文档库 最新最全的文档下载
当前位置:文档库 › 第二章 数列(B卷提升篇)(解析版)

第二章 数列(B卷提升篇)(解析版)

第二章 数列(B卷提升篇)(解析版)
第二章 数列(B卷提升篇)(解析版)

必修五第二章数列(B卷提升篇)

参考答案与试题解析

一.选择题(共10小题,每小题5分,满分50分)

1.(2020?合肥一模)已知等差数列{a n}的前n项和为S n,a1=﹣3,2a4+3a7=9,则S7的值等于()A.21 B.1 C.﹣42 D.0

【解析】解:等差数列{a n}的前n项和为S n,a1=﹣3,2a4+3a7=9,

∴2(﹣3+3d)+3(﹣3+6d)=9,

解得d=1,

∴S7=7×(﹣3)0.

故选:D.

【点睛】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.

2.(2019秋?宜昌期末)已知等比数列{a n}的各项均为正数,若log2a1+log2a2+…+log2a8=8,则a4a5=()A.1 B.2 C.4 D.8

【解析】解:由题意可得log2a1+log2a2+…+log2a8=log2(a1?a2…a8)=8,

则a1a2 (828)

因为等比数列{a n}的各项均为正数

则a4a5=4.

故选:C.

【点睛】本题主要考查了等比数列的性质及对数的运算性质,属于基础试题.

3.(2019秋?广州期末)已知正项等比数列{a n}的前n项和为S n,S3=7a3,a2与a4的等差中项为5,则S5=()

A.29 B.31 C.33 D.35

【解析】解:正项等比数列{a n}的公比设为q,q>0,前n项和为S n,

S3=7a3,即为a1+a1q+a1q2=7a1q2,即6q2﹣q﹣1=0,

解得q(舍去),

a2与a4的等差中项为5,可得a2+a4=10,即a1q+a1q3a1=10,

可得a1=16,

则S531,

故选:B.

【点睛】本题考查等比数列的通项公式和求和公式的运用,考查等差数列的中项性质,考查方程思想和运算能力,属于基础题.

4.(2020?奉贤区一模)一个不是常数列的等比数列中,值为3的项数最多有()A.1个B.2个C.4个D.无穷多个

【解析】解:当一个等比数列是单调数列时,值为3的项最多有一个,或者没有;

当一个等比数列是摆动数列时,值为3的项可能有无数个,举例如下:

﹣3,3,﹣3,3,…这个等比数列是个摆动数列,公比是﹣1,值为3的项有无穷多个;

1,3,9,…这个数列是等比数列,值为3的项仅有一个;

1,4,16,…这个数列是等比数列,值为3的项有0个.

综上知,一个不是常数列的等比数列中,值为3的项的项数最多有无穷多个.

故选:D.

【点睛】本题考查等比数列的性质,数列的分类,数列的增减性,属于数列中的基础知识考查题,解答的关键是熟练掌握双基.

5.(2020?宁德一模)已知公比为﹣1的等比数列{a n}的前n项和为S n,等差数列{b n}的前n项和为T n,若有a3+b4+b5+a6=10,则S8+T8=()

A.80 B.40 C.20 D.10

【解析】解:由题意可得,a3+a6=0,s8=0,

∴b4+b5=10,

T84(b4+b5)=40,

故选:B.

【点睛】本题主要考查了等差数列与等比数列的性质及求和公式的简单应用,属于基础试题.6.(2019秋?湖北期末)数列{a n}满足2a n=a n﹣1+a n+1,S n是数列{a n}的前n项和,a2,a2019是函数f(x)=x2﹣6x+5的两个零点,则S2020的值为()

A.6 B.12 C.2020 D.6060

【解析】解:因为2a n=a n﹣1+a n+1,

所以数列{a n}是等差数列,

因为a2,a2019是函数f(x)=x2﹣6x+5的两个零点,

则a2+a2019=a1+a2020=6,

则S2*******.

故选:D.

【点睛】本题考查了等差数列的性质,考查了等差数列的前n项和,是基础题.

7.(2019秋?泉州期末)明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕,大吕,太簇.据此,可得正项等比数列{a n}中,a k=()

A.B.

C.D.

【解析】解:根据题意,黄钟、大吕、太簇、夹钟四个音律值成等比数列,设黄钟、大吕、太簇、夹钟四个音律值依次为a1、a2、a3、a4,

则有a2,a2,a3,

可得正项等比数列{a n}中,a k,

故选:B.

【点睛】本题考查归纳推理的应用,涉及等比数列的通项公式的变形,属于基础题.

8.(2020?松江区一模)已知集合M={1,2,3,…,10},集合A?M,定义M(A)为A中元素的最小值,当A取遍M的所有非空子集时,对应的M(A)的和记为S10,则S10=()

A.45 B.1012 C.2036 D.9217

【解析】解:设M={1,2,3,…,10},对M的任意非空子集A共有210﹣1个,

其中最小值为1的有29个,最小值为2的有28个,…,最小值为10的只有20=1个,

故S10=29×1+28×2+…+21×9+20×10,

∴2S10=210×1+29×2+…+22×9+21×10,

两式相减得S10=210+29+…+2﹣1010=211﹣2﹣10=2036.

故选:C.

【点睛】正确得出“M的任意非空子集A共有210﹣1个,其中最小值为1的有29个,最小值为2的有28个,…,最小值为10的只有20=1个”是解题的关键.

9.(2019秋?三月考)设首项为1的数列{a n}前n项和为S n,且a n,若

S m>2020,则正整数m的最小值为()

A.15 B.16 C.17 D.18

【解析】解:由a n,可得a2k=a2k﹣1+1,a2k+1=2a2k+1,

则a2k=a2k﹣1+1,a2k+1=2(a2k﹣1+1)+1=2a2k﹣1+3,可得a2k+1+3=2(a2k﹣1+3),

所以a2k﹣1=4?2k﹣1﹣3,a2k=4?2k﹣1﹣2,

S奇数=a1+a3+…+a2k﹣13k=2k+2﹣4﹣3k,

S偶数=a2+a4+…+a2k=2k+2﹣4﹣2k,所以S m=S奇数+S偶数=2k+3﹣8﹣5k,

当k=8时,S16=2000<2020,又a17=1021,

所以S17=3021>2020,故整数m的最小值为17.

故选:C.

【点睛】本题考查数列的递推式的运用,等比数列的通项公式和求和公式的运用,以及分类讨论思想和运算能力,属于中档题.

10.(2019秋?全国月考)已知各项都为正数的等比数列{a n}的前n项和为S n,且满足a1=1,S3=7,若f (x)=S n x+a2x2+a3x3+…+a n x n(n≥2),f'(x)为函数f(x)的导函数,则f'(1)﹣f'(0)=()A.(n﹣1)?2n B.2n(n﹣1)C.n?2n+1D.2n(n+1)

【解析】解:设等比数列{a n}的公比为q(q>0),

∵a1=1,S3=7,

∴q≠1,且;

∴q=2或q=﹣3(舍).

∴.

∵,

∴f'(x)=S n+2a2x.

∴f'(0)=S n,f'(1)=S n+2a2+3a3+…+na n,

∴.

令T=2×2+3×22+…+n×2n﹣1,①

则2T=2×22+3×23+…+(n﹣1)?2n﹣1+n?2n,②

①﹣②得:

∴4+2n﹣4﹣n?2n=(1﹣n)?2n,∴T=(n﹣1)?2n.即f'(1)﹣f'(0)=(n﹣1)?2n.

故选:A.

【点睛】本题考查了数列求和,以及导数的运用,综合性较强,属于难题.

二.填空题(共4小题,每小题5分,满分20分)

11.(2020?江苏一模)若无穷数列{cos(ωn)}(ω∈R)是等差数列,则其前10项的和为10.【解析】解:∵无穷数列{cos(ωn)}(ω∈R)是等差数列,

∴ω=0,∴cos(ωn)=1,

∴无穷数列{cos(ωn)}(ω∈R)的前10项的和为:S10=10×1=10.

故答案为:10.

【点睛】本题考查等差数列的前10项和的求法,考查余弦函数、等差数列的性质等基础知识,考查运算求解能力,是中档题.

12.(2020?宁德一模)若正项数列{a n}满足a n+1﹣a n<1,则称数列{a n}为D型数列,以下4个正项数列{a n}满足的递推关系分别为:

①a n+12﹣a n2=1②1③a n+1④a n+12﹣2a n=1

则D型数列{a n}的序号为①②③④.

【解析】解:对于①,∵a n+12﹣a n2=1,且{a n}各项均为正数,

∴,

∴a n+1<1+a n,即a n+1﹣a n<1,故为D型数列;

对于②,∵1,

∴,

∴,

∴,故为D型数列;

对于③,∵a n+1,

∴,故为D型数列;

对于④,∵a n+12﹣2a n=1,

∴,

∴a n+1<1+a n,即a n+1﹣a n<1,故为D型数列;

故答案为:①②③④.

【点睛】本题主要考查了新定义的问题,需要根据递推公式证明a n+1﹣a n<1,属于中档题.13.(2020?开封一模)若数列{a n}满足,则称数列{a n}为“差半递增”数列.若数列{a n}为“差半递增”数列,且其通项a n与前n项和S n满足,则实数t的取值范围是.

【解析】解:因为S n=2a n+2t﹣1,

则S n﹣1=2a n﹣1+2t﹣1,

把这两个等式相减,得a n=2a n﹣2a n﹣1,

所以,

因为S1=2a1+2t﹣1,所以a1=1﹣2t,

则数列{a n}是公比为2的等比数列,

所以a n=a1×2n﹣1=(1﹣2t)×2n﹣1,

(1﹣2t)×2n﹣2,

所以a n a n﹣1=3(1﹣2t)×2n﹣3,

a n+13(1﹣2t)×2n﹣2,

(a n+1)﹣(a n a n﹣1)=3(1﹣2t)×2n﹣2﹣3(1﹣2t)×2n﹣3>0,

解得t,

故答案为:(﹣∞,).

【点睛】本题是考查新定义的“差半递增”数列,属于中档题.

14.(2019秋?雨花台区校级月考)萨克?牛顿(1643年1月4日﹣﹣﹣﹣1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)零

点时给出一个数列{x n}满足x n+1=x n,我们把该数列称为牛顿数列.如果函数f(x)=ax2+bx+c (a>0)有两个零点1,2,数列{x n}为牛顿数列,设a n=ln,已知a1=2,x n>2,则{a n}的通项公式a n=2n.

【解析】解:由题意知:∴c=2a,b=﹣3a,∴f(x)=ax2﹣3ax+2a,f'(x)=2ax﹣3a,

则x n+1=x n x n,∴,则ln是以2为公比的等比数列,

∵a n=ln,a1=2,∴数列{a n}是以2为首项,2为公比的等比数列,

则故答案为:2n

【点睛】考查数列与函数的综合,属于中档题.

三.解答题(共3小题,每小题10分,满分30分)

15.(2019秋?扬州期末)已知数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1(n∈N*),等差数列{b n}满足b3=9,b1+27=2b5.

(1)求数列{a n},{b n}的通项公式;

(2)设数列{c n}的前n项和为T n,且c n=a n?b n,求T n.

【解析】解:(1)a1=1,a n+1=2S n+1,则a2=2a1+1=3,

可得n≥2时,a n=2S n﹣1+1,相减可得a n+1﹣a n=2S n+1﹣2S n﹣1﹣1=2a n,

即a n+1=3a n,可得a n=a2?3n﹣2=3n﹣1,对n=1也成立,

则a n=3n﹣1,n∈N*;

等差数列{b n}的公差设为d,满足b3=9,b1+27=2b5,

可得b1+2d=9,b1+27=2(b1+4d),解得b1=d=3,

则b n=3+3(n﹣1)=3n;

(2)c n=a n?b n=n?3n,

T n=1?3+2?9+3?27+…+n?3n,

3T n=1?9+2?27+3?81+…+n?3n+1,

两式相减可得﹣2T n=3+9+27+…+3n﹣n?3n+1

n?3n+1,

化简可得T n?3n+1.

【点睛】本题考查数列的递推式的运用、等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查化简运算能力,属于中档题.

16.(2019秋?泉州期末)记数列{a n}的前n项和为S n.若2S n=3a n﹣3.

(1)证明:{a n}为等比数列;

(2)设b n=log9a n,求数列的前n项和T n.

【解析】解:(1)证明:2S n=3a n﹣3,可得2a1=2S1=3a1﹣3,即a1=3,

n≥2时,2S n﹣1=3a n﹣1﹣3,又2S n=3a n﹣3,相减可得2a n=3a n﹣3a n﹣1,即a n=3a n﹣1,

即有{a n}为首项和公比均为3的等比数列;

(2)由(1)可得a n=3?3n﹣1=3n,

b n=log9a n=log93n n,

4(),

则前n项和T n=4(1)=4(1).

【点睛】本题考查数列的递推式和等比数列的定义和通项公式、数列的裂项相消求和,考查化简运算能力,属于中档题.

17.(2019秋?台州期末)设数列{a n}的前n项和为S n,S n=n2,递增的等比数列{b n}满足:b1=1,且b1,b2,b3﹣4成等差数列.

(Ⅰ)求数列{a n},{b n}的通项公式;

(Ⅱ)求证:3.

【解析】解:(Ⅰ)数列{a n}的前n项和为,可得a1=S1=1,

n≥2时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,对n=1也成立,

则a n=2n﹣1,n∈N*;

递增的等比数列{b n}的公比设为q,q>1,由b1=1,且b1,b2,b3﹣4成等差数列,

可得2b2=b1+b3﹣4,即2q=q2﹣3,

解得q=3(﹣1舍去),

则b n=3n﹣1,n∈N*;

(Ⅱ)证法一:,

当n≥2时,3n﹣1=(1+2)n﹣1>﹣1+1+2C4C2n+1,由a>b>0,m>0,,可得(n≥2),

,设T n,

T n,相减可得T n2()2?

可得T n,

所以3.

证法二、令c n,下一步运用分析法证明“”,

要证,即证(4n+6)(3n﹣1)<(2n+1)(3n+1﹣1),

即证﹣2n﹣5<(2n﹣3)(3n﹣1),对n∈N*时,显然成立,则,

则c1+c2+…+c n()n﹣13(1)<3.

【点睛】本题考查数列的递推式的运用,考查等差数列和等比数列的通项公式和求和公式的运用,以及放缩法证明不等式,考查化简运算能力和推理能力,属于难题.

数列综合测试题与答案

高一数学数列综合测试题 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D . 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则|m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大 自然数n 是( ). A .4005 B .4006 C .4007 D .4008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a -的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )= 2 21+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+ f (5)+f (6)的值为 . 12.已知等比数列{a n }中, (1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= . (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= . (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

数列综合测试附答案

复习综合测试 一.选择题(60分) 1.在等差数列{}n a 中,有()()35710133224a a a a a ++++=,则此数列的前13项之和为( ) A .52 B .26 C .13 D .156 2.等差数列}{n a 的前n 项和为n S ,若==--=1815183,18,6S S S S 则 ( ) A .36 B .18 C .72 D .9 3.已知等差数列}a {n 的公差0d <, 若24a a 64=?, 10a a 82=+, 则该数列的前n 项和 n S 的最大值为( ). A. 50 B. 45 C. 40 D. 35 4.已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-11a )+(a 2-21a )+…+(a n -1n a )≥0成立的最大自然数n 是 A .4 B.5 C.6 D.7 5.已知等差数列{}n a 的前n 项和为n S ,且满足2:1:,4811311872==+++a a a a a a ,则 n n n S na 2lim ∞→等于 A.41 B.2 1 C.1 D. 2 6.等差数列}{ n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于 A .160 B .180 C .200 D .220 7.在等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A .-1221 B.-21.5 C.-20.5 D.-20 8.在正项等比数列{a n }中,a 1、a 99是方程x 2-10x + 16 = 0的两个根,则a 40·a 50·a 60的值为( ) A .32 B .64 C .±64 D .256 9.等比数列}{n a 的前n 项和为S n ,已知S 4=1,S 8=3,则20191817a a a a +++的值为 A. 32 B. 16 C. 8 D. 4 10.等差数列{}n a 的前n 项和记为S n ,若a 2+a 4+a 15=p (常数),则数列{}n S 中也是常数的项是( ) (A )S 7 (B )S 8 (C )S 13 (D )S 15 11.已知数列{log 3(a n +1)}(n ∈N *)为等差数列,且a 1=2,a 2=8,则

高中数学必修五综合测试题-含答案教学内容

绝密★启用前高中数学必修五综合考试卷 第I卷(选择题) 一、单选题 1.数列的一个通项公式是() A.(B.( C.()(D.( 2.不等式的解集是() A.B.C.D. 3.若变量满足,则的最小值是()A.B.C.D.4 4.在实数等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( ) A.8B.-8C.±8D.以上都不对 5.己知数列为正项等比数列,且,则()A.1B.2C.3D.4 6.数列 1111 1,2,3,4, 24816 前n项的和为() A. 2 1 22 n n n + +B. 2 1 1 22 n n n + -++C. 2 1 22 n n n + -+D. 2 1 1 22 n n n + - -+

的面积为() A.B.C.D. 8.在△ABC中,已知,则B等于( ) A.30°B.60°C.30°或150°D.60°或120° 9.下列命题中正确的是( ) A.a>b?ac2>bc2B.a>b?a2>b2 C.a>b?a3>b3D.a2>b2?a>b 10.满足条件,的的个数是( ) A.1个B.2个C.无数个D.不存在 11.已知函数满足:则应满足()A.B.C.D. 12.已知数列{a n}是公差为2的等差数列,且成等比数列,则为()A.-2B.-3C.2D.3 13.等差数列的前10项和,则等于() A.3 B.6 C.9 D.10 14.等差数列的前项和分别为,若,则的值为()A.B.C.D. 第II卷(非选择题) 二、填空题 15.已知为等差数列,且-2=-1,=0,则公差=

16.在中,,,面积为,则边长=_________. 17.已知中,,,,则面积为_________. 18.若数列的前n项和,则的通项公式____________ 19.直线下方的平面区域用不等式表示为________________.20.函数的最小值是_____________. 21.已知,,且,则的最小值是______. 三、解答题 22.解一元二次不等式 (1)(2) 23.的角、、的对边分别是、、。 (1)求边上的中线的长; (2)求△的面积。 24.在中,角所对的边分别为,且.

数列单元测试卷 含答案

数列单元测试卷 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置. 第Ⅰ卷(选择题) 一.选择题:本大题共12小题,每小题5分,共60分。每小题给出的四个选项中,只有一 项是符合题目要求的. 1.数列3,5,9,17,33,…的通项公式a n等于( ) A.2n B.2n+1 C.2n-1 D.2n+1 2.下列四个数列中,既是无穷数列又是递增数列的是( ) A.1,1 2 , 1 3 , 1 4 ,… B.-1,2,-3,4,… C.-1,-1 2 ,- 1 4 ,- 1 8 ,… D.1,2,3,…,n 3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7 4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( ) A.49 B.50 C.51 D.52 5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( ) A.90 B.100 C.145 D.190 6.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( ) A.1 B.2 C.4 D.8

7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2 +(a 4+a 6)x +10=0( ) A .无实根 B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根 8.已知数列{a n }中,a 3=2,a 7=1,又数列?? ?? ?? 11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.2 3 D .-1 9.等比数列{a n }的通项为a n =2·3 n -1 ,现把每相邻两项之间都插入两个数,构成一个新的 数列{b n },那么162是新数列{b n }的( ) A .第5项 B.第12项 C .第13项 D .第6项 10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比 数列,则 A .1 033 B.1 034 C .2 057 D .2 058 11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2 12.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示: 则第七个三角形数是( ) A .27 B.28 C .29 D .30

数列测试题及标准答案

必修5《数列》单元测试卷 一、选择题(每小题3分,共33分) 1、数列?--,9 24,7 15,5 8,1的一个通项公式是 A .1 2)1(3++-=n n n a n n B .1 2) 3()1(++-=n n n a n n C .1 21 )1()1(2--+-=n n a n n D .1 2) 2()1(++-=n n n a n n 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( ) A 4- B 4± C 2- D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10- 5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为 ( ) A .-2 B .1 C .-2或1 D .2或-1 6、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ). A . 2 45 B .12 C . 4 45 D .6 7、已知等比数列{a n } 的前n 项和为S n , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ). A .7 B .16 C .27 D .64 8、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是 A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为 A .6 B .8 C .10 D .12 10、 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是

第一讲数列地极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

第二章数列单元综合测试

第二章数列单元综合测试 一、选择题(每小题5分,共60分) 1.数列{2n +1}的第40项a 40等 于( ) A .9 B .10 C .40 D .41 2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1 D .-3 3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等 于( ) A .10 B .210 C .210-2 D .211-2 4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等 于( ) A .55 B .40 C .35 D .70 5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .16 6.等差数列{a n }的前n 项和为S n, 若a 3+a 17= 10,则S 19的 值是( ) A .55 B .95 C .100 D .不确定 7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13 =( ) A .120 B .105 C .90 D .75 8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( ) A .22 B .21 C .19 D .18 9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则a b 等于( ) A .-2 B .2 C .-4 D .4 10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5= 22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等 于( ) A .n (2n -1) B .(n +1)2 C .n 2 D .(n -1)2 11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( ) A .7 B .6 C .5 D .4 12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) A .4013 B .4014 C .4015 D .4016

数列综合测试题

高二数学数列综合测试题 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知a ,b ,c 成等比数列,a ,m ,b 和b ,n ,c 分别成两个等差数列,则a m +c n 等于 ( ) A .4 B .3 C .2 D .1 2.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线斜率为 ( ) A .4 B.14 C .-4 D .-1 4 3.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9 S 6 = ( ) A .2 B.73 C.8 3 D .3 4.已知数列{a n }的前n 项和为S n ,且1 5 S n =a n -1,则a 2等于 ( ) A .-54 B.54 C.516 D.2516 5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=( ) A .7 B .8 C .15 D .16 6.若数列{a n }的通项公式为a n =n (n -1)·…·2·1 10 n ,则{a n }为 ( ) A .递增数列 B .递减数列 C .从某项后为递减 D .从某项后为递增 7.等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列{S n n }的前11项和为( ) A .-45 B .-50 C .-55 D .-66 8.设数列{a n }的前n 项和为S n , 已知15a =,且12(1)(1)n n nS n n n S +=+++( n ∈N*), 则过点P(n,n a ) 和Q(n+2,2+n a )( n ∈N*)的直线的一个方向向量的坐标可以是 ( ) A .(2, 2 1 ) B .(-1, -1) C .(2 1 - , -1) D .(2,2 1 -- ) 9.在等比数列{a n }中,若a 3a 5a 7a 9a 11=32,则a 2 9 a 11的值为 ( ) A .4 B .2 C .-2 D .-4 10.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n 为整数的正整数n 的个数是 ( ) A .2 B .3 C .4 D .5 11.已知{a n }是递增数列,对任意的n ∈N *,都有a n =n 2 +λn 恒成立,则λ的取值范围是 ( ) A .(-7 2 ,+∞) B .(0,+∞) C .(-2,+∞) D .(-3,+∞) 12.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=1 2 ,则该数列的前2 008项的和等于 ( ) A .1 506 B .3 012 C .1 004 D .2 008 二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上) 13.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=????? a n 2,当a n 为偶数时 3a n +1,当a n 为奇数时,若a 6=1,则m 所有可能的取值为________. 14.已知数列{a n }满足a 1=12,a n =a n -1+1 n 2-1 (n ≥2),则{a n }的通项公式为________. 15.已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n (n ∈N *).若a 1>1,a 4>3,S 3≤9,则通项公式a n =________. 16.下面给出一个“直角三角形数阵”: 14 12,14 34,38,316 … 满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则a 83=________. 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. ⑴求数列{a n }与{b n }的通项公式. ⑵设数列{c n }对任意正整数n ,均有133 2211+=+??+++n n n a b c b c b c b c ,求c 1+c 2+c 3+…+c 2010的值. 18.(本小题满分12分)已知数列{a n }中,其前n 项和为S n ,且n ,a n ,S n 成等差数列(n ∈N *). (1)求数列{a n }的通项公式; (2)求S n >57时n 的取值范围.

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

第二章数列单元综合测试题附答案

姓名______ 学号_______ 班级______ 第二章 数列测试题 (1) 命题 洞口三中 方锦昌 一、选择题 1、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( ) A.128 B .80 C.64 D.56 2、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ) A 、2 B 、3 C 、6 D 、7 3、设等比数列{}n a 的公比2q =,前n 项和为n S ,则 4 2 S a =( ) A .2??B.4 C. 215??D.2 17 4、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A.63 B .45 C.36 D .27 5、在数列{}n a 中,12a =, 11 ln(1)n n a a n +=++,则n a =( ) A .2ln n + B.2(1)ln n n +- C.2ln n n + D.1ln n n ++ 6、若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) (A)12 (B)13 (C)14 (D )15 7、已知{}n a 是等比数列,4 1 252= =a a ,,则12231n n a a a a a a ++++=( ) (A )16(n --4 1) (B)16(n --2 1) (C) 332(n --41) (D)3 32(n --21) 8、非常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为 ( ) A. 51 B .5 C.2 D .2 1 9、已知数列}{n a 满足)(1 33,0*11N n a a a a n n n ∈+-= =+,则20a =( ) A .0 B.3-?C.3? D. 2 3 10、在单位正方体ABC D-A1B 1C 1D 1中,黑、白两只蚂蚁均从点A 出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,白蚂蚁的爬行路线是AA 1?A 1D 1?D1C 1?…;黑蚂蚁的爬行路线是A B?BB 1?B1C1?…,它们都遵循以下的爬行规则:所爬行的第i +2段与第i 段所在的直线必为异面直线(其中i 为自然数),设黑、白蚂蚁都爬完2008段后各自停止在正方体的某个顶点处,则此时两者的距离为 ( ) A 1 B \r(,2) C \r(, 3) D 0

数列综合测试卷

编号14-数列综合测试卷 编写 牛松 审核 李志强 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.下列各组数成等比数列的是( ) ①1,-2,4,-8;②-2,2,-22,4;③x ,x 2,x 3,x 4;④a -1,a -2,a -3,a -4. A .①② B .①②③ C .①②④ D .①②③④ 2.数列1,-3,5,-7,…的一个通项公式为( ) A .a n =2n -1 B .a n =(-1)n +1(2n -1) C .a n =(-1)n (2n -1) D .a n =(-1)n (2n +1) 3.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( ) A .1 B .2 C .-1 D .-2 4.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( ) A .±4 B .4 C .-4 D .16 5.已知数列{a n }为等差数列,S n 是它的前n 项和.若1a =2,S 3=12,则S 4=( ) A .10 B .16 C .20 D .24 6.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 7.在等比数列中,已知a 1a 83a 15=243,则113 9a a 的值为( ) A .3 B .9 C .27 D .81 8.如果数列{a n }的前n 项和S n =32 a n -3,那么这个数列的通项公式是( ) A .a n =2(n 2+n +1) B .a n =3·2n C .a n =3n +1 D .a n =2·3n 9.数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前n 项和为( ) A .2n +1-n B .2n +1-n -2 C .2n -n D .2n 10.设S n 为等差数列{a n }的前n 项和,且a 1=-2 018,22016 201820162018=-S S ,则a 2=( ) A .-2 016 B .-2 018 C .2 018 D .2 016 11.(2017·安徽安庆二模,5)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( ) A .1 B .-1 C.12 D .2 12.(2017·黄冈质检)设等比数列{a n }的各项均为正数,公比为q ,前n 项和为S n .若对任意的n ∈N *,有S 2n <3S n ,则q 的取值范围是( ) A .(0,1] B .(0,2) C .[1,2) D .(0,2) 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.2+1与2-1的等比中项是________. 14.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 15.在等差数列{a n }中,a 3=-12,a 3,a 7,a 10成等比数列,则公差d 等于________. 16.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,且每过滤一次可使杂质含 量减少13 ,则要使产品达到市场要求,至少应过滤________次.(取lg 2=0.301 0,lg 3=0.477 1) 三、解答题(本大题共6小题,共70分.解答题应先出文字说明,证明过程或演算步骤) 17.(本小题满分10分)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ; (2)设b n =log 3a n ,求数列{b n }的前n 项和S n .

数列综合测试题含标准答案

A. 24 B. 25 数列综合测试题 第I 卷(选择题共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符号题目要求的。 ) S 3 O P 1. 已知等差数列{a n }的前n 项和为S,且满足---=1,则数列{a n }的公差是( ) B. 1 C. 2 D. 3 2. 设等比数列{a n }的前n 项和为S,若8a 2 + a s = 0,则下列式子中数值不能确定的是 ( ) 3.(理)已知数列{a n }满足 log 3 a n +1 = log 3 a n + 1(n € N )且 a ?+ ◎+ a 6= 9,则 + a 9)的值是( ) 1 A. — 5 B. — ~ 5 C. 5 A 7n + 45 a n 4. 已知两个等差数列{ a n }和{b n }的前n 项和分别为 A 和B,且B = n + 3,则使得为 正偶数时,n 的值可以是( ) A. 1 B. 2 C. 5 D. 3 或 11 5. 已知a >0, b >0, A 为a , b 的等差中项,正数 G 为a , b 的等比中项,贝U ab 与 AG 的 大小关系是( ) A. ab = AG B. ab > AG C. ab w AG D.不能确定 1 a 3 + a 4 6. 各项都是正数的等比数列 {a n }的公比q z 1,且a p , &, a 成等差数列,则 的 2 a 4 + a 5 值为( ) 1 log 3( a s +

/5 -1 2 7.数列{a n}的通项公式为a n= 2n—49,当该数列的前n项和S达到最小时,n等于() A. 24 B. 25

数列综合练习

数列综合练习 一、选择题:本大题共6小题,每小题6分。在每小题给出的四个选项中,只有一项是符合 题目要求的。 1若公比为2的等比数列{a n}的各项都是正数,且aa i=16,则a5等于(). A. 1 B.2 C.4 D.8 2?若数列{a n}的前n项和S=2n2-3n(n€N),则a4等于 A.11 B.15 C.17 D.20 3?已知{a n},{ b n}都是等差数列,若a1+b10=9, a3+b=15,则a s+b e等于 A.18 B.20 C.21 D.32 4.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产 1 线连续生产n年的产量为f (n)=1n( n+1)(2 n+1)吨,但如果年产量超过150吨,将会给环境 2 造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是 A. 5年 B. 6年C7年 D.8年 5?设S为等差数列{a n}的前n项和,(n+1)S

高考数学二轮复习 数列、极限、数学归纳法(1)

2008高考数学二轮复习数列、极限、数学归纳法(1) 教学目标: 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学重点: 理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 教学难点: 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学方法设计:“五步”教学法 教学用具:三角板多媒体 板书设计 一、知识框架 二、典型例题 三、总结 四、检测 教学过程 一、出示教学目标。

理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n 项. 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些知识来解决一些实际问题. 二、组织基础知识结构,构建知识网络。 三、典型例题引路。 【例1】 已知由正数组成的等比数列{}n a ,若前n 2项之和等于它前n 2项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:∵q =1时122na S n =,1na S =偶数项 又01>a 显然11112na na ≠,q ≠1 ∴2212121)1(1)1(q q q a S q q a S n n n --==--=偶数项 依题意2 21211)1(111)1(q q q a q q a n n --?=--;解之101 = q 又421422143),1(q a a a q q a a a =+=+,

数列单元测试题附答案解析

《数列》单元练习试题 一、选择题 1.已知数列}{n a 的通项公式432 --=n n a n (∈n N *),则4a 等于( ) (A )1 (B )2 (C )3 (D )0 2.一个等差数列的第5项等于10,前3项的和等于3,那么( ) (A )它的首项是2-,公差是3 (B )它的首项是2,公差是3- (C )它的首项是3-,公差是2 (D )它的首项是3,公差是2- 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则 =2 4 a S ( ) (A )2 (B )4 (C ) 2 15 (D )217 4.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( ) (A )54S S < (B )54S S = (C )56S S < (D )56S S = 5.已知数列}{n a 满足01=a ,1 331+-= +n n n a a a (∈n N *),则=20a ( ) (A )0 (B )3- (C )3 (D ) 2 3 6.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( ) (A )130 (B )170 (C )210 (D )260 7.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( ) (A )5481a a a a +>+ (B )5481a a a a +<+ (C )5481a a a a +=+ (D )81a a +和54a a +的大小关系不能由已知条件确定 8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) (A )13项 (B )12项 (C )11项 (D )10项 9.设}{n a 是由正数组成的等比数列,公比2=q ,且 30303212=????a a a a Λ,那么30963a a a a ????Λ等于 ( ) (A )210 (B )220 (C )216 (D )

最新3第一讲__数列的极限典型例题汇总

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 ?Skip Record If...?,有?Skip Record If...?. 注1 ?Skip Record If...?的双重性.一方面,正数?Skip Record If...?具有绝对的任意性,这样才能有 ?Skip Record If...?无限趋近于?Skip Record If...? 另一方面,正数?Skip Record If...?又具有相对的固定性,从而使不等式?Skip Record If...?.还表明数列?Skip Record If...?无限趋近于?Skip Record If...?的渐近过程的不同程度,进而能估算?Skip Record If...?趋近于?Skip Record If...?的近似程度. 注2若?Skip Record If...?存在,则对于每一个正数?Skip Record If...?,总存在一正整数?Skip Record If...?与之对应,但这种?Skip Record If...?不是唯一的,若?Skip Record If...?满足定义中的要求,则取?Skip Record If...?,作为定义中的新的一个?Skip Record If...?也必须满足极限定义中的要求,故若存在一个?Skip Record If...?则必存在无穷多个正整数可作为定义中的?Skip Record If...?. 注3?Skip Record If...??Skip Record If...?的几何意义是:对?Skip Record If...?的预先给定的任意?Skip Record If...?邻域?Skip Record If...?,在?Skip Record If...?中至多除去有限项,其余的无穷多项将全部进入?Skip Record If...?. 注4?Skip Record If...?,有?Skip Record If...?. 2.子列的定义

数列综合测试题(经典)含答案

数列综合测试题 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。) 1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 2 2=1,则数列{a n }的公差是( ) A.1 2 B .1 C .2 D .3 2.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n 3.(理)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 1 3(a 5+a 7+ a 9)的值是( ) A .-5 B .-15 C .5 D.15 4.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n 为 正偶数时,n 的值可以是( ) A .1 B .2 C .5 D .3或11 5.已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( ) A .ab =AG B .ab ≥AG C .ab ≤AG D .不能确定 6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,1 2a 3,a 1成等差数列,则a 3+a 4a 4+a 5 的 值为( ) A.1-5 2 B.5+1 2 C. 5-1 2 D.5+12或5-1 2

7.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( ) A .24 B .25 C .26 D .27 8.数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012 =a 2012,则b 2010·b 2014=( ) A .0 B .1 C .4 D .8 9.已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5 =( ) A .33 B .72 C .84 D .189 10.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006 D .1007 11.设{a n }是由正数组成的等差数列,{b n }是由正数组成的等比数列,且a 1=b 1,a 2003 =b 2003,则( ) A .a 1002>b 1002 B .a 1002=b 1002 C .a 1002≥b 1002 D .a 1002≤b 1002 12.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前100项中与数列{b n }中相同的项有( ) A .50项 B .34项 C .6项 D .5项 第Ⅱ卷(非选择题 共90分) 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知数列{a n }满足:a n +1=1-1 a n ,a 1=2,记数列{a n }的前n 项之积为P n ,则P 2011 =________. 14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人. 15.已知等比数列{a n }中,各项都是正数,且a 1,1 2a 3,2a 2成等差数列,则a 3+a 10a 1+a 8=________. 16.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.

相关文档
相关文档 最新文档