文档库 最新最全的文档下载
当前位置:文档库 › 原子吸收分光光度计原理结构

原子吸收分光光度计原理结构

原子吸收分光光度计原理结构
原子吸收分光光度计原理结构

原子吸收分光光度计原理结构

基本原理:仪器以光源辐射出具有待测元素特征线的光,通过样品蒸气时被蒸气中待测原素基态原子能吸收,由辐射特征谱线光被减弱的程度来测定样品中待测原素的含量.

原子吸收分光光度计的特性:检出退低准确度高选择性强分析速度快

原子吸收分光光度计组成:光源,原子化器,单色器,检测器等四部分.

一、光源

作用:提供待测元素的特征谱线——共振线。获得较高的灵敏度和准确度。

常用的光源是空心阴极灯

二.原子化器

①.雾化器:作用是将试样溶液分散为极微细的雾滴。对雾化器的要求:a. 喷雾要稳定;b.雾滴要细而均匀;c. 雾化效率要高。d.有好的适应性。其性能好坏对测定精密度、灵敏度和化学干扰等都有较大影响。

②.燃烧器:试液雾化后进入预混和室(雾化室),与燃气在室内充分混合。

③.火焰:原子吸收所使用的火焰,只要其温度能使待测元素离解成自由的基态原子就可以了。

三.单色器

在原子吸收分光光度计中,单色器又称分光系统,此处单色器的作用是将待测元素的共振线与邻近的谱线分开。

四.检测系统:

1.检测器:作用是将单色器分出的光信号进行光电转换。

原子吸收分光光度计使用说明书

GGX-5型火焰原子吸收分光光度计使用说明书 1 GGX-5火焰原子吸收分光光度计的使用 1.1 仪器特点 原子吸收是指基态自由原子对光辐射能的共振吸收。通过测量自由原子对光辐射能的吸收程度而推断出样品中的某一元素的量大小,根据这一原理研制的分析测试仪器称原子吸收分光光度计。仪器主要由原子化系统、光学系统、信号检测放大输出系统及附属设备组成。下面先将仪器部分结构的性能和特点概述一下: (1) 元素灯, 光源稳定, 寿命较长,我站较常使用的铜、铅、镉、锰、铁、镍等元素灯, 使用五至六年后才更换(具体点灯时间没有统计) 。在使用期内光源是十分稳定的,当一旦出现光能量下降得利害且光源不稳时,需反接处理或更换元素灯。 (2) 原子化系统, 现在很多生产厂家采用石英玻璃喷雾器, 玻璃喷雾器具有耐腐蚀、干扰小的优点, 出厂前已将玻璃喷雾器出口的碰撞球的位置调节固定好, 无须使用者再调节球的位置。同时配有各种口径的毛细吸液管, 使用者可根据需要选择提升量大小, 以调节最灵敏、最稳定的雾化率达到理想的检测效果。(3) GGX-5型, 由于生产厂吸取了国外同行的先进电子线路和技术, 仪器的数据输出相当稳定, 工作曲线线性、数据重复性和准确性等技术指标都能达到比较理想的水平, 部分使用同型号仪器的用户亦有同感。 1.2 原子吸收分光光度计的开关机原则“先开后关, 后开先关”原则。如开机程序“电源→A 键→B 键→C 键”, 关机时必须是“C 键→B 键→A 键→电源”。气路必须先开空气压缩机, 待一定空气压力和流量后, 才能开乙炔气点火, 关机时必须关闭(切断) 乙炔气源后, 才关空气压缩机。如果开关机程序操作混乱, 极容易损伤或烧毁电气设备, 甚至发生严重安全事故。GGX-5型采用了燃气安全阀系统, 该系统只有当仪器主机电源开通后, 空气压力和流量达到一定的条件下, 燃气阀门才能撞开, 这种装备为安全使用仪器加了一道非常实用有效的防线。开关机除了要严格按程序外, 还必须严格地、准确地将各功能键调到应处的位置。要

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

原子吸收分光光度计操作规程 (含原理图)

原子吸收分光光度计(火焰法)使用规程 一、开机 1.打开主机电源,预热30分钟。 2.安装空心阴极灯,通过主机键盘输入工作灯电流,预热15分钟。 二、测试条件选择 3.主机和空心阴极灯预热结束,打开计算机,然后打开工作站。 4.选择测定元素。 5.输入一定负高压后,调整灯位。 6.对光路和调节燃烧器高度。 7.选择测定波长和调节能量值。 8.输入积分时间和测定次数。 三、样品测试(火焰法) 9.开空气压缩机。 10.打开乙炔钢瓶开关,调节减压阀至压力为0.075kp a。 11.输入标准溶液浓度。 12.打开乙炔开关,调节流量为1.5,按点火按钮点火。 13.燃烧3分钟后吸喷去离子水,燃烧状态稳定后按增益键调零。 14.测试标准溶液。 15.测试样品。 四、关机 16.测试完毕,吸喷1%硝酸溶液5~10分钟,然后吸喷去离子水15分钟。17.关闭燃气。 18.排去空气压缩机内的水分,关空气压缩机。 19.排去管路中的乙炔和空气。 20.退出工作站,关灯和主机。 21.关排气扇。 22.倒干净废液罐中的废液,并用自来水冲洗废液罐。 23.待燃烧器冷却后,卸下燃烧器,用自来水从颈部冲洗燃烧器内部,然后用去离子水冲洗,最后用干毛巾和滤纸擦干水。 24.清洁燃烧室、实验桌、仪器室。 25.登记仪器使用情况,关好门窗水电。

仪器原理 1、原子吸收光谱分析的基本过程: (1)用该元素的锐线光源发射出特征辐射; (2)试样在原子化器中被蒸发、解离为气态基态原子; (3)当元素的特征辐射通过该元素的气态基态原子区时,部分光被蒸气中基态原子吸收而减弱,通过单色器和检测器测得特征谱线被减弱的程度,即吸光度,根据吸光度与被测元素的浓度成线性关系,从而进行元素的定量分析。 元素在燃烧器或者热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL , 式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 2、原子吸收分光光度计的基本部件: 原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、分光系统(单色仪)和数据处理系统(包括光电转换器及相应的检测装置以及显示系统),如下图: 原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 火焰原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种,若使用氧化亚氮—乙炔火焰,测定的元素可达70多种。但氧化亚氮—乙炔火焰安全性较差,应用不普遍。空气—乙炔火焰原子吸收分光光度法,一般可检测到PPm级(10-6),精密度1%左右。国产的火焰原子吸收分光光度计,都可配备各种型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。汞(Hg)可用冷原子吸收法测定。 石墨炉原子吸收分光光度计,可以测定近50种元素。石墨炉法,进样量少,灵敏度高,有的元素也可以分析到pg/ml级。而且石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右;用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长。

原子吸收分光光度计操作方法

原子吸收分光光度法测定溶液中CU含量 一、实验目的 1.掌握原子吸收分光光度法的特点及应用; 2.了解原子吸收分光光度计的结构及其使用方法。 二、实验原理 原子吸收光谱分析是基于从光源中辐射出的待测元素的特征光波通过样品的原子蒸气时,被蒸气中待测元素的基态原子所吸收,使通过的光波强度减弱,根据光波强度减弱的程度,可以求出样品中待测元素的含量。 利用锐线光源在低浓度的条件下,基态原子蒸气对共振线的吸收符合朗伯—比尔定律,即: A=lg(I0/I)=KLN0 (1) 式中,A为吸光度,I0为入射光强度,I为经原子蒸气吸收后的透射光强度,K为吸光系数,L为辐射光穿过原子蒸气的光程长度,N0为基态原子密度。 当试样原子化,火焰的绝对温度低于3000K时,可以认为原子蒸气中基态原子的数目实际上接近原子总数。在固定的实验条件下,原子总数与试样浓度c的比例是恒定的,则等式(1)可记为 A==K’c (2) 式(2)就是原子吸收分光光度法定量分析的基本关系式。常用标准曲线法、标准加入法进行定量分析。 三、仪器与试剂 1.原子吸收分光光度计 2.标准溶液1~4号 3.样品溶液1~2号 四、操作步骤 1.开机前先检查水封是否有水,乙炔管道有无泄漏(空气中有无乙炔气味) 2.打开抽风机 3.打开电脑以及原子吸收分光光度计电源开关 4.分析方法设计

进入软件→点文件→选择新建→选择分析方法(火焰法、石墨法、氢化物法等)→分析任务选择(Cu、Pb、Ca等)→填写数据表(批数、个数、测量次数、稀释倍数)→展开→完成→仪器控制→点击自动波长→精调→完成→检测(准备两杯水,一杯调零,另一杯洗样管) 5.将元素灯预热30min 6.打开空压机,将压力调到0.3Mpa 7.打开乙炔钢瓶阀,将出气阀压力调到0.05~0.06Mpa之间 8.调整燃烧器高度,对好光路 9.旋开仪器上的乙炔伐,按点火开关,点火,调节火焰大小,开始检测 10.标准空白(纯水)读数5次,平均 11.标液1~标液4各读数5次,平均 12.建立标准曲线,相关系数应在0.995以上。 13.未知样品读数5次,平均。从标准曲线中求得结果。 14.检测完毕后,保存数据 15.点火吸去离子水10min,在关乙炔伐,使管道中气体烧完再关仪器、电脑、空压机。 五、结果处理 1.记录操作条件 灯电流 燃烧器高度 狭缝宽度 乙炔流量 空气流量 2.根据标准曲线计算样品中Cu含量。

实训四 AFS-920型原子荧光分光光度计的结构与使用

实训四AFS-920型原子荧光分光光度计的结构与使用 一、目的要求: 1.了解水中砷的来源和危害 2.掌握原子荧光法测定砷的原理 3.初步学会原子荧光分光光度计的简单操作方法 二、实验原理 在酸性条件下,三价砷与硼氢化钠反应生成砷化氢, 由载气(氩气)带入石英原子化器, 受热分解为原子态砷。在特制砷空心阴极灯的照射下,基态砷原子被激发至高能态, 在去活化回到基态时,发射出特征波长的荧光, 在一定的浓度范围内, 其荧光强度与砷含量成正比, 与标准系列比较定量。 三、仪器试剂 仪器:50ml具塞比色管;北京吉天AFS-920原子荧光光度计。 试剂:所用试剂纯度为优级纯或分析纯,测定用水为去离子水或同等纯度的水。浓盐酸(优级纯);还原剂:氢氧化钠为0.5%-硼氢化钠为1.0%;载流: 3-5%盐酸;硫脲+抗坏血酸溶液;砷标准使用溶液:0.1μg/mL的砷标准使用液。 四、实验条件 1.负高压:实验表明负高压为300~340V时,可满足实验需要。 2.灯电流:灯电流40~60 mA为宜。 3.炉高:8.0~10mm时,荧光强度值较好。 4.载气、屏蔽气:选择载气400~600 mL/min;屏蔽气800~1100 mL/min。 五、分析步骤 1.标准溶液的配制 去标准溶液5ml,向其中加入2.5ml浓盐酸优级纯,然后加入10ml硫脲+抗坏血酸溶液,用去离子水定容到50.0ml,配成浓度为10.00μg/L的标准溶液。 2.标准空白溶液直接由载流来代替做标准空白,上机做标准曲线。 3.水样测试 取经过处理后的一定体积的水样适量,向其中加入2.5ml浓盐酸优级纯,然后加入10ml硫脲+抗坏血酸溶液,用去离子水定容到50.0ml,上机测试。 六、测定结果 1.回归方程的计算 2.作图 3.代入法求出水样中砷的含量

第四章原子吸收题解

习题 1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。 2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。 3 原子吸收光谱法中为什么要用锐线光源?试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。 4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。它们之间有什么关系,影响它们的因素是什么? 5 通常为何不用原子吸收光谱法进行定性分析?应用原子吸收光谱法进行定量分析的依据是什么? 6 简述光源调制的目的及其方法。 7 解释原子吸收光谱分析工作曲线弯曲的原因。并比较标准曲线法和标准加入法的特点。 8 解释下列名词: (1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。 9 原子吸收光谱分析中存在哪些干扰?如何消除干扰? 10 比较火焰法与石墨炉原子化法的优缺点。 11 原子荧光产生的类型有哪些?各自的特点是什么? 12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。 13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为589.2 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。 提示:在3s 和3p 能级分别有2个和6个量子状态,故 32 60 == p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算: kT E j j e p p N N ?-= kT c h j e p p λ-= 2500 1038.11058921000.31063.623710 343 6??????- ---=e 41069.1-?= 14 原子吸收光谱法测定某元素的灵敏度为0.01g mL -1 /1%A ,为使测量误差最小,需要得到0.436的吸收值,在此情况下待测溶液的浓度应为多少? 解:灵敏度表达式为: %1/0044.01-= gmL A c S μ 100.10044 .0436 .001.00044.0-=?=?= gmL A S c μ 15 原子吸收分光光度计三档狭缝调节,以光谱通带0.19, 0.38和1.9 nm 为标度,其所对应的狭缝宽度分别为0.1, 0.2和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪

分光光度计基本原理

分光光度计基本原理 分光光度计主要用于反射和透射测量。 分三种光源:S偏振光、P偏振光和自然光。 现有设备7台(2台日立U4100、1台JACSO-V650、1台JACSO-V570、2台KT1100、1台瞬间7700)主要由是由分光光度计和电脑组成,由电脑程序驱动。 1 基本部件 光源: 用于提供足够强度和稳定的连续光谱。分光光度计中常用的光源有热辐射光源和气体放电光源两类。 热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。钨灯和碘钨灯可使用的范围在340 -- 2500 nm。氢灯和氘灯。它们可在180 -- 375 nm范围内产生连续光源。 紫外—可见分光光度计通常都配有可见和紫外两种光源。 单色器:是从连续光谱中获得所需单色光的装置。 (1)入射狭缝 (2)准直镜(透镜或凹面反射镜),它使入射光束变为平行光束。 (3)色散元件,棱镜或光栅,它使不同波长的入射光色散开来。 (4)聚焦透镜或聚焦凹面反射镜聚焦,它使不同波长的光聚焦在焦面的不同位置。 (5)出射狭缝。 积分球:它主要用途是测定光源发出的总光通量。它的制造:首先在球内壁上涂一层腻子,作为底层;然后喷点白漆,作为中间层;最后喷一层白涂料(硫酸钡或氧化镁)作为表层。 检测器:检测器的作用是检测光信号。常用的检测器有光电管和光电倍增管。电脑,就是微处理机。一方面可对分光光度计进行操作控制,另一方面可进行数据处理。 2、先用3台光度计的特点 U4100的 V650能测位相

3、日常测量 改参数 1.光源要求(.自然光) 2、扫描速度 3、狭缝 基本的步骤 设备测量种类 U4100测量:合色棱镜(成品、PL、2P)等 V650:单层,小DVD,带位相的零件,AR的反射测量等 4.测量的原理,影响准确性的因素 单光路分光光度计V650 双光路分光光度计 U4100 它的优点:光电传感器就可以交替探测到经过样品的探测光束的强度与参考光束的光强度,然后将两束光强信号进行相除,就可以得到样品的透过率。它可以降低光源稳定性对光谱测试精度的影响。 测量的原则:入射光轴重合,出射光轴重合,难在后着。 商用的光谱仪都有很好的性能,但是如果操作测试不当,就会获得错误的光谱测试结果。主要影响准确性的因素: 透射因素: 1、测量样品口径的影响 在测量中应保证仪器的测量光束全部穿过样品。 1)、在样品室的测量光路和参考光路中同时添加小孔光阑。 2)、只在样品池添加小孔光阑。

最新最全,原子荧光分光光度计,发展原理,分析应用方法综合对比, 讲义资料

原子荧光分光光度计 一、发展历程 1859年克希霍夫研究太阳光谱时开始原子荧光理论的研究。 1964年,Winefordner和Κuga首先提出用原子荧光光谱(AFS)作为分析方法的概念。1969年,Holak研究出氢化物气体分离技术并用于原子吸收光谱法测定砷。 1974年,Tsujiu将原子荧光光谱和氢化物气体分离技术相结合,提出了气体分离-非色散原子荧光光谱测定砷的方法,这种联合技术就是现代常用氢化物发生-原子荧光光谱(HG-AFS)。 1982年郭小伟(西北有色地质研究所)和张锦茂(地矿部物化探研究所)两个研究小组合作,研制成功了世界上首台以溴化物无极放电灯作激发光源的“WYD^2型蒸气发生-双道原子荧光光谱仪”。该仪器采用微波激发无极放电灯作为激发光源、自行研制的高温石英管原子化器、间断法氢化反应发生器,可同时测定两个可形成氢化元素及汞原子的原子荧光光谱仪。与此同时,张锦茂、范凡等开展了地球化学样品中As,Sb,Bi,Hg等两种元素同时测定分析方法的研究,取得了令人满意的分析结果。使其成为地矿部开展《20万区域化探全国扫面计划》找矿的重要配套仪器及分析方法,随即将科研成果迅速地转化为商品化仪器,按地矿部统一部署转让给北京地质仪器厂。 1985年开始由北京地质仪器厂(随后脱离出海光仪器公司)和江苏宝应仪器(种种原因到现在就没有发现该公司)进样系统以小蠕动泵为主并投入批量生产。 1995年以郭小伟为首西北有色金属研究院成立金索坤技术有限公司(不知道什么原因到目前为止市场占有率极低,目前也只有蠕动泵的产品)。 1996年北分瑞利公司与著名原子荧光光谱专家张锦茂先生合作,成功研制以蠕动泵为主的原子荧光(不知道什么原因现在市场占有率也不是很理想);随后北京东西电子研究所也推出以蠕动泵为主的原子荧光(不知打什么原因现在市场占有情况不是很理想)。 1998年,加拿大Aurora公司也推出了一款蒸气发生-原子荧光光谱仪,该仪器的性能基本上接近于我国早期同类型仪器的水平。所以国外原子荧光水平和国内至少相差15年左右。 1999年,北京有色金属研究院为了进一步提高空心阴极灯的辐射强度,满足原子荧光分析高灵敏度的需求,在我国早期吴廷照、高英奇研制成功的原子吸收高性能空心阴极灯[13]基础上结合原子荧光的特点,研制成功了用于原子荧光的“高性能空心阴极灯”。一直沿用至今(随后各厂家为灯添加特殊代码,实验灯的自动识别)。其中光源直接决定检测结果,未来发展发向是一种新型的激发光源,其性能具有单色性好、相干性强、方向集中和功率密度高等优点,但是价格也就不说咯。 2000年以刘明钟(海光第一任老总)为首成立北京吉天仪器有限公司。随后为原子荧光推出入双注射泵进样系统(目前市场占有率较高);随后普析也开始开展原子荧光的业务(目前市场占有率不是很理想)。 2005年北分瑞利成功研制推出第一台联用技术原子荧光光谱仪。随后几年内海光吉天普析等厂家也顺利推出该仪器。(为原子荧光测试重金属不同价态含量做出重要贡献)。 2006年北京路捷仪器有限公司(目前北京锐光仪器有限公司)成立致力于原子荧光各基础核心部件改进研发,并多次拿得国家重大专项目,协助制定多项有关原子荧光应用标准。并将成熟技术以授权于其他厂家使用带来良好效果。

第3章_原子吸收光谱法(练习题)-2008级

第三章原子吸收光谱法 单选题: 1.原子吸收光谱是由下列哪种粒子产生的? (1)固体物质中原子的外层电子;(2)气态物质中基态原子的外层电子;(3)气态物质中激发态原子的外层电子;(4)气态物质中基态原子的内层电子。 2. 原子吸收光谱线的多普勒变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 3. 原子吸收光谱线的洛仑兹变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 4. 用原子吸收光度法测定钙时,加入EDTA是为了消除下述哪种物质的干扰?(1)磷酸;(2)硫酸;(3)钠;(4)镁。 5. 为了提高石墨炉原子吸收光谱法的灵敏度,原子化阶段测量信号时,保护气体的流速应: (1)减小;(2)增大;(3)不变;(4)为零。 6. 原子吸收光谱测定食品中微量砷,最好采用下列哪种原子化方法? (1)冷原子吸收;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 7. 原子吸收光谱测定污水中微量汞,最好采用下列哪种原子化方法? (1)化学还原冷原子化法;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 8. 与原子吸收光谱法相比,原子荧光光谱法: (1)要求光源发射强度高;(2)要求光源发射线窄;(3)要求单色仪分辨能力更强;(4)更适宜测高浓度样品。 9. 消除原子吸收光谱分析中的物理干扰一般用: (1)背景校正;(2)光源调制;(3)标准加入法;(4)加入缓冲剂。 10. 石墨炉法原子吸收分析,应该在下列哪一步记录吸光度信号: (1)干燥;(2)灰化;(3)原子化;(4)除残。 11. 作为原子吸收光谱分析的消电离剂,最有效的是: (1)Na;(2)K;(3)Rb;(4)Cs。 12. 空心阴极灯中对发射谱线宽度影响最大的因素是: (1)阴极材料;(2)填充气体;(3)灯电流;(4)阳极材料。 13. 原子吸收分析中,吸光度最佳的测量范围是:

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

原子吸收分光光度计的结构说明

原子吸收分光光度计的结构说明 原子吸收分光光度计分为单光束型和双光束型。其结构可分为五个部分:光源、原子化器、光学系统、检测系统与数据处理系统。1、光源 为测出待测元素的峰值吸收,须采用锐线光源,应满足以下一些要求:辐射强度大、辐射稳定、发射普线宽度窄。空心阴极灯是目前原子吸收光谱仪器使用的主光源,属于辉光放电气体光源。 空心阴极灯是一种由被测元素或含有被测元素的材料制成的圆筒形空心阴极和一个阳极(钨、钛或锆棒),密封在充有低压惰性气体的带有石英窗的玻璃壳内的电真空器件。 当在两极之间施加几百伏的高压,两极之间会产生放电,电子将从空心阴极内壁射向阳极,并在电子的通路上又与惰性气体原子发生碰撞并使之电离,带正电荷的惰性气体离子在电场的作用下,向阴极内壁猛烈地轰击,使阴极表面的金属原子溅射出来,而这些溅射出来的金属原子再与电子、惰性气体原子及离子发生碰撞并被激发,于是阴极内的辉光便出现了阴极物质的光谱。 空心阴极灯的阴极材料的纯度必须很高,内充气体也必须为高纯,以保证阴极元素的共振线附近不含内充气体或杂质元素的强谱线。 空心阴极灯的操作参数是灯电流,灯电流的大小可决定其所发射的谱线的强度。但是需根据具体操作情况来选择灯电流的大小。 通常情况下,空心阴极灯在使用前需预热10~15min。 2、原子化系统 原子吸收光谱中常用的原子化技术是:火焰原子化和电热原子化。此外还有一些特殊的原子化技术如氢化发生法、冷原子蒸气原子化等。 1)火焰原子化系统——火焰原子化器 火焰原子化器由雾化器、雾化室、燃烧器三部分组成。常见的燃烧器有全消耗型和预混合型。目前主要使用的是预混合型燃烧器。 2)、电热原子化系统——石墨炉原子化器 非火焰原子化器中适用广的是管式石墨炉原子化器。组成部分为:石墨管、炉体、电源。样品直接放置在管壁上或放置在嵌入管内的石墨平台上,用电加热至高

原子荧光分光光度计

一、原子荧光分光光度计 技术参数 1、工作条件要求 1.1电源: 220V,50Hz 1.2温度: 15~35℃ 1.3相对湿度: 10-75% 2、技术能力要求 2.1用途:用于食品卫生检验、环境样品检验、城市给排水检测、农产品检验、地质冶金检验、化妆品检验、土壤肥料饲料检验等样品中As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd元素的痕量分析。 2.2分析方法:非色散光学系统,进行两道元素同时测量 *2.2.1氢化物发生进样方式:双注射泵联合进样,蠕动泵主动排废 2.2.2检测能力:适用于As、Hg、Se、Pb、Ge、Sn、Te、Bi、Sb、Cd、Zn等十一种元素的痕量测定 2.2.3检测限(D.L.):As、Pb、Se、Bi、Sn、Sb、Te、Hg≤0.01μg/L;Hg(冷原子测汞)、Cd≤0.001μg/L;Ge≤0.05μg/L;Zn≤1.0μg/L *2.2.4相对标准偏差(RSD):≤0.8% 2.2.5线性范围:≥三个数量级 *2.3光学光源系统:双光束、实时监控,脉冲恒流或集束脉冲供电,无色散光学系统,自识空心阴极灯 2.4气路设计(气路控制模块): 2.4.1控制方式:质量流量控制器(MFC) 2.4.2连续可调:气体流量控制,气路自动保护装置,自动控制气路并可自动诊断,关机可自动切断气源 2.4.3气路控制:载气、屏蔽气流量分别自动控制(控制精度可达1ml/min) *2.5双检测系统:高信噪比光电倍增管双检测系统 2.6内置式两个独立注射泵进样:一路进样品载流,一路进还原剂(自动配制标准曲线,高浓度自动稀释,自动清洗,单标自配标准曲线,在线智能提示,自动在线加载还原剂、掩蔽剂) 2.7 在线分析功能:自动炉高调节、自动负高压设置、自动气路设置、在线动态

原子吸收分光光度计工作原理

原子吸收分光光度计应用及维护 工作原理: 元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便。 应用 一、实验部分 1.1、试剂 Cr标准溶液1000ug/ml Cr空心阴极灯 1.2、仪器工作条件 干燥120℃,斜坡10s,保持10s,180℃,斜坡5s,保持10s;灰化1300℃,斜坡10s,保持15s;原子化2600℃,4s,停气;清洗2800℃,5s 1.3、标准使用溶液的配置 铬标准使用溶液:吸取铬标准储备液(1mg/ml)10.0ml于100ml容量瓶中,加入2%硝酸至刻度、此溶液的浓度为100ug/ml。在逐级稀释,可分别得到标准系列溶液如下: 铬:0ug/L、5.0.0ug/L、10.0ug/L、15.0ug/L、20.0ug/L 2.试样的置备:

取空心胶囊0.50g,置氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液;。取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法,在357.9nm 测定,含铬不得过百万分之二

分光光度计的原理

(一)基本原理 分光光度法是利用物质对某种波长的光具有选择性吸收的特性建立起来的鉴别物质或测定其含量的一项技术。当一束单色光通过溶液时,一部分被吸收,一部分则透过溶液。设入射光强度为Io。,透射光强度为It,,则透光度T=It /Io,吸光度(A)或光密度(O.D)或称消光度(E)则可表示为A=-lgT。根据Lambert—Beer定律,吸光度与溶液的浓度成正比,与光束通过溶液的距离(即 光程)成正比,用数学表达式表示为: A=KLC 式中C代表该物质的浓度,L代表光程,一般以cm表示,K为摩尔消光系数,即当溶液浓度为lmol/l,光程为1cm时所测得的一定波长下的吸光度。 由于单色光透过溶液时,不仅被待测物质所吸收,而且还被比色容器与溶剂以及其它试剂吸收一部分,这部分需用空白管消除(空白液的做法即用与样本相 同的一切试剂,而不含被测定的物质) (二)波长的选择: 波长的选择一般是选择待测物质最大吸收峰的波长(λmax)。因在λmax测定吸光度,敏感度最高。在吸收峰波长处测吸光度,波长变化影响最小;而在其他波长处,波长变化对吸光度影响大,甚至测得浓度一吸光度曲线不呈直线。 选择测定某一溶液所需的波长,是可以用不同的波长作该溶液的吸收光谱曲线,从曲线上选择最适当的波长来进行这一溶液的测定工作,但是,在分析工作中,尚有个别情况,不能单凭此一原则,而应根据下列三个原则,进行实际试 测,然后全面考虑利弊,再行选定。 1.应使被测溶液有适当的光密度,一般而言,适当的光密度为0.1—0.7,而以0.2—0.6最理想。过低的光密度因仪器的读数误差而产生很大的相对误差,反之,过高的光密度则往往已超过直线范围而引入误差。 2.应使干扰影响降低至最低限度。在反应中,如遇不易去除的干扰色泽, 应选用对此干扰色泽最不灵敏的波长。 3.应使标准曲线在尽可能大的范围内接近直线。 (三)标准曲线的绘制 1.标准曲线的作用 (1)标准曲线又叫做校正曲线或工作曲线,它是比色分析法中不可缺少的步骤。从浓度——光密度直线的直线特性,可以判断所采用方法的呈色反应是 否符合Lamben—Beer氏定律。 (2)作多次平行测定绘制标准曲线,可判断在整个测定过程中操作,仪 器等误差的大小,从而确定该测定方法的可靠性。 (3)从绘制标准曲线的斜率可以比较各种方法的灵敏度。 (4)当进行大批样品分析时,可省略多次计算,从光密度值直接查阅标 准曲线而求得被测物质的浓度。

原子吸收分光光度计的原理及应用

陕西理工学院学年论文 原子吸收分光光度计的原理及应用 作者:张慧 (陕理工生物科学与工程学院生物科学专业041班,陕西汉中 723000) 指导教师:秦公伟 [摘要]:本文综述了原子吸收光谱法的使用方法及各使用方法的测定技术、优缺点、应用及与其它技术的联用,并对其发展趋势作了讨论。 [关键词]:火焰原子吸收光谱法石墨炉原子吸收光谱法氢化物原子吸收光谱法 引言:原子吸收光谱法自1955年作为一种分析方法问世以来,先后经历了初始的序幕期、爆发性的成长期、相对的稳定期和智能化飞跃期这个不同的发展时期,由此原子吸收光谱法得以迅速发展与普及,如今已成为一种倍受人们青睐的定量分析方法[1]。 二十世纪二十年代,Dymond首先将导数测量技术应用于仪器分析领域,用一阶导数技术来提高质谱检测气体激发电位的灵敏度。在随后的几十年中,导数技术本身日趋完善,在分光光度法、荧光法等领域得到越来越广泛的应用。导数技术的引进,使得这些分析方法的灵敏度、检出限得到了不同程度的改善,并且在提高方法的分辨能力和进行光谱校正方面也显示出一定的优越性。1953年,Hammond和Price 首次提出导数技术在分光光度法中的应用。六十年代末期,Morney和Butter等许多科学工作者开始将注意力转移到计算机导数技术上,低噪音运算放大器应运而生,并成功地应用于早期的导数发光光谱和导数红外光谱中。1974年,导数技术开始被应用于荧光分析领域。由于导数荧光技术能有效地解决测定过程中的背景干扰和谱带重叠问题,因而得到广泛的应用。近年来,有关利用导数光谱法校正高纯物质的ICP-AES分析中的光谱干扰的报道相继出现。导数光谱法只要求在分析线附近的一段较窄的波长范围内,干扰线强度在仪器动态范围内,因而比传统的干扰系数法和离峰分析法有更大的适用性,能有效地消除各种背景干扰[2]。 本文针对其原理、测定技术、特点、联用、应用及其进展进行综述。 1 原子吸收分光光度计使用方法 1.1 原子吸收光谱法原子化法 原子吸收光谱法作为分析化学领域应用最为广泛的定量分析方法之一,是测量物质所产生的蒸气中原子对电磁辐射的吸收强度的一种仪器分析方法。原子吸收光谱仪是由光源、原子化系统、光学系统、检测系统和显示装置五大部分组成的,其中原子化系统在整个装置中具有至关重要的作用,原子化效率的高低直接影响到测量的准确度和灵敏度。无论是传统的原子化法,还是近些年才有的原子化法,都为不同元素的测定提供了较为高效的原子化方式,以下将对不同的原子化法分别讨论。 1.1.1 火焰原子化法(FAAS) 适用于测定易原子化的元素,是原子吸收光谱法应用最为普遍的一种,对大多数元素有较高的灵敏度和检测极限,且重现性好,易于操作[3]。 1.1.2 石墨炉原子化法 石墨炉原子吸收也称无火焰原子吸收,简称CFAAS。火焰原子化虽好,但缺点在于仅有10%的试液被原子化,而90%由废液管排出,这样低的原子化效率成为提高灵敏度的主要障碍,而石墨炉原子化装

2014 第三章 原子吸收光谱法 作业答案

第三章原子吸收光谱法作业答案 一、选择题(每题只有1个正确答案)(2分?10=20分) 1. 由温度引起的原子吸收线变宽称为()。[ B ] A. 自然宽度 B. 多普勒变宽 C. 压力变宽 D. 场致变宽 2. 最早对原子吸收现象给予科学解释的是()。[ B ] A. 英国化学物理学家渥拉斯通(W.H.Wollaston) B. 德国光谱物理学家基尔霍夫(G.Kirchhoff) C. 澳大利亚物理学家沃尔什(A.Walsh) D. 瑞典物理学家西格(K.M.Siegbahn) 3. 空心阴极灯外壳一般根据其工作波长范围选用不同材料制作,若工作波长在350nm以上,应选用的材 料为()。[ A ] A. 玻璃 B. 石英 C. NaCl晶体 D. KBr晶体 4. 当吸收线半宽度一定时,积分吸收系数Kν与峰值吸收系数K0 ( )。[ A ] A. 成正比 B. 成反比 C. 无关 D. 无法判断 5 . Mg、Mo、W是易生成氧化物、氧化物又难解离、易电离元素,用AAS法测其含量时,最佳火焰为()。 [ B ] A. 中性火焰 B. 富燃火焰 C. 贫燃火焰 D. 高温贫燃火焰 6. 下图为实验测得的原子吸收光谱的灰化曲线①和原子化曲线②,根据此图,请选择最佳的原子化温度范 围()。[ D ] A.1600~2000℃ B.2000~2300℃ C. 2300~2500℃ D. 2500~2800℃ 7. 用AAS测量铝锭中Zn含量时,其吸收线波长为213.96nm,应选择()溶解试样。[ B ] A. 硫酸(H2SO4) B. 盐酸(HCl) C. 磷酸(H3PO4) D. 氟化氢(HF) 8. 使用一台具有预混合缝形燃烧器的原子吸收分光光度计,采用普通的燃气和助燃气,发生下列情况,你 建议采取的补救办法是(),分析灵敏度低,怀疑在火焰中形成氧化物粒子。[ B ] A. 采用贫燃火焰 B. 采用富燃火焰 C. 采用中性火焰 D. 没有办法 9.正常燃烧的火焰结构由预热区、第一反应区、中间薄层区和第二反应区组成,原子吸收光谱分析时,试样原子化主要在( )进行。[ C ] A. 预热区 B. 第一反应区 C. 中间薄层区 D. 第二反应区 10. 在测定Ba时,做了两个实验:在纯水中测量Ba的吸光度,绘制A?c曲线(如图中的1),曲线是弯 曲的,但加入0.2% KCl后,再测量Ba的吸光度,绘制A?c曲线,直线性很好,(如图中的2)加入KCl主要消除了( )。[ D ]

分光光度计的原理与使用

分光光度计的原理与使用 一、目的要求: 1、学会紫外-可见分光光度计的原理和使用方法 2、学会测量溶液的浓度。 二、实验原理: 1、分光光度计原理:分光光度计是目前化验室中使用比较广泛的一种分析仪器,其测定原理是利用物质对光的选择性吸收特性,以较纯的单色光作为入射光,测定物质对光的吸收,从而确定溶液中物质的含量。其特点是灵敏度高;准确度高;测量范围广;在一定条件下,可同时测定水样中两种或两种以上的物质组分含量等。 分光光度计按其波长范围可分为可见分光光度计(工作范围360~800nm)、紫外-可见分光光度计(工作范围200~1000nm)和红外分光光度计(工作范围760~400000nm)等。 2、在日常使用及维护当中应注意以下几点: 第一,在使用仪器前,必须仔细阅读其使用说明书。 第二,若大幅度改变测试波长,需稍等片刻,等灯热平衡后,重新调零及满度后,再测量。 第三,指针式仪器在未接通电源时,电表的指针必须位于零刻度上。若不是这种情况,需进行机械调零。 第四,操作人员不应轻易触动灯泡及反光镜灯,以免影响光效率。 第五,放大器灵敏度换挡后,必须重新调零。 第六,比色皿使用时要注意其方向性,并应配套使用,以延长其使用寿命。新的比色皿使用前必须进行配对选择,测定其相对厚度,互相偏差不得超过2%透光度,否则影响测定结果。使用完毕后,请立即用蒸馏水冲洗干净(测定有色溶液后,应先用相应的溶剂或(1+3)的硝酸进行浸泡,浸泡时间不宜过长,再用蒸馏水冲洗干净),并用干净柔软的纱布将水迹擦去,以防止表面光洁度被破坏,影响比色皿的透光率。

第七,比色皿架及比色皿在使用中的正确到位问题。首先,应保证比色皿不倾斜。因为稍许倾斜,就会使参比样品与待测样品的吸收光径长度不一致,还有可能使入射光不能全部通过样品池,导致测试准确度不符合要求。其次,应保证每次测试时,比色皿架推拉到位。若不到位,将影响到测试值的重复性或准确度。 第八,干燥剂的使用问题。干燥剂失效将会导致以下问题:①数显不稳,无法调零或满度。②反射镜发霉或沾污,影响光效率,杂散光增加。因此分光光度计应放置在远离水池等湿度大的地方,并且干燥剂应定期更换或烘烤。 第九,分光光度计的放置位置应符合以下条件:避免阳光直射;避免强电场;避免与较大功率的电器设备共电;避开腐蚀性气体等。 3、吸光光度法测定溶液浓度原理 基于物质对不同波长的光波具有选择性吸收的能力而建立起来的分析方法。(1)光线: 光线的波长: 200nm-400nm 紫外线,400-750nm可见光, >750nm 红外线 光具有波粒二相性,波长不同,其能量不同。 (2)物质的吸收光谱及颜色: A.物质的原子吸收光谱和原子发射光谱:原子的最外层电子可以选择性吸收特征波长的电磁波成为激发态而产生的光谱称为原子吸收光谱。激发态原子恢复到基态,则释放出特征波长的光子,形成原子发射光谱。不同的溶液其光谱不同,即不同溶液对不同波长的光其吸收能力不同,对某一特定波长的光存在吸收峰。B.可见光由赤橙黄绿青兰紫等能量不同的光线组成,当可见光穿过某一溶液时,由于特定波长的光被吸收而使溶液呈现相应的颜色。(如CuSO4由于吸收了可见光中的黄光(600nm)而成蓝色)不同颜色的溶液对不同波长的光其吸收能力不同。(3)光吸收的基本定律(Lambert-Beer 定律): 一束平行单色光(Io)通过有色的透明溶液时,一部分的光可以透过溶液(It),另一部分被溶液吸收(Ia),还有一部分被器皿表面反射(Ir),则: Io=It+Ia+Ir 。那么,该溶液透光率为: T = It / Io 。 1. Lambert 定律:设有一束平行单色光,通过液层厚度为b 的均匀透明溶液,则溶液对光的吸收能力: A=Ig(Io/It)=Ig(1/T)=k2b

原子吸收光谱

实验原子吸收光谱法测定自来水中钙、镁的含量 ——标准曲线法 一、实验目的 1. 学习原子吸收光谱分析法的基本原理; 2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法; 3. 掌握以标准曲线法测定自来水中钙、镁含量的方法。 二、实验原理 1. 原子吸收光谱分析基本原理 原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。 火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。 2. 标准曲线法基本原理 在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer 定律:A=εcl(式中ε为被测组分对某一波长光的吸收系数,l为光经过的火焰的长度)。根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。 三、仪器与试剂 1. 仪器、设备: TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。 2. 试剂

相关文档
相关文档 最新文档