文档库 最新最全的文档下载
当前位置:文档库 › 单变量线性随机模型

单变量线性随机模型

单变量线性随机模型
单变量线性随机模型

第八讲 概率与统计模型

第八讲 概率与统计模型 一、 曲线拟合 所谓曲线拟合是指从自变量和因变量的实现点列中得到反映自变量和因变量的函数关系。如下图蓝色点表明的是某个函数关系式,现需要知道有如此曲线表现的函数。 曲线拟合可以视为函数求值的逆运算,函数求值在已知函数关系式时带入自变量的值就可以得到对应的因变量,而曲线拟合恰好相反。要注意的是曲线拟合在大多数情况下只能得到反映大致的函数关系的表达式,而不能得到精确的关系式。如已知某个地区的温度C 与一种植物的生长速度V 之间有线性的关系(设为b aC V +=),为了确定两者之间的确切关系时,需要知道两组实际数据2,1),,(=i v c i i ,这样通过求解线性方程组 ?? ?+=+=b ac v b ac v 22 11 可以求出),(b a 的值。但是在实际问题中,由于测量的误差或者计算过程中的问题,给出来的数据可能不止两对,n i v c i i ,,2,1),,( =,这样如果还是将给出的数据带入方程中得到的是一个超定方程组,该方程组未必有解!从而就产生了如何确定系数的问题,曲线拟合方法就是解决这种问题的方法。 与曲线拟合相平行的另一个问题是插值问题,插值就是利用给出的一些数据作为提示,要得到一些未知点处的函数值。在这里我们将两个问题整合起来,因为在通过曲线拟合得到反映规律的曲线后将需要求值的点带入即可以得到函数值。 曲线拟合的基本方法如下: (1) 确定自变量与因变量, (2) 确定自变量与因变量之间的函数关系类型(即自变量与因变量之间的粗略关系式, 含有参数) (3) 选择合适的曲线拟合方法(其中使用最多的是最小二乘法) (4) 使用MATLAB 后者其他计算软件求解

各种随机变量的生成方法

各种随机变量的生成方法 (1).随机数的计算机生成 一个常用的生成任意分布的随机变量的方法是先生成均匀分布的随机变量,再由它生成 任意分布的随机变量。基本原理是:若随机变量x的累积概率分布函数(即概率密度函数 的积分)为Phi(x),则Phi(x)是[0,1]区间的非减函数,Phi(x)的反函数Phi^{-1}(x)定义域为[0,1]。设u为[0,1]区间均匀分布的随机变量,可以证明 Pr(Phi^{-1}(u)<=y)=Pr(u<=Phi(y))=Phi(y) 也就是说,令x=Phi^{-1}(u)的话,x的累积概率分布函数就是我们指定的Phi(.)。则为了得到累积概率分布函数为Phi(.)的随机变量x,我们需要经过如下步骤: 1.生成[0,1]区间的均匀分布的随机变量u 2.令x=Phi^{-1}(u) 这种方法被成为逆变换方法。 但在实际工作中,我们往往对某些常用分布用一些直接生成方式来产生,以代替逆变换 方法。以下就介绍了一些典型的分布的生成方法。这些生成方法都是以生成均匀分布的 随机变量为基础的,关于均匀分布随机变量的生成另文叙述。 (2)伯努利分布/0-1分布(Bernouli Distribution) 生成离散0-1随机变量x,符合参数为p(0

F(x)=p if x=1 F(x)=1-p if x=0 生成算法: 1.产生随机变量u符合(0,1)区间的均匀分布 2.if u<=p then x=1;else x=0 3.返回x (3)二项分布(Binomial Distribution) 生成离散随机变量x,符合参数为n,p的Bernouli分布BE(n,p)。其累积概率分布函数为 F(x)=\frac{n!}{(n-x)!x!}*p^x*(1-p)^{n-x},x=0,1,2,...,n 生成算法: 1.产生y_1,y_2,...,y_n符合Bernouli分布BE(p) 2.返回x=y_1+y_2+...+y_n (4)柯西分布(Cauchy Distribution) 生成随机变量x,符合参数为alpha,beta的Cauchy分布C(alpha,beta)。其概率密度函数 为:

随机变量及其分布简介

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1.随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3.二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考):

2. 1 离散型随机变量及其分布列约3课时2. 2 二项分布及其应用约4课时 2. 3 离散型随机变量的均值与方差约3课时 2. 4 正态分布 约1课时 小 结 约1课时 2.本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不 同值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问

随机过程试题

第一单元 1. 下列常见的分布中属于离散型随机变量的分布有():( 2.0分) A.二项式分布 B.均匀分布 C.泊松分布 D.正态分布 E.(0-1)分布 2. 下列常见的分布中属于连续型随机变量的分布有():(2.0分) A.二项式分布 B.均匀分布 C.泊松分布 D.正态分布 E.(0-2)分布 3. 下列关于随机变量分布函数性质的描述,正确的是():(2.0分) A.分布函数是一个不减函数 B.分布函数能够完整地描述随机变量的统计规律性 C.分布函数的最大值为无穷大 D.分布函数是右连续函数 E.离散型随机变量的分布函数是一系列冲激函数的线性组合 4. 下列关于随机变量概率密度性质的描述,正确的是():(2.0分) A.概率密度是一个不减函数 B.概率密度能够完整地描述随机变量的统计规律性 C.只有连续型随机变量才存在概率密度 D.概率密度是非负的函数

E.随机变量的概率密度一定存在 5. 随机试验有什么特点?(2.0分) 6. 基本事件是随机试验中最简单的随机事件。(2.0分) 7. 两个事件乘积的概率等于其中一个事件的概率乘以另一事件在此事件发生的条件下的条件概率。(2.0分) 8. 全概率公式用于在许多情况(B1,B2,…,Bn)下都可能发生事件A,求发生A 的全概率;贝叶斯公式则用于当A已经发生的情况下,求发生事件A的各种可能原因的条件概率。(2.0分) 9. 随机变量是样本空间上的单值实函数。(2.0分) 10. 两个随机变量如果相互独立,则它们的联合分布函数等于这两个随机变量的一维分布函数的乘积。(2.0分)

11. 如果要使两个随机变量之和的数学期望等于这两个随机变量的数学期望之和,则要求这两个随机变量是相互独立的。(2.0分) 12. 如果要使两个随机变量之和的方差等于这两个随机变量的方差之和,则要求这两个随机变量是相互独立的。(2.0分) 13. 两个随机变量如果是不相关的,则它们必定是相互独立的。(2.0分) 14. 当一个随机变量的数学期望为零时,它的方差和均方值相等。(2.0分) 15. 复随机变量的数学期望和方差都是复数。(2.0分) 16. 协方差是反映两个随机变量相关关系的数字特征。(2.0分) 17. 相互独立的随机变量和的特征函数等于各变量的特征函数的乘积。(2.0分) 18. 数学期望、方差和协方差都是矩的特殊情况,其中数学期望是随机变量的____矩,方差是随机变量的____矩,协方差是两个变量的____矩。(2.0分) 19. 离散型随机变量的统计规律可以用____、____、____和____来描述。(2.0分) 20. 连续型随机变量的统计规律可以用____、____和____来描述。(2.0分) 21. 数学期望表示____运算。(2.0分) 22. 掷3枚硬币, 求出现3个正面的概率。(2.0分) 23. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率。(2.0分) 24. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A)的概率为4/15, 刮风(用B表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P(A|B), P(B|A), P(A+B)。(2.0分) 25. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率。(2.0分) 26. 发报台分别以概率0.6和0.4发出信号“·”和“—”。由于通信系统受到干扰,当发出信号“·”时,收报台分别以概率0.8及0.2收到信息“·”及“—”;又当发出信号“—”时,收报台分别以概率0.9及0.1收到信号“—”及“·”。求当收报台收到“·”时,发报台确系发出信号“·”的概率,以及收到“—”时,确系发出“—”的概率。(2.0分) 27. 用随机变量来描述掷一枚硬币的试验结果。写出它的概率函数和分布函数。 (2.0分) 28. 如果ξ的概率函数为P{ξ=a}=1, 则称ξ服从退化分布。写出它的分布函数F(x), 画出F(x)的图形。(2.0分) 29. 服从柯西分布的随机变量ξ的分布函数是F(x)=A+B arctgx, 求常数 A,B;P{|ξ|<1}以及概率密度υ(x)。(2.0分)

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

excel随机变量方法

例子:怎么在excel中编设变量-10到+10之间随机变量公式,“+”还要显示保留两位小数。 任意单元格输入 =TEXT(RAND()*20-10,"[>0]+0.00;-0.00") excel 2007随机函数(RAND())的使用方法. 求教:我的电子表格中rand()函数的取值范围是-1到1,如何改回1到0 回答:有两种修改办法: 是[1-rand()]/2, 或[1+rand()]/2。 效果是一样的,都可生成0到1之间的随机数 电子表格中RAND()函数的取值范围是0到1,公式如下: =RAND() 如果取值范围是1到2,公式如下: =RAND()*(2-1)+1 RAND( ) 注解: 若要生成a与b之间的随机实数: =RAND()*(b-a)+a 如果要使用函数RAND生成一随机数,并且使之不随单元格计算而改变,可以在编辑栏中输入“=RAND()”,保持编辑状态,然后按F9,将公式永久性地改为随机数。 示例 RAND()介于0到1之间的一个随机数(变量) =RAND()*100大于等于0但小于100的一个随机数(变量) excel产生60-70随机数公式

=RAND()*10+60 要取整可以用=int(RAND()*10+60) 我想用excel在B1单元个里创建一个50-80的随机数且这个随机数要大于A1 单元个里的数值,请教大家如何编写公式! 整数:=ROUND(RAND()*(80-MAX(50,A1+1))+MAX(50,A1+1),0) 无需取整数:=RAND()*(80-MAX(50,A1))+MAX(50,A1) 要求: 1,小数保留0.12,1000-1100范围3,不要出现重复 =LEFT(RAND()*100+1000,6) 至于不许重复 你可以设置数据有效性 在数据-有效性设 =countif(a:a,a1)=1 选中a列设有效性就好了 其他列耶可以 急求excel随机生成数字的公式,取值要在38.90-44.03之间,不允许重复出现,保留两位小数,不允许变藏 =round(RAND()*5+38.9,2) 公式下拉 Excel随机数 Excel具有强大的函数功能,使用Excel函数,可以轻松在Excel表格产生一系列随机数。 1、产生一个小于100的两位数的整数,输入公式=ROUNDUP(RAND()*100,0)。 RAND()这是一个随机函数,它的返回值是一个大于0且小于1的随机小数。ROUNDUP函数是向上舍入数字,公式的意义就是将小数向上舍入到最接近的整数,再扩大100倍。 2、产生一个四位数N到M的随机数,输入公式=INT(RAND()*(M-N+1))+N。 这个公式中,INT函数是将数值向下取整为最接近的整数;因为四位数的随

随机变量及其分布

随机变量及其分布 1. 在某项测量中,测量结果ξ服从正态分布),1(2σN )0(>σ,若ξ在(0,2)内取值的概率为0.8,则ξ在(]0,∞-内取值的概率为 。 2. 92 )22(x x - 展开式中的常数项是 。 3. 有5本不同的书,其中语文书2本,数学书2本,物理书1本。若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 。 4. 在某种信息传递过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息。若用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 。 5. 在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等。已知当这四场比赛结束后,该班胜场多于负场。 (1) 求班级胜场多于负场的所有可能的个数和。 (2) 若胜场次数为X ,求X 的分布列及其数学期望。

6.某品牌汽车的 4S 店,对最近100为采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2起或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元。用η表示经销一辆汽车的利润。 (1) 若以频率作为概率,求事件A:“购买该品牌汽车的3为顾客中,至多有1位采用分3 期付款”的概率P(A); (2) 求η的分布列及其数学期望E η。 7.2011年3月11日,日本地震引起了核泄漏,现有A,B 两组反应堆,据有关技术部分析,A 组中的两个反应堆爆炸的概率都是32,B 组中两个反应堆爆炸的概率都是2 1,假设这四个反应堆是否爆炸互不影响。 (1)求A 组,B 组中各有一个反应堆爆炸的概率; (2)求A,B 两组反应堆爆炸的个数ξ的分布列与期望。

随机变量及其分布考点汇总

随机变量及其分布考点汇总

————————————————————————————————作者:————————————————————————————————日期:

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(1Λ=i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. ξ 1x 2x … i x … P 1p 2p … i p … 有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p . 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表: 喜爱打篮球 不喜爱打篮球 合计 男生 5 女生 10 合计 50 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. 下面的临界值表供参考: 2 ()p K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:2 2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

随机变量及其分布公式

随机变量及其分布 一,离散型随机变量 1,试验:凡是对现象的观察或为此而进行的实验,都称之为试验。 2,随机试验:一个试验如果满足(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果,那么,这个试验就叫做随机试验。 3,随机变量:随着试验结果变化而变化的变量称为随机变量,随机变量常用字母ηξ,,,Y X 表示。例如抛筛子、掷硬币 4,离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量 二,离散型随机变量的分布列 要掌握一个离散型随机变量X 的取值规律,必须知道: 1,X 所有可能取的值n x x x ,,,21 ; 2,X 取每一个值i x 的概率n p p p ,,,21 分布列 : 我们称这个表为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列。 3,离散型随机变量的分布列性质: (1)*,0N i p i ∈≥;(2)1321=++++n p p p p 三,两点分布与超几何分布 1,两点分布 若随机变量X 的分布列为 则称X 的分布列为两点分布列。 如果随机变量X 的分布列为 两点分布列,就称X 服从两点分布,并称)1(==x P p 为成功概率 2,超几何分布: 一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}k X =发生的概率为 n N k n M N k M C C C k x P --==)((m k ,2,1,0=),其中{}*,,,,,,m in N N M n N M N n n M m ∈≤≤=且,称 为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布 四,独立重复试验与二项分布 1,独立重复试验:一般的,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2,独立重复试验事件A 恰有k 次发生的概率: 一般的,如果在1次实验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率 =)(k P n k n k k n p p C --)1(,(n k ,2,1,0=)

《随机过程》第二章题目与答案

第二章 一、填空题 1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类. 2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度. 3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__. 4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__. 5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__. 二、计算题 1、已知Γ分布,X~Γ(α,β), 若 其中α,β>0,试求Γ分布的特征函数. 2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数. 3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.

4、设随机过程:0),sin()cos( )(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数. 5、设随机变量Y 具有概率密度f(y),令 )0,0(,)(>>=-Y t t X e Yt , 求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2). 6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从 N(0, )的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t }的均值函数m(t)和相关函 数R(s,t).

9-23随机变量(夏梓豪)

【主要知识点】 1.随机变量的概念 如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。随机变量常用希腊字母ξ、η等表示。 对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫

做离散型随机变量。 注:随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=aξ+b(a 、b 是常数)也是随机变量。 2.离散性随机变量的分布列 一般地,设离散型随机变量ε可能取得值为: X1,X2,…,X3,…, ε取每一个值Xi (I=1,2,…)的概率为P (P xi ==)ε,则称表 为随机变量的概率分布,简称的分布列。 两条基本性质:①,2,1(0=≥i p i …);②P 1+P 2+…=1。 3.独立 相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响.这样的两个事件叫做相互独立事件。 独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的。 公式 (1)两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P (A·B )=P (A )·P (B ); 推广:若事件A 1,A 2,…,A n 相互独立,则P(A 1·A 2…A n )=P(A 1)·P(A 2)·…·P(n )。 (2)如果在一次试验中某事件发生的概率为P,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:P n (k)=C k n P k (1-P)n-k 。 4.随机变量的均值和方差 (1)随机变量的均值 ++=2211p x p x E ε…;反映随机变量取值的平均水平。 (2)离散型随机变量的方差: +-+-=222121)()(p E x p E x D εεε…+-+n n p E x 2 )(ε…;反映随机变量取值的稳定 与波动,集中与离散的程度。 基本性质:b aE b a E +=+εε)(;εεD a b a D 2 )(=+。 5.几种特殊的分布列 (1)两点分布:对于一个随机试验,如果它的结果只有两种情况,则我们可用随机变 量? ??=. 0, 1乙结果发生甲结果发生η,来描述这个随机试验的结果。如果甲结果发生的概率为P ,则乙 结果发生的概率必定为1-P ,所以两点分布的分布列为: (2)超几何分布 重复进行独立试验,每次试验只有成功、失败两种可能,如果每次试验成功的概率为p ,重复试验直到出现一次成功为止,则需要的试验次数是一个随机变量,用ξ表示,因此事件{ξ=n}表示“第n 次试验成功且前n -1次试验均失败”。所以()()1 n p 1p n P --?==ξ, 其分布列为: (3)二项分布

电子科技大学随机信号分析CH2习题及答案

2.1 掷一枚硬币定义一个随机过程: cos ()2t X t t π?=??出现正面出现反面 设“出现正面”和“出现反面”的概率相等。试求: (1)()X t 的一维分布函数(,12)X F x ,(,1)X F x ; (2)()X t 的二维分布函数12(,;12,1)X F x x ; (3)画出上述分布函数的图形。 2.3 解: (1) 一维分布为: ()()(;0.5)0.50.51X F x u x u x =+- ()()(;1)0.510.52X F x u x u x =++-

(2) cos ()2t X t t π?=??出现正面出现反面 {}{}(0.5)0,(1)1,0.5(0.5)1,(1)2,0.5X X X X ==-==依概率发生依概率发生 二维分布函数为 ()()121212(,;0.5,1)0.5,10.51,2F x x u x x u x x =++-- 2.2 假定二进制数据序列{B(n), n=1, 2, 3,….}是伯努利随机序列,其每一位数据对应随机变量B(n),并有概率P[B(n)=0]=0.2和 P[B(n)=1]=0.8。试问, (1)连续4位构成的串为{1011}的概率是多少? (2)连续4位构成的串的平均串是什么? (3)连续4位构成的串中,概率最大的是什么? (4)该序列是可预测的吗?如果见到10111后,下一位可能是什么?

2.4解: 解:(1) {}()()()()101111021310.80.20.80.80.1024 P P B n P B n P B n P B n ???? ==?+=?+=?+=????????????????=???= (2)设连续4位数据构成的串为B(n), B(n+1),B(n+2),B(n+3),n=1, 2, 3,…. 其中B(n)为离散随机变量,由题意可知,它们是相互独立,而且同分布的。所以有: 串(4bit 数据)为:∑=+=3 0)(2)(k k k n B n X ,其矩特性为: 因为随机变量)(n B 的矩为: 均值:8.08.012.00)]([=?+?=n B E 方差: []()(){}2 22222()00.210.80.80.80.80.16Var B n B n B n ??=E -E ?????? =?+?-=-= 所以随机变量)(n X 的矩为:

随机变量及其分布

随机变量及其分布、统计 2012-1-3 1. 若X ~B (5,0.1),则P (X ≤2)等于 A.0.665 B.0.00856 C.0.91854 D.0.99144 2. 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 A.100 B.200 C.300 D.400 3. 已知随机变量ξ服从正态分布),1(2σN ,若023.0)2(=>ξP ,则=≤≤-)22(ξP A.0.477 B.0.628 C.0.954 D.0.977 4. 若P (ξ≤n )=1-a ,P (ξ≥m )=1-b ,其中m <n ,则P (m ≤ξ≤n )等于 A.(1-a )(1-b ) B.1-a (1-b ) C.1-(a +b ) D.1-b (1-a ) 5. 如图所示是一批产品中抽样得到数据的频率直方图, 由图可看出概率最大时数据所在范围是 A.(8.1,8.3) B.(8.2,8.4) C.(8.4,8.5) D.(8.5,8.7) 6. 若列联表如下: 则K 2的值约为 A.1.4967 B.1.64 C.1.597 D.1.71 7. 假设有两个分类变量X 1,x 2}和{y 1,y 2},其2×2列联表为: Y X y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a +b +c +d A.a =5,b =4,c =3,d =2 B.a =5,b =3,c =4,d =2 C.a =2,b =3,c =4,d =5 D.a =3,b =2,c =4,d =5 8. 若X 是一个随机变量,则E (X -E (X ))的值为 A.无法求 B.0 C.E (X ) D.2E (X ) 9. 设A ,B 是两个独立事件,“A 和B 同时不发生”的概率为,9 1“A 发生且B 不 发生”的概率与“B 发生且A 不发生”的概率相等,则事件A 发生的概率为 181. A 92. B C. 31 3 2 10.某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 A.150.2克 B.149.8克 C.149.4克 D.147.8克 11. 已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤ A.0.16 B.0.32 C.0.68 D ,0.84 12. 已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是 A.[0,13] B.[-13,13 ] C.[-3,3] D.[0,1] 13. 种子处理 种子未处理 总计 得病 32 101 133 不得病 61 213 274 总计 93 314 407 色盲 不色盲 合计 男 15 20 35 女 12 8 20 合计 27 28 55

《计量经济学》第一、二章精选题答案解析.doc

计量一二章练习答案 一、单项选择题 1.C 2.B 3.D 4.A 5.C 6.B 7.A 8.C 9.D 10.A 11.D 12.B 13.B 14.A 15.A 16.D 17.A 18.C 19.B 20.B 21.D 22.D 23.D 24.B 25.C 26.D 27.D 28.D 29.A 30.D 三、名词解释 1.经济变量:经济变量是用来描述经济因素数量水平的指标。 2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。 3.被解释变量:是作为研究对象的变量。它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。 4.内生变量:是由模型系统内部因素所决定的变量,表现为具有一定概率分布的随机变量,是模型求解的结果。 5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。它影响模型中的内生变量,其数值在模型求解之前就已经确定。 6.滞后变量:是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。 7.前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。 8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,它一般属于外生变量。 9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,是以数学形式对客观经济现象所作的描述和概括。 10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。 11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。 12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。 13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。 14.总变差(总离差平方和):在回归模型中,被解释变量的观测值与其均值的离差平方和。15.回归变差(回归平方和):在回归模型中,因变量的估计值与其均值的离差平方和,也就是由解释变量解释的变差。 16.剩余变差(残差平方和):在回归模型中,因变量的观测值与估计值之差的平方和,是不能由解释变量所解释的部分变差。 四、简答题

计量经济学题库带答案

计量经济学总复习题库 一、单项选择题 1.计量经济学成为一门独立学科的标志是(B )。 A .1930年世界计量经济学会成立 B .1933年《计量经济学》会刊出版 C .1969年诺贝尔经济学奖设立 D .1926年计量经济学(Economics )一词构造出来 2.在计量经济模型中,由模型系统内部因素决定,表现为具有一定的概率分布的随机变量,其数值受模型中其他变量影响的变量是( B )。 A .内生变量 B .外生变量 C .滞后变量 D .前定变量 3.下面属于横截面数据的是( D )。 A .1991-2003年各年某地区20个乡镇企业的平均工业产值 B .1991-2003年各年某地区20个乡镇企业各镇的工业产值 C .某年某地区20个乡镇工业产值的合计数 D .某年某地区20个乡镇各镇的工业产值 4.经济计量分析工作的基本步骤是( A )。 A .设定理论模型→收集样本资料→估计模型参数→检验模型 B .设定模型→估计参数→检验模型→应用模型 C .个体设计→总体估计→估计模型→应用模型 D .确定模型导向→确定变量及方程式→估计模型→应用模型 5.将内生变量的前期值作解释变量,这样的变量称为( D )。 A .虚拟变量 B .控制变量 C .政策变量 D .滞后变量 6.同一统计指标按时间顺序记录的数据列称为( B )。 A .横截面数据 B .时间序列数据 C .修匀数据 D .原始数据 7.进行相关分析时的两个变量( A )。 A .都是随机变量 B .都不是随机变量 C .一个是随机变量,一个不是随机变量 D .随机的或非随机都可以 8.表示x 和y 之间真实线性关系的是( C )。 A .01???t t Y X ββ=+ B .01()t t E Y X ββ=+ C . 01t t t Y X u ββ=++ D .01t t Y X ββ=+ 9.参数β的估计量? β具备有效性是指( B )。 A .?var ()=0β B .? var ()β为最小 C .?()0ββ-= D .? ()ββ-为最小 10.对于01??i i i Y X e ββ=++,以σ?表示估计标准误差,Y ?表示回归值,则( B )。 A .i i ??0Y Y 0 σ∑=时,(-)= B . 2i i ??0Y Y σ∑=时,(-)=0 C . i i ??0Y Y σ∑=时,(-)为最小 D . 2i i ??0Y Y σ∑=时,(-)为最小

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2 +…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --===,其中 min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列

为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2 σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,

随机变量模型的确定

第十一章 随机变量模型的确定 11.1 随机变量模型的确定 三种情形:①. 随机变量分布的类型已知, 需要由观测数据确定该分布的参数 ②. 由观测数据确定随机变量概率分布类型, 并在此基础上确定其参数 ③. 由已有的观测数据难以确定该随机变量的理论分布形式, 则定义一个实验分布 1 分布参数的确定 分布参数的类型 (1) 位置参数(记为γ) 确定分布函数取值范围的横坐标。当γ改变时, 相应的分布函数仅仅向左或 向右移动而不发生其它变化, 因而又称为位移参数。 例如, 均匀分布函数U(a,,b ), 其密度函数为: 图11.1 均匀分布U(a, b ) 1/ (

f x b a a x b ()=-≤≤ ?????1 0其它 其中参数a定义为位置参数, 当a改变时(保持b a -不变), f x()向 左或向右移动。 (2) 比例参数(记为β):决定分布函数在其取值范围内取值的比例尺。 β的改变只压缩或扩张分布函数, 而不会改变其基本形状。 例如, 指数分布函数EXPO(β), 其密度函数为: f x e x x () / = ≥? ? ? ?? - 1 β β 其它 (3) 形状参数(记为α):确定分布函数的形状, 从而改变分布函数的性质, 例如, 韦伯分布Weibull(αβ,), 其密度函数为: f x x e x x () (/) = > ? ? ? ?? -- αβααβα 110 0其它 图11.2 指数分布EXPO(β)

当α改变时, 其形状发生很大的变化。 随机变量X Y ,, 如果存在一个实数γ, 使X 与Y 具有相同的分布, 则称 X 与Y 仅仅是位置上不同变量; 如果对于某个正实数β, 使得 βX 与Y 具有相同的分布, 则称X 与Y 仅仅是比例尺不同的随机变量; 如果γβ+X 与Y 具有相同的分布, 则称X 与Y 仅在位置与比例上不 同。 2. 分布参数的估计 最大似然估计: 设参数θ, 观测数据为x x x n 12,,, 在离散分布情形, 可令P x θ ()为该分布的概率质量函数, 定义似然函数L ()θ为: L P x P x P x n ()()()...()θθθθ=12 则L ()θ是联合质量函数, θ的最大似然估计值 θ是使L ()θ取最大值的θ, 即对于所有可能的θ值, 图11.3 韦伯分布Wilbull(αβ,)

随机变量及其分布习题解答

第2章随机变量及其分布习题解答 一.选择题 1.若定义分布函数(){}F x P X x =≤,则函数()F x 是某一随机变量X 的分布函数的充要条件是( D ). A .0()1F x ≤≤. B .0()1F x ≤≤,且()0,()1F F -∞=+∞=. C .()F x 单调不减,且()0,()1F F -∞=+∞=. D .()F x 单调不减,函数()F x 右连续,且()0,()1F F -∞=+∞=. 2.函数()0 212021 0 x F x x x <-??? =-≤

5.设X 的分布律为 而(){}F x P X x =≤,则F =( A ). A .0.6. B .0.35. C .0.25. D .0. 6.设连续型变量X 的概率密度为()p x ,分布函数为()F x ,则对于任意x 值有( A ). A .(0)0P X ==. B .()()F x p x '=. C .()()P X x p x ==. D .()()P X x F x ==. 7.任一个连续型的随机变量X 的概率密度为()p x ,则()p x 必满足( C ). A .0( )1p x ≤≤. B .单调不减. C . ()1p x dx +∞ -∞ =?. D .lim ()1x p x →+∞ =. 8 .为使 x 1()0 1p x x ?=??≤? 是随机变量X 的概率密度,则常数c ( B ).

相关文档
相关文档 最新文档