文档库 最新最全的文档下载
当前位置:文档库 › 对流传热与传质

对流传热与传质

对流传热与传质
对流传热与传质

对流传热与传质

第一章导论

第二章守恒原理

§2.1质量守恒原理

§2.2动量定理

§2.3能量守恒原理

第三章流体应力与通量定律

§3.1粘性流体应力

§3.2傅立叶热传导定律

§3.3费克扩散定律

§3.4输运性质的无量纲组合

§3.5湍流输运系数

第四章边界层的微分方程

§4.1边界层概念

§4.2连续方程

§4.3动量方程

§4.4质量扩散方程

§4.5能量方程

§4.6湍流边界层方程

第五章边界层的积分方程

§5.1动量积分方程

§5.2排量厚度与动量厚度

§5.3动量积分方程的其它形式

§5.4能量积分方程

§5.5焓厚度与传导厚度

§5.6能量积分方程的其它形式

第六章动量传递:外部层流边界层

§6.1相似性解:常物性和恒定自由流速度时的层流不可压缩边界层

§6.2时的层流不可压缩边界层的相似性解

§6.3时的层流不可压缩边界层的相似性解

§6.4非相似动量边界层

§6.5由动量积分方程导得的恒定自由流速度时的层流边界层近似解

§6.6旋成体上自由流速度任意变化时的层流边界层近似解

第七章传热:外部层流边界层

§7.1沿定温半无限大平板的恒定自由流速度时的流动

§7.2沿定温半无限大平板的流动

§7.3沿具有吹出或吸入的定温半无限大平板的流动

§7.4非相似热边界层

§7.5沿具有未加热起始长度的半无限大平板的恒定自由流速度的流动

§7.6沿具有任意指定的表面温度的半无限大平板的恒定自由流速度的流动§7.7沿具有任意指定的表面热通量的半无限大平板的恒定自由流速度的流动§7.8任意形状的定温物体上的流动

§7.9任意形状且具有任意指定的表面温度的物体上的流动

§7.10具有边界层分离的物体上的流动

第八章动量传递:湍流动量边界层

§8.1层流边界层向湍流边界层的过渡

§8.2湍流边界层的定性结构

§8.3湍流扩散率的概念与湍流粘性系数

§8.4普朗特混合长度理论

§8.5壁面附近切应力分布

§8.6关于与情况下的壁面定律

§8.7动量边界层的近似解

§8.8平衡湍流边界层

§8.9散逸湍流边界层

§8.10连续壁面定律:模型

§8.11完全混合长度理论的概述

§8.12表面粗糙度的影响

§8.13轴向压力梯度的影响

§8.14高级湍流模型

第九章传热:湍流边界层

§9.1传热的湍流扩散率概念与湍流传导系数

§9.2雷诺比拟

§9.3热边界层的壁面定律

§9.4恒定自由流速度与定壁温时沿半无限大平板的传热解

§9.5沿具有未加热起始长度的计算无限大平板的恒定自由流速度的流动

§9.6沿具有任意指定的表面温度的半无限大平板的恒定自由流速度的流动§9.7沿具有任意指定的表面热通量的半无限大平板的恒定自由流速度的流动§9.8具有任意变化的自由与流速度和表面温度的轴对称物体

§9.9散逸湍流边界层

§9.10膜冷却

§9.11湍流普朗特数

§9.12完全混合长度理论的概述

§9.13表面粗糙度的影响

第十章流体物性依赖于温度时的影响

§10.1外部层流边界层:气体情况

§10.2外部湍流边界层:气体情况

第十一章高速对流传热

§11.1滞止焓方程

§11.2对于的流体的高速热边界层

§11.3对于情形的常物性层流边界层

§11.4对于变物性气体的层流边界层

§11.5参考物性对高速层流边界层计算的应用

§11.6对于变物性气体的湍流边界层

§11.7高速湍流边界层计算用的参考物性

§11.8可变自由流速度与可变温差的马赫数与大温差校正

第十二章自由对流边界层

§12.1自由对流的边界层方程

§12.2相似性解:定温半无限大垂直平板上的层流流动

§12.3变表面温度时的相似性解

§12.4壁面有吸入或吹出时的相似性解

§12.5近似积分解:定温半无限大垂直平板上的层流流动§12.6变物性的影响

§12.7自由对流的流动状况

§12.8半无限大垂直平板上的湍流流动

§12.9其它几何形状时的自由对流传热解

§12.10混合自由对流和受迫对流

习题

参考文献

第五章对流传热分析..

第五章 对流换热分析 通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。 5.1内容提要及要求 5.1.1 对流换热概述 1.定义及特性 对流换热指流体与固体壁直接接触时所发生的热量传递过程。在对流换热过程中,流体内部的导热与对流同时起作用。牛顿冷却公式w f ()q h t t =-是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。 2.影响对流换热的因素 (1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。 (2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。 (3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。 (4)流体的相变:冷凝和沸腾是两种最常见的相变换热。 (5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。 综上所述,可知表面传热系数是如下参数的函数 ()w f p ,,,,,,,,h f u t t c l λραμ= 这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。 3.分析求解对流换热问题 分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。同时,分析求解的前提是给出正确地描述问题的数学模型。在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数 2x x w,x W/(m K)t h t y λ??? ?=- ? ? ??? 由上式可有 2x x w,x W/(m K)h y λθ?θ?? ?=- ? ? ??? 其中θ为过余温度,t t θ=-。

交大传热传质学期末试卷-A卷答案

一、 简答(30分) 1、 答:导热(热传导)、对流(热对流)、辐射(热辐射) (2分) 导热:dt q dx λ=- (1分) 热流:q h t =? (1分) 热辐射:4q T σ=或41T εσ= (1分) 2、 答:(1)p t c ρτ ??是非稳态项,代表单位体积物体的热力学能增量 (1分) t t t x x y y z z λλλ???????????? ++ ? ? ??????????? ??是扩散项,代表单位体积的物体通过导热方式获 得的净热流量; (1分) Φ是源项,代表单位体积内热源的生成热 (1分) (2)220d t dx = (1分) 方程中未出现导热系数,但不能说物理内温度分布与导热系数无关 (1分) 原因:导热微分方程是导热过程的通用方程,其具体的解还要依赖边界条件,如果两侧都是第一类边条,则的确无关,如果是第三类边条,则有关。 (1分) 3、 答:(a )质量守恒定律、傅里叶定律和能量守恒定律 (2分) (b )导入与导出的净热流量 + 对流传入的净热流量=单位时间热力学能的增量 (2分) 4、 传热学中引入相似原理的意义是什么?(4分) 答:可以解决对流传热的实验中遇到的三个问题:(1分) (1)测量那些数据; (1分) (2)如何整理实验数据; (1分) (3)指导模化实验 (1分) 5、 (6分) 答:膜状凝结:如果凝结液体能很好地润湿壁面,在壁面上铺展成膜,称之为膜状凝结 (2分) 珠状凝结:当凝结液体不能很好地润湿壁面时,凝结液体在壁面形成一个个小液珠,称之为珠状凝结 (2分) 由于实际工程只能够凝结传热过程的污染等诸多因素,使得珠状凝结无法长时间保持。(1分) 第三问可以根据学生自己的想法判断是否给分, (1分) 6、 表面间辐射传热过程中,经常用到角系数。请给引入角系数的意义、应用条件及其三个性质各是什么?

计算传热学-传热基本原理及其有限元应用

1. 传热学的发展概述 18世纪30年代首先从英国开始的工业革命促进了生产力的空前发展。生产力的发展为自然科学的发展成长开辟了广阔的道路。传热学这一门学科就是在这种大背景下发展成长起来的。导热和对流两种基本热量传递方式早为人们所认识,第三种热量传递方式则是在1803年发现了红外线才确认的,它就是热辐射方式。在批判“热素说”确认热是一种运动的过程中,科学史上的两个著名实验起着关键作用。其一是1798年伦福特(B .T .Rumford)钻炮筒大量发热的实验,其二是 1799年戴维(H .Davy)两块冰块摩擦生热化为水的实验。确认热来源于物体本身内部的运动开辟了探求导热规律的途径。1804年毕渥根据实验提出了一个公式,认为每单位时间通过每单位面积的导热热量正比例于两侧表面温差,反比例于壁厚,比例系数是材料的物理性质。傅里叶于1822年发表了他的著名论著“热的解析理论”,成功地完成了创建导热理论的任务。他提出的导热定律正确概括了导热实验的结果,现称为傅里叶定律,奠定了导热理论的基础。他从傅里叶定律和能量守恒定律推出的导热微分方程是导热问题正确的数学描写,成为求解大多数工程导热问题的出发点。他所提出的采用无穷级数表示理论解的方法开辟了数学求解的新途径。傅里叶被公认为导热理论的奠基人。在傅里叶之后,导热理论求解的领域不断扩大。同样,自1823年M. Navier 提出流动方程以来,通过1845 年 G.G. Stokes 的改进,完成了流体流动基本方程的创建任务。流体流动理论是更加复杂的对流换热理论的必要前提,1909和1915年W. Nusselt 开辟了在无量纲数原则关系正确指导下,通过实验研究对流换热问题的一种基本方法。1904 年,L. Prandtl 提出的对流边界层理论使流动微分方程得到了简化,1921年 E. Pohlhausen 基于流动边界层理论引进了热边界层的概念,为对流传热微分方程的理论求解建立了基础。在辐射传热研究方面,19世纪J. Stefan 根据实验确定了黑体辐射力正比于它的绝对温度的四次方的规律,1900年M.Planck 提出的量子假说奠定了热辐射传热理论基础。上述传热理论为传热分析解析、数值以及实验研究奠定了理论基础。还要特别提到的是,由于计算机的迅速发展,用数值方法对传热问题的分析研究取得了重大进展,在20世纪70年代已经形成一个新兴分支—数值传热学。近年来,数值传热学得到了蓬勃的发展[2-4]。 2. 传热分析计算理论 热量传递主要有三种传递形式,分别是热传导、热对流和热辐射。热传导是指两个相互接触良好的物体之间的能量交换或一个物体由于其自身温度梯度而 引起的内部能量的传递。其遵循傅里叶定律[5]:dT q dx λ=-,其中λ是热导率, dT dx 是温度梯度,q 是热流密度。热对流是指在物体与其周围介质之间发生的热量交换。热对流分为自然对流和强制对流,用牛顿冷却方程描述为()w f q h t t =-,其中h 为表面传热系数,w t 为物体表面的温度,f t 为物体周围流体的温度。一个 物体或两个物体之间通过电磁波形式进行的能量传递交换称为热辐射,通常由斯

对流传热与传质讨论复习题

对流传热与传质期末复习题 1(徐婷)、结合外掠平壁层流对流换热的求解,试述由边界层控制方程得到精确解和利用边界层积分方程式得到近似解两种方法的主要步骤、特点并比较其结果。 2(朱蕙)、同样是层流对流换热,为什么外掠平壁的Nu ~Re 1/2,而管内充分发展的则h X =常数? 3(赖志燚)、以常压下20℃的空气在10 m/s 的速度外掠表面温度为45℃的平壁为例,计算离平壁前缘1mm 、2mm 、5mm 、10mm 、50mm 、100mm 、200mm 、300mm 、1000mm 、2000mm 、5000mm 、100000mm 处局部表面换热系数和平均换热系数(已知20℃的空气λ=0.0259W/(m.K))。分析外掠平壁对流换热系数随距平壁前缘距离x 的变化规律,比较层流、过渡流、湍流时的对流换热系数并给以说明。 4(陈凯)、试说明管内充分发展的湍流换热和层流换热的本质区别,并分别简述其换热系数的计算方法及步骤。 5(梁志滔)、为什么当冷凝换热温差增大时,冷凝换热系数减小?说明冷凝器为何多采用横管结构,结合工程实际说明维持较大的冷凝换热系数应采取的措施。 6(杨帅)、试结合Rohsenow 的大容器核态沸腾换热关系式说明汽泡跃离加热面的运动是影响换热的最重要的因素。 7(邹伟)、一温度为120℃、高为1.2m 的竖壁,放置于温度为20℃的空气中,试计算离竖壁下端0.25m 处的局部表面换热系数。该壁面上是否会出现湍流边界层?如果出现的话,过渡为湍流边界层的位置在何处?已知20℃的空气ανv g m K 2 73114710=?--.。 8(钟世青)、3#机油以1134 kg/h 的流量在直径为12.7 mm 的管内流动,油温从93 ℃被冷却到67 ℃,管内壁温度为20 ℃。已知t f =80 ℃时,ρ=857.4 kg/m 3,λ=0.138W/(m.K) ,p c =2131J/(kg.K) ,Pr=490,μ=114.7kg/(m.K), w t =20℃时w μ=2879kg/(m.h)。若不考虑物性随温度的变化,计算所需换热管长度。高Pr 数的油类在换热器管程内的常用流速为0.5~1.8 m/s ,试通过上述实例计算说明其流动形式和换热特性,并说明应如何计算其在换热器内的换热系数。 9(刘志成)、既然对流换热包含了流体中温度不同的各部分之间发生宏观相对运动和相互掺混所引起的热量传递,为什么管内流动和热充分发展段的对流换热系数仅具有导热的特征而没有对流的特征?

传热几传质学答案

第八章 热量传递的基本概念 2.当铸件在砂型中冷却凝固时,由于铸件收缩导致铸件表面与砂型间产生气隙,气隙中的空气是停滞的,试问通过气隙有哪几种基本的热量传递方式? 答:热传导、辐射。 注:无对流换热 3.在你所了解的导热现象中,试列举一维、多维温度场实例。 答:工程上许多的导热现象,可以归结为温度仅沿一个方向变化,而且与时间无关的一维稳态导热现象。 例,大平板、长圆筒和球壁。此外还有半无限大物体,如铸造时砂型的受热升温(砂型外侧未被升温波及) 多维温度场:有限长度的圆柱体、平行六面体等,如钢锭加热,焊接厚平板时热源传热过程。 4.假设在两小时内,通过152mm ×152mm ×13mm (厚度)实验板传导的热量为 837J ,实验板两个平面的温度分别为19℃和26℃,求实验板热导率。 解:由傅里叶定律可知两小时内通过面积为152×152mm 2的平面的热量为 t x T A t dx dT A Q ??-=-=λλ 873=-36002101326191015210152333???-? ????---λ 得 C m W 03/1034.9*?=-λ 第九章 导 热 1. 对正在凝固的铸件来说,其凝固成固体部分的两侧分别为砂型(无气隙)及固液分界面,试列出两侧的边界条件。 解:有砂型的一侧热流密度为 常数,故为第二类边界条件, 即τ>0时),,,(n t z y x q T =??λ 固液界面处的边界温度为常数, 故为第一类边界条件,即 τ>0时Τw =f(τ) 注:实际铸件凝固时有气隙形成,边界条件复杂,常采用第 三类边界条件 3. 用一平底锅烧开水,锅底已有厚度为3mm 的水垢,其热导率λ为1W/(m · ℃)。已知

《传热传质学》主要内容和专业词汇中英文对照

《传热传质学》主要内容和专业词汇中英文对照 Chapter 1 Thermodynamics and Heat Transfer 主要内容 1.Concepts: heat (thermal energy)、heat transfer、thermodynamics、total amount of heat transfer、heat transfer rate、heat flux、conduction、convection、radiation 2.Equations: 1) The first law of thermodynamics (conservation of energy principle) 2) Heat balance equation: a) closed system; b) open system (steady-flow) 3) Fourier’s law of heat conduction 4) Newton’s law of cooling 5) Stefan-Boltzmann law 主要专业词汇 heat transfer 传热、热传递、传热学thermodynamics热力学 caloric 热素specific heat 比热mass flow rate 质量流率 latent heat 潜热sensible heat 显热heat flux热流密度 heat transfer rate热流量total amount of heat transfer总热量 conduction导热convection对流radiation辐射 thermal conductivity 热导率thermal diffusivity 热扩散率 convection/combined heat transfer coefficient 对流/综合换热系数 emissivity 发射率absorptivity 吸收率simultaneous heat transfer 复合换热

《传热学与传质学》教学大纲

《传热学与传质学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Thermodynamics and Heat Transfer 2、课程类别:专业基础课程 3、课程学时:总学时48,实验学时4 4、学分:3 5、先修课程:高等数学;普通物理;普通化学;工程流体力学 6、适用专业:石油工程 7、大纲执笔:油气储运教研室李永杰 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务: 本课程是研究热能传递与能量转换规律的学科,是一门必修的技术基础课程。通过本课程的学习,应使学生掌握热能与机械能的转化规律,热能的合理利用。热能的传递原理与规律、换热设备的热工计算等基本知识,培养学生独立思考、分析推导问题简化问题的能力,为专业课程的学习提供必要的理论基础。 三、课程的基本要求: 1.了解工程热力学与传热学的宏观研究方法及特点,掌握工程热力学 与传热学的基本概念: 2.掌握工程热力学的两个基本定律,能正确分析能量转换与守恒关 系,对热能的可用性有基本的认识,了解合理用能的原则 3.能依据热能过程的特征,分析计算过程的功量与热量。掌握理想气 体的基本热力性质与计算方法。 4.掌握热量传递的三种基本方式的原理与工程常见条件下的简化、计 算。 5.理解传热过程及传热系数,能计算传热量,并能指出增大或减小传 热量的基本方法。 6.了解常用换热器类型,并能进行换热器的一般热力计算。 四、教学内容、要求及学时分配: 2.(一)理论教学:

1.基本概念及定义(2学时) 掌握基本概念:热力学系统;热力学的状态及基本状态参数;平衡状态:状态方程;热力过程的准静态过程;准静态过程的功;热量;热量和功的类比;热力循环。 重点:建立工程热力学的基本概念及定义 难点:准静态过程的功;热量:热量和功的类比。 2.热力学的第一定律(6学时) 掌握热力学第一定律;闭口系统能量方程式;稳定状态稳定流动能量方程;焓;轴功;稳定流动能量方程式应用举例。 重点:能量守恒方程式与应用 难点:焓参数的应用。 3.理想气体内能、焓、熵和比热(2学时) 掌握理想气体内能和从理想气体的比热;理想气体的熵:了解理想气体混合物。 重点:理想气体状态参数变化量的计算。 难点:理想气体的熵变计算。 4.理想气体的热力过程(4学时) 掌握热力过程分析概述:定容过程;定压过程:定温过程;定熵过程;多变过程。 重点:各热力过程中功量与热量、状态参数的计算。 难点:多变过程的计算分析,图示。 5.热力学第二定律(4学时) 掌握热机循环与制冷循环:热力学第二定律,可逆过程与不可逆过程,卡诺循环。卡诺定理;了解热能的可用性。 重点:理解热力学第二定律是判断过程方向性的定律 难点:热能的可用性分析 6.熵(4学时) 掌握状态参数熵的计算,了解不可逆过程熵的产生;理解孤立系统熵增原理;系统的作功能力与不可逆损失。 重点:掌握熵增原理,判断过程方向 难点:熵变计算与系统作功能力损失计算

传热传质学考试重点

考试形式 闭卷,时间120分钟,包括简答、分析和计算。带计算器、作图工具。 简答和分析主要涉及基本概念、表达式、简单问题的推导原理等。 计算题请重视课程中布置的习题、PPT中的例题等。 考试重点 第一章 1、三种传热方式的概念、基本表达式 2、能量守恒的原理,并会利用能量守恒进行简单计算 3、物理量单位及换算 第二章 1、温度场(等温面、等温线)的概念、温度梯度、热流线 2、热导率的定性大小关系(固体、液体、气体) 3、热扩散系数 4、重点掌握三维直角坐标、圆柱坐标、球坐标下的导热微分方程推导过程与原理,及简化条件 5、三种边界条件的物理意义与表达形式 第三章 1、重点掌握三种坐标下导热、对流、辐射热阻的意义与表达式,会利用热阻分析法计算复合壁导热问题 2、接触热阻的定义与消除接触热阻的方法 3、熟悉有内热源情况下的一维稳态平壁导热问题并做简单分析 第四章不做考试要求 第五章 1、重点掌握集总热容法原理和使用条件,会利用集总热容法对瞬态导热问题进行计算 2、掌握无量纲数Bi、Fo(中英文名、物理意义和表达式) 第六章 1、边界层(速度、温度、浓度)的含义、流体流态的转变 2、影响对流换热系数的相关物理因素、对流换热系数的相对大小关系(自然/

受迫,相变/非相变)、平均对流换热系数和局部对流换热系数的区别与联系 3、重点掌握各类常用的无量纲数(中英文名、物理意义和表达式,表6.2) 4、会利用相似性原理进行简单计算 第七章——第九章 1、重点掌握给定Nu计算公式条件下的简单对流换热计算(外掠平板、通过圆管的内部流动、平板附近的自然对流) 2、等温平板和等热流密度平板边界条件的区别、对数平均温差的意义 第十章——第十一章不做考试要求 第十二章 1、黑体辐射的三大定律 2、漫发射体(反射体)的概念、灰体的概念 3、吸收率、反射率、透过率的定义,及基尔霍夫定律的表达意义 4、有效辐射密度的概念 第十三章 1、会使用代数方法简单计算表面间的视角系数 2、掌握表面辐射热阻、空间辐射热阻的定义,会画辐射热网络图,并利用辐射 热网络图分析漫射灰表面之间的辐射换热 第十四章 1、扩散传质、对流传质的物理机制与斐克定律 2、传质与传热相关物理量的类比关系。

对流传热分析

对流换热分析 通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一 步提出针对具体换热过程的强化传热措施。 1. 对流换热概述 1.1. 定义及特性 对流换热指流体与固体壁直接接触时所发生的热量传递过程。在对流换热过程中,流体内部的导热与对流同时起作用。牛顿冷却公式 q=?×(t w?t f) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。 1.2. 影响对流换热的因素 (1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。 (2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。 (3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。 (4)流体的相变:冷凝和沸腾是两种最常见的相变换热。 (5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。 综上所述,可知表面传热系数是如下参数的函数 ?=f u,t w,t f,c P,ρ,α,μ,l 这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。

1.3. 分析求解对流换热问题 分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。同时,分析求解的前提是给出正确地描述问题的数学模型。在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数 ?x=λ Δt x et ey w,x W/(m2·K) 由上式可有 ?x=λ Δθx eθ ey w,x W/(m2·K) 其中θ为过余温度,θ=t w?t f。 对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。 由于对流换热问题的分析求解常常要求解包括连续性方程、动量微分方程和能量微分方程在内的一系列方程,因此它的求解过程比导热问题要困难得多。 2. 对流换热微分方程组 2.1. 连续性方程 二维常物性不可压缩流体稳态流动连续性方程: eu ex +ev ey =0 2.2. 动量微分方程式 动量微分方程式描述流体速度场,可从分析微元体的动量守恒中建立。它又称纳斯-斯托克斯方程,简称N·S方程。 ρeu eτ+ueu ex +veu ey =X?ep ex +μ(e2u ex2 +e2u ey2 ) ρev eτ+uev ex +vev ey =Y?ep ey +μ(e2v ex2 +e2v ey2 )

真冰溜冰场冷负荷计算

真冰溜冰场冷负荷计算 发表时间:2019-08-05T15:55:21.877Z 来源:《基层建设》2019年第15期作者:刘剑平 [导读] 摘要:本文通过一个项目实例,详细介绍了真冰溜冰场冷负荷的计算过程,并对计算过程进行分析。 上海城凯建筑设计有限公司上海杨浦区 摘要:本文通过一个项目实例,详细介绍了真冰溜冰场冷负荷的计算过程,并对计算过程进行分析。 关键词:真冰溜冰场详细负荷计算 0.引言 笔者最近在做一个真冰溜冰场的暖通设计,在设计过程中发现,对于真冰溜冰场在现有的规范及设计手册中没有具体的负荷计算实例。设计手册中仅仅有负荷估算值及负荷分项计算表。因此,通过这个案例和相关的研究,笔者试图给出一个具体的真冰溜冰场的冷负荷详细计算。 1.真冰溜冰场方案介绍 项目位于河北邢台,为新建体育场馆内的一部分,室内冰场规格为61米x30米。采用乙二醇作为载冷剂的采用大流量间接制冰系统。乙二醇水溶液的供回水温度为-11.7 ℃ / -14.2 ℃,供回水温差取2.5℃。排管材料采用DN25的不锈钢管,外径32mm,间距80mm。排管平行于冰场长边,总供、回液管布置在冰场中间,采用三联箱中分式交叉供液方式。冰场使用用途:满足全年不同公众娱乐性滑冰。冰层表面积S 约1738平方米(60米x 30米,圆角半径8.5米),冰层厚度40mm,凝结厚度为40毫米冰层所需的时间:48小时。 2.制冷负荷计算 制冷量的计算必须考虑三个不同的操作情况,即保持冰块的制冷负荷,初次注水凝成冰块的制冷负荷和扫冰后再凝结冰块的制冷负荷。 2.1 保持冰块情况下,制冷负荷主要包括: A.地面(楼板)传热冷负荷,由下层穿过楼板及保温传至冰场的热量; B.对流传热与传质冷负荷,与冰场上空气的热交换量; C.辐射传热冷负荷; D.室内人员冷负荷,溜冰人员所产生的热量; E.水泵及管道的热损失,取所有其他冷负荷的15%。 其中A,B,C,D都是经由冰面传至制冷系统,但E是不经冰面传导的热量,所以计算冰场制冷负荷不需计算C,但计算制冷机组制冷负量时就要包括E。 A.地面(楼板)传热冷负荷 热量会由三楼顶板、保温等,传至冰场,计算的方法如下: B.对流传热与传质冷负荷 对流传热与传质冷负荷受空气的温度、湿度与冰场上空气的流动速度所影响,计算方法如下: C.辐射传热冷负荷; 根据热辐射理论,一切温度高于绝对零度的物体都能产生热辐射。由于冰场表面的温度低,所以冰场周围的其他物体对冰面产生热辐

传热与传质

传热与传质综述 论文 学院:能源与动力工程 班级:集控0901班 姓名:黄玲 2011年4月 《传热与传质》综述 集控0901班 200923060104 黄玲 摘要: 传热学就是研究由温差引起的热量传递规律的科学,混合物的 关于管保护层防都可以写复杂设可能地缩况进行

组分在浓度梯度的作用下由高浓度向低浓度的方向转移的过程叫做传质。而传质与传热学则是研究传热的基本理论以及传质基本过程,热质交换设备,传热传质强化,气体吸收和填料塔,湿法脱硫技术的介绍等等相关的内容。 关键字:传热与传质,换热器,填料塔,湿法脱硫系统 传热与传质学的研究背景 传热学就是研究由温差引起的热量传递规律的科学。在我们生活的大千世界中发生着各种各样的过程,其中热能的传递是与人类的生存关系最密切的物理关系之一:从现代楼宇的的暖通空调到自然界的风霜雪雨的形成,从航天飞机重返大气层时壳体的热防护到电子器件的有效冷却,从一年四季人们的穿着变化到人类器官的冷冻储存,无不与传热过程密切相关。 混合物的组分在浓度梯度的作用下由高浓度向低浓度的方向转移的过程叫做传质。在含有两种或两种以上组分的流体内部,如果有组分的浓度梯度存在,则每一种组分都有向其低浓度方向转移,已减弱这种浓度不均匀的趋势。 而传质与传热学则是研究传热的基本理论以及传质基本过程,热质交换设备,传热传质强化,气体吸收和填料塔,湿法脱硫技术的介绍等等相关的内容。传热与传质在动力、化工、制冷、建筑、环境、机械制造、新能源、微电子、核能、航空航天、微机电系统(MEMS)、新材料、军事科学与技术、材料学,生命科学与生物技术…等方面都有着广泛的运用。传热与传质是一门实践性很强的一

第三节 传热学基本原理

第三节 传热学基本原理 食物制熟过程中的传热学,涉及热量传递的方法和承担传热任务的介质两个方面的知识。 一、经典的热量传递方式 只要有温度差存在的地方,就会有热量自发地从高温物体或区域传向低温物体或区域。烹调的传热方式有传导、对流和辐射三种。 ●温度差即温差----即食物有生到熟是食物吸收了一定的热量,而事物能吸收热量一定有种“推动力”,这种推动力就是温差。 ●热传递---由于温差的存在,热量才会从高到底地传递下去,这种传递过程就是热传递。 ●热阻---由于在热量传递中遇到阻力,这种阻力称热阻。I=UR ●热传递的方式--传导、对流和辐射 (一)热传导 热传导—指导热物体各部分没有相对位移,或不同物体直接接触时,因组成该物体的各物质的分子、原子和自由电子等微观粒子的额外运动而发生的热量传递现象。 从理论上讲,热传导可以在固体、液体和气体中进行,但是在地球引力场内,单纯的热传导只能在结构紧密的固体中进行。因在液体和气体中,只要有温度差存在,液体分子的移动和气体分子的扩散就不可避免,从而产生对流现象。也就是说,在液体中,热量的传递是以传导和对流两种方式同时进行。 Q=λA△t/δ (二)热对流 对流—在液体(包括液体和气体)的运动中,热量从高温区域移向低温区域的现象。 在烹调中,单纯在流体之间进行的的热交换即纯对流现象并不是主要的,通常都是温度高的固体把热量传递到与之接触的流体中去,这样就出现了对流和传导同时存在的热交换现象。 典型的现象如:电水壶烧开水,电热元件产热后,传递到水中,使一部分水分子受热温度升高而流向低温区,同时低温区的水分子又立刻补充到高温区继续受热,于是对流现象产生。 单纯的对流现象:将一壶开水到入冷水桶中,此时所产生的热传递方式是典型的对流过程。 Q=аA△t (三)热辐射 热辐射——是物质在高温状态(包括燃烧和其他激烈化学反应

对流传热与传质

对流传热与传质 第一章导论 第二章守恒原理 §2.1质量守恒原理 §2.2动量定理 §2.3能量守恒原理 第三章流体应力与通量定律 §3.1粘性流体应力 §3.2傅立叶热传导定律 §3.3费克扩散定律 §3.4输运性质的无量纲组合 §3.5湍流输运系数 第四章边界层的微分方程 §4.1边界层概念 §4.2连续方程 §4.3动量方程 §4.4质量扩散方程 §4.5能量方程 §4.6湍流边界层方程 第五章边界层的积分方程 §5.1动量积分方程 §5.2排量厚度与动量厚度 §5.3动量积分方程的其它形式 §5.4能量积分方程 §5.5焓厚度与传导厚度 §5.6能量积分方程的其它形式 第六章动量传递:外部层流边界层 §6.1相似性解:常物性和恒定自由流速度时的层流不可压缩边界层 §6.2时的层流不可压缩边界层的相似性解 §6.3时的层流不可压缩边界层的相似性解 §6.4非相似动量边界层 §6.5由动量积分方程导得的恒定自由流速度时的层流边界层近似解 §6.6旋成体上自由流速度任意变化时的层流边界层近似解 第七章传热:外部层流边界层 §7.1沿定温半无限大平板的恒定自由流速度时的流动 §7.2沿定温半无限大平板的流动 §7.3沿具有吹出或吸入的定温半无限大平板的流动 §7.4非相似热边界层 §7.5沿具有未加热起始长度的半无限大平板的恒定自由流速度的流动 §7.6沿具有任意指定的表面温度的半无限大平板的恒定自由流速度的流动§7.7沿具有任意指定的表面热通量的半无限大平板的恒定自由流速度的流动§7.8任意形状的定温物体上的流动 §7.9任意形状且具有任意指定的表面温度的物体上的流动 §7.10具有边界层分离的物体上的流动

传热课后问答题答案

绪论 1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的? 答:冰雹融化所需热量主要由三种途径得到: a 、地面向冰雹导热所得热量; b 、冰雹与周围的空气对流换热所得到的热量; c 、冰雹周围的物体对冰雹辐射所得的热量。 2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的? 答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。 3.现在冬季室内供暖可以采用多种方法。就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。 答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体 电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体 红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体 电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体 冷暖两用空调机(供热时):加热风对流换热和辐射人体

太阳照射:阳光辐射人体 4.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式? 答:加热:用炭火对锅进行加热——辐射换热 冷却:烙铁在水中冷却——对流换热和辐射换热 凝固:冬天湖水结冰——对流换热和辐射换热 沸腾:水在容器中沸腾——对流换热和辐射换热 升华:结冰的衣物变干——对流换热和辐射换热 冷凝:制冷剂在冷凝器中冷凝——对流换热和导热 融熔:冰在空气中熔化——对流换热和辐射换热 5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在? 答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。挂上窗帘布后,辐射减弱,所以感觉暖和。 6.“热对流”和“对流换热”是否同一现象?试以实例说明。对流换热是否为基本传热方式? 答:热对流和对流换热不是同一现象。流体与固体壁直接接触时的换热过程为对流换热,两种温度不同的流体相混合的换热过程为热对

换热站的工作原理

总过程:一次热源通过管道送到换热站,并进入换热器内,通过换热器的换热,将一次热源交换到二次供热管道内,二次供热管道引出至热用户。 二次水经过过滤除污,经由循环进入换热器,被蒸汽或高温水加热后进行供热,蒸汽或高温水进入板式换热器后,变成凝结水或高温回水,返回热源,进行一二次给你个热系统的会热循环。补水泵将软水打入系统中医保持系统压力恒定 1、一次水一般是指的热源(锅炉房、各类热泵、热电联产集中供热)到换热器的水系统(锅炉热水),热源为锅炉房时,供回水温度不得小于20摄氏度 2、二次水一般是指的换热器到采暖末端的水系统(采暖系统与热源间接联系) 3、汽-水换热用板换,对蒸汽压力和温度有要求。压力低于换热器的承载压力,温度低于胶垫的使用温度。对蒸汽压力和温度都比较低,压力一般要小于2.5MPa而且板换汽水换热效率较低。 4、当热水、冷水系统补水能力有限需控制管道充水流量,或蒸汽管道气东暖管需控制蒸汽流量时,管道阀门应装设口径较小的旁通阀作为控制阀门 因为热电厂出来的水,压力太大,温度太高,普通用户暖气承受不了这个压力。所以经过一道程序,把水的压力和温度降到合理标准。这里有两个循环系统:一市政的供回水;二用户的供回水。二者之间没有物质的交换。就在换热器里面换一下热量。 小区换热站的运行原理: 1如何一眼区分一次供水和回水? 2他们的温度代表的意思? 3二次供水与回水的温度又代表什么意思? 4用户家暖气的温度和一次水,二次水有什么关系? 5哪次水的温度能直接说明用户家里暖气的温度,站里每个设备的压力应该在什么样的情况下是多少才能算是正常? 7如果用户家里的暖气不热,应该从哪几个方面去调查解决呢? 1、换热站内的供水为箭头背向加压泵,回水箭头为面向加压泵。 2、温度就是代表的管道内水的温度。 3、二次供水属于换热后的供水,温度代表现在小区内暖气供水出口温度。 4、用户家的暖气一次水是供水,二次水是回水,供水通过暖气片回回小区暖气主系统。 5、回水最能说明住户家的暖气温度。 6、换热站设备的不同,小区需求压力的不同,压力要求也不同这个要看设局图纸没有定数,通常10KG=0.1MP=10米扬程,暖气管道压力较大属于高压循环系统。 7、应该从以下几个方面着手检查(1)排放气体因为暖气如果有气就会造成循环不畅。(2)清洗过滤网通常每个小区(单元、楼、住户)的进户管都有过滤网需要采暖期到来之前清洗。(3)检查阀门是否开到最大(串联暖气)如果是并联系统需要把特别烫手的那组暖气阀门关闭一些把不热的暖气阀门开放一些。 换热器主要设备: 1 换热器:转换供热介质种类改变供热介质参数的设备。按照热交换的介质分类:汽水换热器水水换热器

传热传质学试题之一

广东海洋大学 2005 —— 2006 学年第 2 学期 《 传热传质学》课考试(查)试题(A B ) 一、 请解释下列名词(每小题3分,共15分) 1) 傅立叶定律 2) 灰体 3) 热边界层及其厚度 4) 复合换热 5) 对流传质 班级: 姓名: 学号: 加白纸 2 张 密 封 线

二、填空(每小题2分,共10分) 1)两个物理现象相似的条件是 。 2)测温套管测流体的温度时存在测温误差的原因是 ,热电偶产生测温误差的原因是。 3)Pr的定义式是,它的物理意义是。 4)边界条件是指,边界条件有三类,第一类边界条件是 ,第二类边界条件是 ,第三类边界条件是 5)大容器中的饱和沸腾,随着加热壁面过热度的增加会出现、、和四个区域。

4、什么是膜状凝结?什么是珠状凝结?珠状凝结与膜状凝结相比那个好?为什么? 5、温度为500K的灰体表面,对于来自太阳的辐射,其黑度为0.4,那么,对于来自温度为600K的黑体辐射源,其吸收率为多少?为什么? 6、以下两题中任选一题: 1)简述影响强制对流换热的各因素? 2)如何解释地球表面的温室效应?为什么种植蔬菜的玻璃暖房有“温室效应”?

四、 综合计算题(共51分) 1、为了解空气预热器的换热性能,用尺寸为实物的1/8的模型来预测。模型中用50℃的空气模拟空气预热器中的150℃的空气。空气预热器中的空气流速为6.03m/s 。(12分) 1) 问模型中的空气流速U m 应为多少? 2)若模型中的h m =412 w/(㎡.℃),问锅炉中空气的表面传热系数h p 为多少? (下标m ,p 仅用来区分模型与实物) 已查得:40℃时空气的导热系数0276.0=λm w/(m.℃),运动粘度 1096.166-?=ν m ㎡/s ;133℃时空气的导热系数0344.0=λP w/(m.℃), 运动粘度1098.266-?=νP ㎡/s 。

传热原理及设备讲解

第七节传热原理及设备 在日常生活和生产实践中,会遇到大量传热的现象。人们把生活和生产中这种传热现象总结后得出结论:凡是有温度差别的地方就一定有热量的传递,热量总是自动地由高温物体传向低温物体。工业上凡是将热量由热流体传递给冷流体的换热设备,都称为热交换器,简称换热器。空分设备中主要有:切换板翅式换热器、主换热器、冷凝蒸发器、过冷器、液化器、加热器、空压机冷却器、氮水预冷器等。而且这些换热器是实现空气液化分离及维持空分设备正常运转所必不可少的主要设备。因此我们也有必要对它有所了解。 1.7.1热传递的三种基本方式 1. 热传导和热导率物体内部分子和原子微观运动所引起的热量传递过程称为热传导,又称导热。在单位时间内从t ω1的高温壁面传递到tω2的低温壁面 的热流量φ(W)的大小,和壁的面积F(m2)与两壁温差(t ω1-tω2)(℃)成正比,与壁的厚度δ(m)成反比。此外,还与壁的材料性质等因素有关。因此由上面的比例关系,可以写出平壁的导热计算式为: Φ=F(tω1-tω2)=F(tω1-tω2)/(W)(1-21)式(1-21)中比例系数λ称为热导率,单位为W/(m.K)。在数值上等于单位时间内,面积为1m2、壁厚为1m、两侧壁温差为1K时所传递的热量。 为了比较导热量的大小,在单位时间内,通过每平方米表面积所传导的热流量称为热流密度q。平壁导热的热流量计算式为: q==λ(W/m2)(1-22) 从式(1-22)可以看出,有温差Δt存在才有热量传导。温差Δt愈大,传导热量也愈大,因而温差也称温压。δ/λ愈大,热流密度就愈小,它表示了阻碍热传导阻力的大小,称为平壁单位面积的导热热阻。

燃烧法与吸附法

一、燃烧法 燃烧法是利用某些废气中污染物可以燃烧氧化的特性,将其燃烧转变为无害或易于进一步处理和回收物质的方法。该法的主要化学反应是燃烧氧化,少数是热分解。石油炼制厂、石油化工厂产生的大量碳氢化合物废气和其他危险有害的气体;溶剂工业、漆包线、绝缘材料、油漆烘烤等生产过程产生的大量溶剂蒸气;咖啡烘烤、肉食烟熏、搪瓷焙烧等过程产生的有机气溶胶和烟道中未烧尽的碳质微粒以及所有的恶臭物质,如硫醇、氰化物气体、硫化氢等,都可用燃烧法处理。该法工艺简单,操作方便,可回收热能。但处理低浓度废气时,需加入辅助燃料或预热。 燃烧发生的化学作用是燃烧氧化作用和高温下的分解作用。因此,燃烧法只适用于净化可燃的或高温下分解的物质,有机废气一般都具有可燃性,适合燃烧处理。有机废气的燃烧工艺主要有直接燃烧、热力燃烧、催化燃烧以及蓄热燃烧。 1、直接燃烧法 直接燃烧亦称直接火焰燃烧,它是把废气中可燃有害组分当作燃料直接燃烧。因此,该方法只适用于净化含可燃有害组分浓度较高的废气,或者用于净化有害组分燃烧时热值较高的废气,因为只有燃烧时放出的热量能够补偿向环境中散失的热量时,才能保持燃烧区的温度,维持燃烧的持续。直接燃烧的设备包括一般的燃烧炉、窑,或通过某种装置将废气导入锅炉作为燃料气进行燃烧。直接燃烧的温度一般在1100℃左右,燃烧的最终产物为CO2、H20和NO X。直接燃烧法不适于处理低浓度废气。

石油炼制厂或石油化工厂所产生的有机废气通常排放到火炬燃烧器直接燃烧,不仅浪费资源,而且造成大气污染,近年来已较少使用。 2、热力燃烧法 热力燃烧法是在废气中VOCs浓度较低时添加燃料以帮助其燃烧的方法。在热力燃烧中,被净化的废气不是作为燃料,而是作为提供氧气的辅燃气体;当废气中氧的含量较低时,需要加入空气来辅燃。热力燃烧所需的温度较直接燃烧低,大约为540~820℃。本法工艺简单、投资小,适用于高浓度、小风量的废气,但对安全技术、操作要求较高。 热力燃烧的过程可分为三个步骤:①辅助燃料燃烧,提供热量;②废气与高温燃气混合,达到反应温度;③在反应温度下,保持废气有足够的停留时间,使废气中可燃的有害组分氧化分解,达到净化排气的目的。 热力燃烧可以在专用的燃烧装置中进行,也可以在普通的燃烧炉中进行。进行热力燃烧的专用装置称为热力燃烧炉,其结构应满足热力燃烧时的条件要求,即应保证获得760℃以上的温度和0.55s左右的接触时间。热力燃烧炉的主体结构包括两部分:①燃烧器,其作用是使辅助燃料燃烧生成高温燃气;②燃烧室,其作用是使高温燃气与旁通废气湍流混合达到反应温度,并使废气在其中的停留时间达到要求。 3、催化燃烧法 催化燃烧法是在系统中使用合适的催化剂,使废气中的有机物在较低温度(200~400℃)下完全氧化分解的方法。该法的优点是催化燃烧为无火焰燃烧,

热质交换复习题修订版

一、填空题(共30分) 1、流体的粘性、热传导性和_质量扩散性__通称为流体的分子传递性质。 2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是___牛顿粘性定律___、傅立叶定律_、_菲克定律_。 3、热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。 5、__温度差_是热量传递的推动力,而_浓度差_则是产生质交换的推动力。 6、质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。 7、相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。 8、在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A和组分B发生互扩散,其中组分A向组分B的质扩散通量m A 与组分A的_浓度梯度成正 比,其表达式为 s m kg dy dC D m A AB A ? - =2 ;当混合物以某一质平均速度V移动时,该表 达式的坐标应取___随整体移动的动坐标__。 9、麦凯尔方程的表达式为: ()dA i i h dQ d md z - =,它表明当空气与水发生直接接触,热湿 交换同时进行时。总换热量的推动力可以近似认为是湿空气的焓差。 1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是1.405×10-5 m2/s。 3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。 4、当表冷器的表面温度低于空气的露点湿度时,就会产生减湿冷却过程。 5、某一组分的速度与整体流动的平均速度之差,成为该组分的扩散速度。 2、冷凝器的类型可以分为水冷式,空气冷却式( 或称风冷式) 和蒸发式三种类型. 6、刘伊斯关系式文中叙述为h/h mad=Cp刘伊斯关系式文中叙述为即在空气一水系统的热质交换过程中,当空气温度及含湿量在实用范围内变化很小时,换热系数与传质系数之间需要保持一定的量值关系,条件的变化可使这两个系数中的某一个系数增大或减小,从而导致另一系数也相应地发生同样的变化。 7、一套管换热器、谁有200℃被冷却到120℃,油从100℃都被加热到120℃,则换热器效能是25% 。 8、总热交换是潜热交换和显热交换的总和。 1、当流体中存在速度、温度、和浓度的梯度时,就会分别产生动量、热量和质量的传递现象。 2、锅炉设备中的过热器、省煤器属于间壁式式换热器。 8、潜热交换是发生热交换的同时伴有质交换(湿交换)空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。 3、热质交换设备按照工作原理不同可分为间壁式、直接接触式、蓄热式、热管式等类型。表面式冷却器、省煤器、蒸发器属于间壁式,而喷淋室、冷却塔则属于直接接触式。 10、相际间对流传质模型主要有薄膜理论、溶质渗透理论、表面更新理论。 3.冰蓄冷系统中的制冰方式主要有两种:_动态_制冰方式和_静态_制冰方式。 4.一个完整的干燥循环由___吸湿___过程、___再生___过程和冷却过程构成。 5.用吸收、吸附法处理空气的优点是_____独立除湿______________________。

相关文档
相关文档 最新文档