文档库 最新最全的文档下载
当前位置:文档库 › 聚醚单体

聚醚单体

聚醚单体
聚醚单体

聚醚单体

————————————————————————————————作者: ————————————————————————————————日期:

?

聚羧酸减水剂

聚羧酸高效减水剂及其工程应用 摘要:作为高性能混凝土第五组分的高效减水剂主要经历了三种形式:第一代高效减水剂是20世纪60年代初开发出来的萘基高效减水剂和密胺树脂基高效减水剂又被称为超塑化剂;第二代高效减水剂是氨基磺酸盐;第三代减水剂是聚羧酸高效减水剂。本文以前人对聚羧酸高效减水剂的研究为基础,借鉴他们的研究成果从其分子特点、合成方法、作用机理、对混凝土性能的改善、工程应用与实践应用中存在的问题六个方面对聚羧酸减水剂做了介绍。关键字:聚羧酸减水剂、高效减水剂、高性能混凝土 1.聚羧酸减水剂的分子结构 聚羧酸系高性能减水剂采用不饱和单体共聚合而成,而不是传统减水剂使用的缩聚合成,合成原料非常多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应。 2.合成方法 2.1可聚合单体直接共聚法 单体直接共聚是先制备具有活性的大单体(一般是甲氧基聚乙二醇甲基丙烯酸酯) ,再聚合一定配比的单体(如丙烯酸、甲基丙烯酸、甲基丙烯磺酸钠等),采用溶液共聚的手段得到成品,即先酯化再聚合。该方法合成减水剂分子结构的可设计性好,可根据实际需要进行结构调整,产品质量稳定,目前很多聚羧酸的生产都采用此方法。但缺点是生产甲氧基聚乙二醇甲基丙烯酸酯大单体存在酯化控制难度,大单体酯化率和质量就直接影响了后续的共聚反应程度。同时中间分离纯化过程比较繁琐,生产成本较大。 2.2聚合后功能化法 聚合后功能化法是利用现有的聚合物进行改性,采用已知分子量的聚羧酸在催化剂和较高温度下聚醚通过酯化反应进行接枝。但现成的聚羧酸产品种类和规格有限,调整组成和分子量困难;同时聚羧酸和聚醚适应性不好,酯化实际操作困难,另外,随着酯化的不断进行,水分不断逸出,会出现相分离,如果能找到

聚醚多元醇的简单概述

聚醚多元醇的简单概述 聚醚多元醇(简称聚醚)是由起始剂(含活性氢基团的化合物如乙二醇、丙三醇、季戊四醇、乙二胺等)与环氧乙烷(EO)、环氧丙烷(PO)等在催化剂存在下经加聚反应制得。一般常温下为液体,凝固点较低,低温流动性很好。低毒或无毒,部分品种可用于医用或食品行业。可燃,但非易燃易爆品。是聚氨酯工业的基础原料之一。 按照用途来区分,一般分为: 1、软泡聚醚,一般为聚氧化丙烯二醇或三醇,以丙二醇或二乙二醇为起始剂,环氧丙烷开环聚合而成,用量最大的有: 聚醚210,分子量1000,2官能度,丙二醇起始剂, 聚醚220,分子量2000,2官能度,丙二醇起始剂 聚醚330,分子量3000,3官能度,甘油起始剂 以上三种聚醚在聚氨酯软泡行业用量很大,也可以用于聚氨酯胶黏剂和弹性体的生产中。 2、硬泡聚醚,一般为聚氧化丙烯四醇或者六醇,以季戊四醇、乙二胺、蔗糖、山梨醇等为起始剂,官能度较高,反应活性比软泡聚醚高很多,用量较大的品种有: 聚醚403,分子量300,乙二胺起始剂,4官能度, 聚醚4110,蔗糖起始剂, 聚醚635,山梨醇起始剂, 聚氨酯硬泡大量使用于家电保温、建筑外墙保温、大型冷库建设等,用量很大,但上海静安大火让大家对聚氨酯硬泡阻燃性的要求大大提高。这类聚醚生产相对简单,国内市场鱼龙混杂,市场价格比软泡聚醚稍低。 软泡和硬泡聚醚的国内生产厂家相对集中,因其主要材料环氧丙烷和环氧乙烷的主要来自山东和进口货源。主要生产商:上海高桥石化、南京钟山石化、山东东大、山东德信联邦、天津三石化、抚顺佳化、中海壳牌、南京锦湖等。 3、特种聚醚 3.1 接枝聚醚,聚合物多元醇,POP

聚醚型水泥减水剂的合成和性能研究[设计、开题、综述]

BI YE SHE JI (20 届) 聚醚型水泥减水剂的合成和性能研究 所在学院 专业班级化学工程与工艺 学生姓名学号 指导教师职称 完成日期年月

摘要:近年来,随着建筑行业的发展,减水剂作为水泥的主要外加剂应用也越来越广,其主要作用是减少混凝土的用水量,增加强度,同时提高混凝土的耐久性,在改善混凝土性能,提高建筑水平起到了重要作用。 减水剂主要经历了3个阶段,从最开始的木质磺酸系减水剂,到萘系减水剂,现在已经发展到了第三代聚羧酸类减水剂,这类新型减水剂较前两类有了很好的提高,而且实现了减水剂的分子设计,为减水剂的发展奠定了重要的理论基础,它主要分为聚醚型和聚酯型两大类,这次主要研究的是聚醚型减水剂。 聚醚型高性能减水剂除具有高性能减水(最高减水率可达35% )、改善混凝土孔结构和密实程度等作用外,还能控制混凝土的塌落度损失,更好地控制混凝土的引气、缓凝、泌水等问题。它与不同种类的水泥都有相对较好的相容性,即使在低掺量时, 也能使混凝土具有高流动性,并且在低水灰比时具有低粘度及塌落度经时变化小的性能。 关键词:聚醚;混凝土;减水剂;聚醚型。

Abstract:In recent years, with the development of the construction industry, superplasticizer as the main application of cement admixture is becoming more and more wide, its main effect is to reduce water consumption, increase strength of concrete, and enhance the durability of concrete, concrete performance in improving, improve the building level played an important role. superplasticizer main experienced three stages, from the beginning of the woodiness sulfonic acid naphthalene water-reducing agent, to fasten superplasticizer, now it has developed into a third generation of clustering water-reducing agent carboxylic acid, this new class of superplasticizer relatively before two kinds raise is very good, and fulfilling the molecular design, reducing agent for superplasticizer development provides important theoretical foundation, it mainly divided into polyether type and polyester type two kinds big, the main research is polyether type superplasticizer. Polycarboxylate superplasticizer addition to high-performance water-reducing (the highest water rates up to 35%), improving the density of concrete pore structure and degree of effects, but also control of concrete slump loss, better control of air-entraining concrete, retarding, bleeding and other problems. It is with different types of cement have relatively good compatibility, even at low dosage, they can make concrete with high fluidity, and low water-cement ratio, have low viscosity and the slump by the time change a small performance Keywords:Polycarboxylate;concrete;superplasticizer.

减水剂分类及特点

聚羧酸盐类高效减水剂的原料与合成工艺 本文介绍目前国外聚羧酸系高效减水剂合成的主要三种方法,供大家参考,如果需要进一步合作请与本网联系。(一)可聚合单体直接共聚这种合成方法一般首先需制备具有聚合活性的大单体,如甲氧基聚乙二醇甲基丙烯酸酯,然后将一定配比的单体混合在一起直接采用溶液聚合而得成品。这种合成工艺的关键在于活性大单体的合成,中间需经比较繁琐的分离纯化过程,成本较高。日本采用短链甲氧基聚乙二醇甲基丙烯酸酯、长链甲氧基聚乙二醇甲基丙烯酸酯、甲基丙烯酸三种单体直接共聚合成了一种坍落度保持性好的混凝土外加剂。其典型的合成示例如下:在装有温度计、搅拌器、滴液漏斗、N2导人管和回流冷凝管的玻璃反应容器中,装入500 份水(质量份,下同),搅拌下通N2除氧,在N2气保护下加热到和摄氏80度,接着在4小时内滴加混合了250份短链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为4 个)、50份长链甲氧基聚乙二醇甲基丙烯酸酯(EO 加成摩尔数为23个)、200 份甲基丙烯酸、150 份水和13.5份链转移剂3-硫代乳酸的单体水溶液以及40 份10%过硫酸按水溶液。滴加完毕后,再在1h 内滴加10份10%过硫酸铰水溶液并保温1h,得到重均相对分子质量为15000 的聚合物水溶液为最终成品。(二)聚合后功能化法该方法主要利用现有聚合物进行改性,通常采用已知分子量的聚羧酸,在催化剂的作用下与聚醚在较高温度下通过酯化反应进行接技,形成接技共聚物。这种方法受现成的聚羧酸产品种类和规格的限制,调整组成和分子量比较困难。此外,制备过程中聚羧酸和聚醚的相容性不好,酯化实际操作困难,伴随酯化的不断进行,水分不断逸出,也易出现相分离现象。典型合成工艺:以烷氧基胺H2N(BO)—R 为反应物与聚授酸接技出(BO 代表氧化烯基团,n 为整数,R为C1~C4 烷基),利用聚羧酸在烷氧基胺中的可溶性,使酷亚胺化进行得比较彻底。反应时,胺反应物加量一般为—COOH 摩尔数的10%~20%。先将反应混合物加热到高

聚羧酸减水剂生产工艺的制作方法

图片简介: 本技术介绍了一种聚羧酸减水剂生产工艺,在常温状态下,往反应箱内加入占总溶液总比重20%50%的聚醚时,后加入占总溶液总比重30%71.7%的水进行溶解,自由基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到8085摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄氏度下,保温一个半小时至两个小时。 技术要求 1.一种聚羧酸减水剂生产工艺,其特征在于:在常温状态下,往反应箱(1)内加入占总溶液总比重20%-50%的聚醚时,后加入占总溶液总比重30%-71.7%的水进行溶解,自由 基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%-7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到80-85摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%-10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄 氏度下,保温一个半小时至两个小时;

其中,所述的反应箱(1)侧壁上设有出料管(11),所述反应箱(1)设有加热块(13),所述反应箱(1)内设有传动轴(14),所述传动轴(14)上设有搅拌杆(141),所述反应箱(1)侧壁上设有保温层(12),所述反应箱(1)顶部设有多个进料口(15),所述反应箱(1)顶部设有多个与所述进料口(15)相配合的连接管(3),所述连接管(3)顶部设有储料箱(2),所述连接管(3)侧壁上设有第一通槽,所述第一通槽内设有固定板(31),所述连接管(3)内设有支撑板(5),所述支撑板(5)上设有连接轴(4),所述连接轴(4)穿设于所述储料箱(2)内,所述支撑板(5)底部设有导块(55),所述支撑板(5)上设有下料口(54),所述下料口(54)设于所述导块(55)上方;在制备聚羧酸减水剂时,将聚醚和水加入到反应箱(1)内,传动轴(14)带动搅拌杆(141)转动,聚醚与水在反应箱(1)内混合;将丙烯酸放入到其中一个储料箱(2)内,再将巯基乙酸、硫酸铵和水的混合物放入另外的储料箱(2)内,推动连接轴(4)带动支撑板(5)移动,根据需要滴加的量确定支撑板(5)的位置;当支撑板(5)位置确定后,储料箱(2)内的液体进入到连接管(3)内,连接管(3)内的液体从下料口(54)处往下运动,液体粘沿导块(55)往下滑落,将液体滴入到反应箱(1)内,根据先后顺序依次将相应的液体加入到反应箱(1)内,当聚羧酸减水剂制备完成后,将聚羧酸减水剂出料管(11)内排出,获得初成品聚羧酸减水剂。 2.根据权利要求1所述的一种聚羧酸减水剂生产工艺,其特征在于:将经过保温的水降温至50摄氏度后,打入复配池,加入添加剂,加水稀释后将复配好的溶液打入成品罐。 3.根据权利要求1所述的一种聚羧酸减水剂生产工艺,其特征在于:所述以上步骤均在密闭状态下进行。

聚醚多元醇的生产与市场现状分析

聚醚多元醇的生产与市场现状分析 聚醚多元醇是环氧丙烷的重要衍生产品,是合成聚氨酯的主要原料之一。聚醚多元醇可分为三类,第一类聚醚多元醇(PPG),以多无醇或有机胺为起始剂,与环氧丙烷聚合物(或环氧丙烷与环氧乙烷共聚物)反应制得,是目前我国聚醚多元醇的主要产品;第二类聚合物聚醚多元醇(POP),以PPG为母体经乙烯基单体接枝聚合制得的改性聚醚多元醇品种;第三类由四氢呋喃均聚或共聚而成的聚四氢呋喃型多元醇(PTMEG),主要用于聚氨酯弹性体和纤维等高性能产品。 世界聚醚多元醇生产现状 ●世界聚醚多元醇生产主要集中于几家大公司手中 世界聚醚多元醇生产较为集中,主要掌握在几家大型跨国公司如陶氏化学、拜耳、巴斯夫、雷普索尔和壳牌化学公司等手中,相关公司年生产能力见表1。 ●生产商不断扩产以提高产能 近年来雷普索尔公司、壳牌荷兰化学公司等纷纷扩产以提高聚醚多元醇的产能。其中雷普索尔YPF公司己计划使西班牙塔拉戈纳的环氧丙烷装置能力到2005年扩增60kt/a,该装置能力将提高到280kt/a。扩能的大部分将用于扩大该公司聚醚多元醇生产,届时该公司聚醚多元醇的生产能力将从现在的200kt/a扩增至2005年的250 kta。雷普索尔YPF公司在帕尔托拉诺也拥有环氧丙烷/苯乙烯单体装置,年产能力为70kt/a环氧丙烷和70kt/a聚醚多元醇。 壳牌荷兰化学公司(SNC)在荷兰佩尼斯的聚合物多元醇新装置于2003年第3季度投产,该装置生产50kt/a高质量、高固体含量的苯乙烯-丙烯脂共聚体多元醇,以满足家具、床垫和汽车制造业日益增长的需要。壳牌公司将继续投资南海石化联合企业(壳牌与中海油石化投资公司的合资企业),建设550kt/a苯乙烯单体/250kt/a环氧丙烷装置和185kt/a多元醇装置,定于2005年投产。届时将使壳牌化学公司的环氧丙烷总能力提高到1130kt/a,同时佩尼斯基于苯乙烯的12kt/a聚合物多元醇装置将停产。 2005年全球生产能力将达到5.4Mt,消费量将达到4Mt多,亚太地区需求增长速度更快,2005年将达1.23Mt左右。下表列出了世界聚醚多元醇生产能力和需求。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺 一、引言 一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。 与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。 但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。因此,本文在此予以简介之。 二、聚羧酸系高性能减水剂合成工艺简介。 聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。 (一)、聚酯类聚羧酸系高性能减水剂合成工艺。 1、合成工艺简图 冷凝器去离子水 ↓↓

聚乙二醇过硫酸铵↓ →→→→→→酯化→→→→→计量槽→→聚合中和成 甲基丙烯酸→→→→ →→→→→→反应→→→→→计量槽→→反应反应品 ↑↑ ↑↑ 去离子水氢氧化钠 2、反应过程如下: (1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。(经减压蒸馏脱水,酸化反应更为完全)。 (2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。A料3小时滴定完,B料3.5小时滴定完,保温1.5小时。(温度控制:90±2℃)。 (3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。 (二)、聚醚类聚羧酸系高性能减水剂合成工艺

减水剂项目投资申报材料

减水剂项目 投资申报材料 规划设计/投资方案/产业运营

减水剂项目投资申报材料说明 国内单体产能自2007年的50万吨飞速扩展至今,年均增长率保持在20%的高增速,2010-2016年间,下游需求的快速增长使得聚羧酸减水剂单体产能快速增长。预期未来五年聚羧酸减水剂单体产能增速将大幅放缓,在下游需求推动的作用下,聚羧酸减水剂单体的开工率将显著提升。 该聚羧酸减水剂项目计划总投资7814.77万元,其中:固定资产投资6938.68万元,占项目总投资的88.79%;流动资金876.09万元,占项目总投资的11.21%。 达产年营业收入8066.00万元,总成本费用6323.67万元,税金及附加136.04万元,利润总额1742.33万元,利税总额2118.69万元,税后净利润1306.75万元,达产年纳税总额811.94万元;达产年投资利润率22.30%,投资利税率27.11%,投资回报率16.72%,全部投资回收期7.48年,提供就业职位153个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后

续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供 报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关 后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳 权和取舍权,敬请本报告的所有读者给予谅解。 ...... 报告主要内容:基本信息、背景及必要性、市场分析、投资建设方案、选址方案评估、工程设计方案、项目工艺原则、项目环境影响分析、项目 生产安全、建设风险评估分析、节能方案分析、项目进度说明、投资方案 说明、经济收益、总结评价等。 我国从2000年开始对聚羧酸减水剂的研究和应用,近年来得益于高铁 事业的发展,聚羧酸减水剂应用得到飞速推广。随着高性能和低成本化的 并行发展,目前聚羧酸减水剂逐渐从高铁、大坝、核电站等领域向民用领 域推广。2011年聚羧酸减水剂产量仅为239.11万吨,到了2015年就达到 了621.95万吨(按20%浓度计算)。与之相对的是萘系减水剂的境遇,尽 管因为价格低廉而一直在民用市场保有市占率,但是萘系减水剂近年受到 的环保压力大增。2015年萘系减水剂产量仅有180.62万吨,相比2013年 的357.59万吨减少了接近一半。此消彼长之下,聚羧酸减水剂市占率从2007年的14.6%快速上升至2015年72.9%,而高效减水剂(以萘系减水剂 为主)的市占率从2007年的79.3%下降至2015年的26.4%。

聚醚多元醇的研究进展_慕朝师

基金项目:广西科学基金资助项目(桂科自0832194);广西培养新世纪学术和技术带头人专项资金资助项目(资金批准号: 2004224) 收稿日期:2009206201 综述与进展 聚醚多元醇的研究进展 慕朝师1,黄科林2,4,李克贤3,罗素娟2,刘宇宏2,黄尚顺2,何耀良2,李卫国2 (11广西科技情报研究所,广西南宁 530022;21广西化工研究院,广西南宁 530001;31广西师范学院化学系,广西南宁 530001;41广西新晶科技有限公司,广西南宁 530001) 摘 要:聚醚多元醇是生产聚氨酯原料之一,本文从聚醚多元醇合成工艺入手,重点从催化剂角度阐述了聚醚多元醇的合成,并对今后的发展提出建议。 关键词:聚醚多元醇;催化剂;聚氨酯 中图分类号:TQ 223116 文献标识码:A 文章编号:167129905(2009)1220013206 聚醚多元醇是分子中含有醚键(R O R ), 端基为OH 基团的齐聚物。它是由含活泼氢的低分子化合物如(醇类、胺类)作起始剂,在催化剂作用下与含有环氧结构的化合物进行开环聚合反应而成的。聚醚多元醇是一种重要的化工原料,它的最大用途是合成聚氨酯(PU )树脂类产品,如聚氨酯泡沫塑料、聚氨酯黏合剂、聚氨酯胶粘剂、聚氨酯弹性体等。此外,还可以用作非离子表面活性剂、润滑剂、液流体、热交换流体等。 用于合成聚醚多元醇的环氧化物包括氧化乙烯、氧化丙烯、四氢呋喃以及这些化合物的混合物。其中由氧化丙烯与含活泼氢的化合物聚合而成的聚醚多元醇在聚氨酯工业的发展中占有重要的地位。早期合成聚醚多元醇的聚合反应是在酸或者碱催化作用下进行的,常用的酸催化剂是质子酸(H 2SO 4、HCl 等)和路易斯酸(AlCl 3、BF 3等),碱性催化剂常用的是碱金属、碱(土)金属的氧化物、醇化物和氢氧化物[1]。后经不断探索,开发出多种催化剂,研究最多且已经工业化的当属双金属氰化物络合催化剂(DMC )。 聚醚多元醇的发展[2]是由20世纪30年代开始的,它最初应用于非离子表面活性剂领域。1939年,美国Scretle 和Wotter 合成出烷醇聚醚非离子表面活性剂。1940年又合成出烷基酚聚氧乙烯醚非离子表面活性剂。1953年Du Pont 公司首次把聚醚多元醇应用于聚氨酯软泡,接着美国怀安多特化学公司于1954年提出以氧化丙烯—氧化乙烯嵌段共聚醚制备聚氨酯泡沫塑料,并于1957年将聚醚型 聚氨酯泡沫塑实现工业化。几十年来,聚醚多元醇发展迅速,产量逐年增多。世界聚醚多元醇生产装置规模较大,生产也较集中,主要掌握在几家大型跨国公司如巴斯夫、拜耳、陶氏化学和壳牌化学公司手中。2003年全球聚醚多元醇生产量为380万t ,2005年全球生产能力达到540万t ,2006年全球生产能力上升到610万t 。目前国内聚醚多元醇的生产企业有30多家,拥有万t 级生产装置的企业也有10多家,2005年聚醚多元醇产量增加到35万t ,2006年聚醚多元醇产能达到87万t [3]。 1 聚醚多元醇的合成工艺状况 为了满足聚醚多元醇在不同领域的需求,不断开发新的聚醚产品和研究新的生产工艺显得尤为重要。目前各生产商生产聚醚多元醇所采用的工艺各不相同,但归纳起来根据聚合反应所用催化体系不同,一般可分为3类: (1)阴离子催化合成工艺[4~5]。阴离子催化剂主要以碱金属、碱土金属的氢氧化物为主,包括KOH 、NaOH 、CsOH 、RO K 等。合成的聚醚多元醇 中残存的碱金属或碱土金属离子会影响PU 的生产和制品性能,因此该工艺需要最大限度地脱去金属离子,在生产过程中能耗物耗较大,产生大量污水和废渣,造成污染,收率不理想。但该合成工艺成熟,催化生产的软泡、硬泡、高活性聚醚多元醇具有储存稳定性好、在聚组合聚醚中配伍稳定性好、对组合料发泡性能干扰小等优点,因此目前多数企业仍在使 第38卷 第12期2009年12月 化 工 技 术 与 开 发Technology &Development of Chemical Industry Vol 138 No 112 Dec 12009

聚醚类聚羧酸减水剂合成工艺及性能研究123汇总

全国中文核心期刊 聚醚类聚羧酸减水剂合成工艺及性能研究 郑立新 (武汉科技大学城建学院,湖北武汉430065) 摘要:采用烯丙基聚乙二醇(AEO)、马来酸酐、乙烯基磺酸钠为聚合单体,水溶液自由基聚合合成一系列聚醚类聚羧酸减水 剂,研究了合成工艺对减水剂性能的影响规律。结果表明,当烯丙基聚乙二醇与马来酸酐质量比为3~5,引发剂用量为单体总质量的6%~7%,反应温度为75~85℃时,合成的聚羧酸减水剂在掺量为水泥质量的1%时,水泥净浆流动度可达270mm。分散性和分散当接枝共聚分子量为800~1200的AEO时,水泥净浆流动度相对较大;当接枝共聚分子量为350~500保持性受AEO分子量的影响, 的AEO时,分散保持性较好。浆体凝结时间随AEO分子量的增加而缩短,分子量越小,缓凝效果越好。 关键词:聚羧酸减水剂;烯丙基聚乙醇;马来酸酐;聚醚;分散性;凝结时间中图分类号:TU528.042.2 文献标识码:A 文章编号:1001-702X(2008)05-0048-03 Studyonsynthesisprocessandperformanceofpolyetherkindpolyocarboxyacidwaterreducingagent ZHENGLixin

(WuhanUniversityofScienceandTechnology,Wuhan430070,Hubei,China) Abstract:Aseriesofpolyetherkindpolyocarboxyacidwaterreducingagentissynthesizedtakingallylpolyethyleneglycol (AEO),maleicanhydride,sodiumvinylsulfonateasmonomerofpolymerizationbyaqueoussolutionfreeradicalpolymerization. Studyismadeoninfluenceofsynthesisprocessontheperformanceofwaterreducingagent.Theresultshowsthatwhenthemass(AEO)tomaleicanhydrideis3 ̄5,dosageofinitiatingagentis6% ̄7%ofmonomertotalmass,ratioofallylpolyethyleneglycol andreactiontemperatureis75 ̄85℃,theamountofsynthesizedpolyocarboxyacidwaterreducingagentis1%ofcementmass,thewhenfluidityofneatcementpastecanreachto270mm.AEOmolecularweightinfluencesthedispersivityandretentivity,molecularweightofgraftcopolymerizationis800 ̄1200ofAEO,thefluidityofneatcementpasteisrelativelygreat,andwhenmolecularweightofgraftcopolymerizationis3

甲基丙烯酸甲酯单体聚合

甲基丙烯酸甲酯单体聚合 一、实验目的:1)、了解本体聚合的原理,熟悉有机玻璃的制备方法;2)、掌握减压蒸馏的原理及操作过程。 二、实验原理: 甲基丙烯酸甲酯在过氧化苯甲酰引发剂存在下进行自由基聚合反应。自由基加聚的工艺方法主要有四种:本体聚合、溶液聚合、悬浮聚合及乳液聚合。本体聚合由于反应组成少,只是单体或单体加引发剂,所以产物较纯,但散热难控制;溶液聚合过程易控制,散热较快,不过产物中含溶剂(有些污染环境),后处理比较困难;悬浮聚合以水作溶剂,水无污染,散热好,易除去,但要求单体不溶于水,故在应用上受限制;乳液聚合反应机理不同,可以同时提高聚合速度聚合度,散热好,易操作。 甲基丙烯酸甲酯在BPO引发下自由基聚合: 自由基聚合属连锁反应,一般有三个基元反应:链引发,链增长,链终止(有时还会出现链转移)反应。链引发:R +MM→RM链增长: RM +M→RMM +M→RMMMM +M→…→﹋M链终止: ﹋M+ ﹋M→‘死’聚合物本实验采用本体聚合,当反应到一定程度时粘度增大,大分子链自由基活性降低,阻碍了链自由基的相互结合,使链终止速率减慢,而小分子单体却依然可以自由与链结合,链增长速率不会受到影响,从而导致自动加速效应,

内部温度急剧上升,又继续加剧反应,如此循环,而粘度又屏蔽热量,使局部温度过高,严重影响聚合物的性质,这是我们不想看到的。图 1、为聚合反应的变化规律,图中曲线表明:聚合反应开始前有一段诱导期,聚合速率为零,体系无粘度变化。在转化率超过20%以后,聚合速率显著增加,出现自动加速效应。而转化率达到80%以后,聚合速率显著减小.最后几乎停止聚合,需要升高温度才能使聚合反应完全。为避免出现自动加速效应,可通过冷却降温与控制粘度的方法,在预聚时控制粘度,并控制温度在 80~90℃时(引发剂的半衰期适当),以适应在较低温度下聚合。 为纯化甲基丙烯酸甲酯,我们用减压蒸馏的方法。其原理就是利用温度与蒸气压的关系,通过抽气装置抽气以降低液体表面的压强因而只需较低的温度时达到的蒸气压就足够等于外压,从而使液体更易挥发厚度(mm)1‐1、 52‐34‐68‐1214‐2530‐45偶氮二异丁腈(%) 0、0 60、0 60、0 60、02 50、020 0、005聚合配方中引发剂的含量应视制备的模具厚度而定,一般情况如下: 三、实验仪器及药品:仪器:试管具塞锥形瓶恒温水浴锅药品:过氧化苯甲酰(BPO)

聚醚多元醇PPGPOP市场分析

第一章总论 概述 项目名称 年产30万吨聚醚物多元醇(PPG)项目,年产10万吨聚合物多元醇(POP)项目。 研究结论 综合结论 该项目具有较好的经济效益,财务净现值(NPV)(全部投资,税前)为3205万元,全投资内部收益率所得税前为33.8%,所得税后为24.1%。投资回收期为4.02年。 盈亏平衡点43.38%,具有较好的抗风险能力。(经济指标可行说明) 该项目具有较好的经济效益,投资利润率20.69%,全投资内部收益率税前和税后分别为24.48%和18.73%,借款偿还期为5.72年(含建设期)。 具有较好的抗风险能力,盈亏平衡点为52.55%,在产品和原料的价格增加或减少10%时,仍有较好的经济效益。 存在的问题和建议 改变思想、抓住机遇,占领市场,这需要我们借鉴经验,大胆改革,尽快形成优势,认真研究聚醚市场如何形成突破,从市场、技术等方面进行探索,确定合理稳定的产品结构。 建议组建PU研究小组,与下游企业建立直接联系,了解用户的生产习惯,生产用户所需的牌号,并且在下游用户生产出现问题的时,及时协调解决,该小组还要负责产品的质量,保证产品的性能保持在稳定的期望值内,同时负责新牌号、热门品种的研发和推广。

表1-1 主要技术经济指标

第二章行业分析 2.1.概述 聚醚多元醇(以下简称PPG)和聚合物多元醇(以下简称POP)是聚氨酯(以下简称PU)工业的重要原料,聚氨酯制品具有优良的物理机械性能,在汽车、火车、家具、家电、建筑、等领域广泛应用,是目前仅次于PE、PVC、PP、PS而位居合成树脂消费和生产量的第五位。 2.2.聚醚物多元醇 简介 聚醚多元醇是由起始剂(含活性氢基团的化合物)与环氧丙烷(PO)或环氧丙烷(PO)、环氧乙烷(EO)等在催化剂存在下经加聚反应制得。聚醚产量最大者为以甘油作起始剂和环氧化物(一般是PO与EO并用),通过改变PO和EO的加料方式、加量比、加料次序等条件,生产出各种通用的聚醚多元醇。 产品种类 聚醚多元醇的品种很多,依据不同,则分类不同。一般,聚醚多元醇的命名以主链上羟基数与单元链节性质相结合的命名较为合理。产品详细种类及用途见表1。 表2-1 聚醚多元醇的种类和用途

聚羧酸减水剂配方

聚羧酸减水剂配方 摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。 关键词:聚羧酸减水剂;水泥净浆;流动度;配方 聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。 本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。 1 实验 1.1 原材料

丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流 动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体

丙烯酸酯类单体的物理性质

丙烯酸酯类单体的性质 单体名称分子量沸点/℃相对密度 (d25)折射率 (n D25) 溶解度(25℃)/ (份/100份 水) 用途健康危害玻璃化温 度/℃ 丙烯酸AA 72 141.6(凝固 点:13)1.051 1.4185 ∞涂料、塑料、 纺织、皮革、 造纸、建材 健康危害:该品对皮肤、眼睛和 呼吸道有强烈刺激作用 燃爆危险:该品易燃,具腐蚀性、 强刺激性,可致人体灼伤 106 丙烯酸甲酯MA 86 80.5 0.9574 1.401 5 橡胶、医药、 皮革、造纸、 粘合剂 健康危害:高浓度接触,引起流 涎、眼及呼吸道的刺激症状,长 期接触可致皮肤损害,亦可致肺、 肝、皮肤病变。 8 丙烯酸乙酯EA 100 100 0.917 1.404 1.5 涂料、粘合 剂、助剂健康危害:对呼吸道有刺激性, 高浓度吸入引起肺水肿。有麻醉 作用。眼直接接触可致灼伤。对 皮肤有明显的刺激和致敏作用。 燃爆危险:该品易燃,具刺激性, 具致敏性。[1] -22 丙烯酸正丁酯(n-BA)128 147 0.894 1.416 0.15 有机合成中 间体 低毒,轻度刺激性-55 丙烯酸异丁酯(i-BA)128 62(6.65kpa)0.884 1.412 0.2 有机合成中 间体 健康危害:吸入、口服或经皮肤 吸收对身体有害。其蒸气或雾对 眼睛、粘膜和呼吸道有刺激作用。 中毒表现有烧灼感、咳嗽、喘息、 -17 ’.

喉炎、气短、头痛、恶心和呕吐。 丙烯酸仲丁酯128 131 0.887 1.4110 0.21 -6 丙烯酸叔丁酯128 120 0.879 1.4080 0.15 纸张涂饰剂、 丙烯酸树脂 55 丙烯酸正丙酯 PA 114 114 0.904 1.410 1.5 -25 丙烯酸环己酯CHA 154 75(1.46kpa)0.9766 1.460 丙烯酸乳液 聚合物、丙烯 酸树脂 16 丙烯酸月桂酯240 129(3.8kpa)0.881 1.4332 0.001 涂料、粘合 剂、纺织整理 剂 -17 丙烯酸-2-乙基己酯2-EHA 184 213 0.880 1.4332 0.01 用于软性聚 合物,在共聚 物中起内增 塑作用 -67 丙烯酸-2-羟基乙酯HEA 116 82(655pa) 1.138 1.427 ∞辐射固化体 系的稀释剂 和交联剂 中毒,可燃;加热分解释放刺激烟 雾 -15 丙烯酸-2-羟基 丙酯HPA 130 77(655pa) 1.057 1.445 ∞胶黏剂、涂料-7 甲基丙烯酸MAA 86 163(凝固点: 15) 1.015 1.4185 ∞涂料、绝缘材 料、粘合剂 健康危害:本品对鼻、喉有刺 激性;高浓度接触可能引起肺 部改变。对皮肤有刺激性,可 130 ’.

聚醚多元醇PPGPOP技术介绍

第四章生产规模及产品方案 用途主要 软泡:海绵;弹性体胶棒防水跑道 1000D用作防水底板,地板材料,密封胶,粘合剂, DG330N与POP混用,汽车摩托车自行车坐垫,仪表盘扶手方向盘 DG4110(硬泡)冰箱冰柜保温,夹心板材,管道保温,墙体保温 DG5631K 大型块状泡沫,对助剂,发泡剂宽容度高, N45 高回弹泡沫,块状泡沫,汽车坐垫靠背,家具,床垫 C45 本类产品用于制造高硬度块状泡沫,热模塑高回弹泡沫,能与普通聚醚共用,可增加泡沫制品的承载能力,并可增加泡沫的开孔性 DG2000D 聚氨酯涂料,弹性体,粘合剂和密封剂等,其制品有更好的物理机械性能 DG3050D 软质泡沫,涂料,弹性体,粘合剂和密封剂 聚醚多元醇的主要应用领域是聚氨酯高分子材料,其消耗量占聚醚多元醇总量80%左右。主要用于生产聚氨酯软泡、聚氨酯硬泡及涂料、胶粘剂、密封胶、弹性体(CASE)制品。此外,聚醚多元醇也用于生产泡沫稳定剂、造纸工业消泡剂、原油破乳剂、高效低泡洗涤剂、润滑剂、淬火剂、乳胶发泡剂、橡胶润滑剂及表面活性剂等。 聚醚多元醇(简称PPG)成品根据用途可以分为以下六种:1、普通块状软泡15万吨,即DG-5631K;2、普通弹性体塑模软泡5万吨,即DG-330N;3、高回弹体软泡,包括DG-1000D、DG-2000D、DG-3050D;4、用于POP生产的中间体PPG,包括DG-551C、DG-331 5万吨; 5、普通硬泡,即DG-4110 A。 一.生产规模 第五章工艺技术方案 5.1 聚醚多元醇生产工艺 聚醚多元醇的发展是由20世纪30年代开始的,它最初应用于非离子表面活性剂领域。1939年,美国Scretle和Wotter合成出烷醇聚醚非离子表面活性剂。1940年又合成出烷基酚聚氧乙烯醚非离子表面活性剂。1953年Du Pont公司首次把聚醚多元醇应用于聚氨酯软泡,接着美国怀安多特化学公司于1954年提出以氧化丙烯一氧化乙烯嵌段共聚醚制备聚氨酯泡沫塑料,并于1957年将聚醚型聚氨酯泡沫塑实现工业化。 几十年来,聚醚多元醇发展迅速,生产装置规模较大,生产也较集中,主要掌握在几家大型跨国公司如巴斯夫、拜耳、陶氏化学和壳牌化学公司手中,这些大公司的产能占全球聚醚多元醇生产能力的60%以上。

高性能聚羧酸减水剂单体的合成及其应用

中国建材报/2009年/11月/10日/第B04版 混凝土外加剂 高性能聚羧酸减水剂单体的合成及其应用 辽宁科隆化工实业有限公司姜艳金凤龙刘鑫 一、开发背景 目前国内合成聚羧酸减水剂(以下简称PC)的单体大致分为以下几类,第一类是烯丙醇及其同系物聚氧乙烯醚(以下简称F系列)、第二类是甲氧基聚乙二醇与不饱和酸酯化的产物(以下简称MPEG-MAA系列)。前者合成工艺比较简单,但用其合成出的PC性价比不高,往往需要加大参量来达到减水的效果。第二类虽然合成的减水剂性能比较优越,但MPEG-MAA化学性质活泼,其在合成和储存过程中经常出现变质甚至报废的现象,而且其所用的不饱和酸价格昂贵。合成出低成本高性能的PC已经成为业内最为炙手可热的话题。要想合成出高性价比的PC,除了要有合理的配方,更重要的是使用低成本的单体。我公司根据近些年的工作总结和良好的技术基础,合成出了高性能的聚羧酸减水剂单体马来酸单异丙酯聚氧乙烯醚(以下简称MF-508)。 MF-508的结构特点:由于本品特殊的异丙基疏水结构,使得其与不饱和脂肪酸共聚合成出的梳状大分子,可以有效地防止聚醚支链相互络合形成水化层,从而大大增加分散能力和分散持久力,使得合成出的减水剂减水率高、混凝土坍落度损失小。 二、单体合成 要想合成出MF-508的单体基本分为两个步骤: 1.马来酸单异丙酯(以下简称MF)的合成及提纯 要想合成出高纯度的MF,首先我们必须了解其反应机理。由于马来酸为二原酸,如果其活性基团全部参加反应将生成双酯,但我们现在要尽可能的以单酯为主,这里着重介绍高纯度MF 的合成方法。 酯化反应要不断地将反应生成的水及时从系统中排出,才能保证其反应的正常进行。这里我们选择溶解携带水的方法,通过分水装置及溶剂与水的比重差将水从系统中分离出去。我们选择甲苯,酯化催化剂选择在低温下有较好活性的对甲苯磺酸。而为了保证合成出的产品外观,其中需加入一些抗氧化成分,这里我们选择次磷酸。而最主要的是试验方法的设计:在体系中如果反应单体异丙醇与马来酸酐的摩尔比比较接近,那么从原理上将反应本身单酯与双酯的比例大概为6:4,那么如何尽可能的将原材料转化单酯而单酯尽可能少转化为双酯就成了研究的关键。如果反应体系中酸的摩尔比远远大于醇的摩尔比,那么体系中产生双酯的几率就会非常的小。根据这个理论我们将反应单体异丙醇以滴加的方式缓慢的加入。含有反应另外单体马来酸酐及溶剂、催化剂、抗氧化剂的体系中。这样在反应瞬时体系中保证酸的量远远大于醇的量,使得反应提醒中的双酯含量会非常小。同时将反应体系加热并充入液相氮气,保证一方面可以促进酯化反应的进行,另一方面可以使整个提醒中氧含量尽量的少而减少物料被氧化的几率。异丙醇在逐渐滴加的过程中其与酸逐渐反应生成酯,而副产物水会和溶剂一起共沸而排出体系中去,保证反应的进行。 2.试验部分 (1)单体摩尔比的确定 理论上讲如果想得到我们的目标产物MF,反应物马来酸酐与异丙醇只需1:1完全反应即可。但由于目标产物MF有进一步参与酯化反应的能力,所以我们设计试验方案时要考虑这一点。第一点:我们保证酯化反应的瞬间酸摩尔数>醇的摩尔数,这样生产双酯的量就会非常小。第二点:我们要使反应终点结束时,所剩余的原材料尽量少,从而从经济角度和提出角度都比较合理化。我们设计了几个摩尔比及滴加时间(见表1)。

相关文档
相关文档 最新文档