治疗研究。 E-MAIL:chmarka@https://www.wendangku.net/doc/636734222.html,

姓名:张勇,主任医师、博士生导师 行政职务:研究生科科长 专业领域:影像医学与核医学。 研究方向:核医学分子影像、放射性核素靶向治疗。 学术任职:中华医学会放射医学与防护学分会委员,广东省医学会放射防护医学分会主任委员,广东省医师协会核医学分会常务委员。 学术成果:主持国家自然科学基金面上项目、广东省自然科学基金重点项目、教育部博士点基金博导类项目等科研课题近10余项,以第一作者或者通讯作者发表SCI论文10余篇,获广东省科学技术奖三等奖1项;担任国家重点研发项目的终审专家以及国家自然科学基金项目和澳门特区科学技术奖项的通讯评审专家。

影像医学与核医学

影像医学与核医学专业攻读博士学位研究生培养方案 (专业代码:100207) 一、培养目标 1、热爱祖国,品德优良,具有强烈的事业心和团队精神。 2、培养博学多才,在本领域具有坚实宽广的理论基础和系统深入的专门知识;熟悉本学科的最新研究状况及发展趋势;具有独立从事科学研究工作能力,在本领域中做出创新性成果的高层次创造性人才。 3、精通一门外语,能熟练地阅读本专业的外文资料并具有一定的外语写作和国际学术交流的能力。如果第一外语不是英语,则第二外语必须选英语。 4、身心健康。 二、研究方向 1影像诊断方法学 2介入放射学 3神经影像学 4.体部影像学 5..临床核医学 6.实验核医学 三、学制与学习年限 学制为4年。 四、培养方式 博士研究生的培养实行导师负责和集体指导相结合的培养方式。成立由导师任组长的、由3-5名本专业及相关学科专家(必须具有副教授及以上职称)组成的博士研究生指导小组,专家组中应有一名校内跨学科的导师或校外导师。 五、课程学习要求 应修总学分:15学分,其中必修13学分,选修 2 学分。 博士研究生课程分为必修课与选修课两大类。 (一)必修课: 1.马克思主义理论课2学分 2.专业外语2学分。

3.学位专业课3学分。(导师组开设) 学位专业课由导师组开设,可采取以下三种形式之一:①经典著作或文献阅读:写出读书报告3篇,由导师或导师小组评定成绩,每篇为1学分。②由本专业组织统一授课,采取课程考试方式③由本专业(未统一开课的)命题并组织考试,具体的考试方式由各专业自行决定。 4.前沿讲座5学分。 前沿讲座旨在使研究生熟悉本学科的重要学术理论和前沿性成果,提高博士研究生参与学术活动的兴趣和学术交流能力。前沿讲座可采用讨论班、学术论坛、参加国际、国内学术会议等多种形式,内容包括国内外研究动态介绍、文献讲座、新技术与新成果介绍等。鼓励博士研究生使用外国语进行前沿讲座。前沿讲座应贯穿博士研究生培养的整个过程,博士研究生在学期间参加前沿讲座不少于15次,主讲不少于5次。各学科应根据本学科的特点对参与次数、主讲次数和考核办法作出具体规定,对在重要国际或国内学术会议上宣读论文的,可给予前沿讲座学分奖励。 5、临床实践2学分 临床实践阶段按课程形式进行设置,由导师组负责安排,在影像与核医学及相关科室进行不少于6个月的临床轮转。 临床实践安排(时间、科室)确定后需提交各培养单位教育处备案。临床实践由轮转科室及导师组负责考核评估(实践课成绩≥70分为合格),医学院负责进行检查。临床实践不合格者不能毕业。 (二)选修课:不少于2 学分 (三)补修课:跨学科或同等学力考入的博士研究生应补修本专业硕士阶段的主干课程1-2门,不计学分。博士生入学考试科目及博士生学习的学位课程中有与应补修的课程相同,且考试成绩合格者,可以免考。 六、中期考核 博士生实行中期考核制度,要求在第三学期完成。由5-7名专家组成考核委员会负责对博士生入学以来的思想表现、科研能力、论文的设计与准备及健康状况等进行综合考评。考核合格者进入博士论文研究与写作阶段。考核不合格者,按学校有关规定处理。 七、科学研究与学位论文 1、选题和开题报告:在第二学期完成。 博士论文的选题直接关系到论文的质量和水平,要求博士生在广泛调阅文献资料,熟悉

《医学影像设备学》试题

《医学影像设备学》试题库 一、名词解释 1、医学影像设备学 2、实际焦点 3、有效焦点 4、PSL 5、绝缘油老化 6、螺旋因子 7、励磁 8、多普勒效应 9、X线管容量 10、阳极作用 11、潜影 12、脉冲序列 二、填空题 1、管电流受X线管得——电压控制。 答案:灯丝加热 2、高压变压器就是由铁心——、——与夹持固定件所构成。 答案:初级绕组@次级绕组 3、 X线管好坏得判断方法包括:外观检查、——试验、——试验、——试验。 答案:灯丝加热@冷高压@负荷 4、大型X线机多采用——组成得交流无触点开关来控制高压初级得通断。 答案:晶闸管 5、 X线量可用管电流与曝光时间得乘积来表示,单位就是——。 答案:mAs 6、管电压得高低受——电压得控制。 答案:高压初级 7、 X线机一般采用——变压器作电源得总输入。 答案:自耦 8、 X线机得基本电路包括:电源电路、——电路、——电路、——电路、——电路与——电路。 答案:X线管灯丝加热@高压变压器初级@高压变压器次级及管电流测量@控制@X线应用设备9、在高压初级电路中,毫安选择器置得毫安档位越大,则对应得电阻——,KV补偿得——。答案:越大@越多 9、当改变球管灯丝加热电路得——时,则机器在曝光时——就会改变,若将其电阻增大,——就会——,若将其阻值减小——就会——。 答案:半可调电阻@mA量@ mA量@减小@ mA量@变大 11、由四只高压整流管组成得单相全波X线机,在摄影时,毫安表无指示(胶片不感光),您考虑有——电路,——电路与——电路有故障,此时首先观察——,其次听——声音,最后可确定——电路或——电路就是否有故障。 答案:控制@高压初次级@X线管灯丝加热@四只整流管或X线管灯丝就是否燃亮@高压接触器@高压@低压

复旦大学100207影像医学与核医学考研专业目录及考试科目

2015年复旦大学100207影像医学与核医学考研专业目录及考试科目临床医学院专业代码 100207 专业名称影像医学与核医学招生人数 6 01 AD脑功能显像 02 耳颅底的解剖及头颈部肿瘤影像新技术的研究 03 头颈部肿瘤的磁共振研究研究方向 04 脑血管的影像 25 脑血管病的介入治疗 26 帕金森综合征脑功能显像 27 肿瘤凋亡分子影像、多模式纳米分子影像探针研究考试科目①101思想政治理论②201英语一③306西医综合专业知识考试方式面试:读片或操作专业外语考试方式笔试复试科目实验操作或临床技能考核考试方式实验操作或临床技能考核考试方式笔试病理生理学同等学力加试科目考试方式笔试生物化学复试成绩占入学 50% 考试总成绩权重备注 1.外语口语(含听力)为复试必考科目,思想政治品德、思维表达能力等也均为复试必须考核项目。上海市影像医学研究所专业代码100207 专业名称影像医学与核医学招生人数 10 05 医学影像学新理论新技术研究研究方向06 肿瘤介入治疗的基础研究07 心肌灌注的影像学基础研究新祥旭https://www.wendangku.net/doc/636734222.html, 09 PET/CT肝肿瘤诊断的基础研究11 心功能不全超声评估的基础研究 14 超声介入的基础研究 21 神经系统疾病的影像新技术研究 22 综合影像技术在肾肿瘤中的应用研究23 头颈五官肿瘤的磁共振功能影像研究 24 消化系统疾病的CT和MR研究考试科目①101思想政治理论②201英语一③306西医综合专业英语考试方式口试复试科目考试方式临床读片或操作专业知识考试方式笔试病理生理学同等学力加试科目考试方式笔试生物化学复试成绩占入学 50% 考试总成绩权重备注

2018临床医学考研二级学科介绍:影像医学与核医学

2018临床医学考研二级学科介绍:影像 医学与核医学 临床医学属于医学(门类代码10)下属的一级学科,学科代码1002,以下又分为18个二级学科,分别是:内科学(100201)、儿科学(100202)、老年医学(100203)、神经病学(100204)、精神病与精神卫生学(100205)、皮肤病与性病学(100206)、影像医学与核医学(100207)、临床检验诊断学(100208)、护理学(100209)、外科学(100210)、妇产科学(100211)、眼科学(100212)、耳鼻咽喉科学(100213)、肿瘤学(100214)、康复医学与理疗学(100215)、运动医学(100216)、麻醉学(100217)、急诊医学(100218)。以下是影像医学与核医学的相关介绍。 一.学科背景 影像医学与核医学专业分为放射学(包括X线、CT、磁共振和介入放射学)、超声医学及核医学三部分。 本学科研究内容包括: 1.器官的正常影像学表现及其解剖基础; 2.各个系统疾病的影像表现、影像表现的病理基础、疾病的影像学诊断和鉴别诊断; 3.正常和病理组织的功能成影和分子影像学; 4.介入放射学在疾病诊断和治疗的应用; 5.医学影像的图像处理; 6. 影像医学与核医学新技术的开发和应用。 影像医学与核医学研究方向 01双源CT在心血管病的应用研究 02脑肿瘤影像与病理对照研究 03胃肠疾病的影像学研究 04分子与功能影像学研究 05胰、肾疾患的影像学研究 06妇科疾患的影像学研究 07肿瘤与血管性病变介入治疗的临床实验研究 08血管病和介入超声研究 09医学图像处理技术 二.就业分析 1、时代发展的需要 随着计算机技术的飞速发展,近年来,医学影像仪器的性能有很大改进。目前医学影像技术成像清晰,分辨率高,不仅能显示正常与异常结构的轮廓和形态,而且可以观察器官的血液、代谢及其机能,己经广泛用于多个系统和部位各种疾患的检查和诊断,使诊断水平有很大提高,在临床上发挥重要作用。在介入诊断和治疗方面也有长足的进步,使许多疾病能得到微创治疗,特别是对某些肿瘤的治疗效果可与内科治疗或外科治疗相媲美,已成临床首选治疗方法之一。 核医学是涉及多个学科对疾病进行诊断和治疗的一门新兴科学。它以诊断部分为整体,包括人体各个系统疾病的诊治。近代电子计算机技术、核电子学、核药学、细胞杂交瘤技术、分子生物学和加速器微型化等现代技术的迅速发展和渗透,不断推动着核医学的发展,如分子生化的PET显像技术出现,第一次实现了人类活体内分子水平的研究。

相关文档
相关文档 最新文档