文档库 最新最全的文档下载
当前位置:文档库 › 材料力学孙训芳版解答第7章_应力状态和强度理论

材料力学孙训芳版解答第7章_应力状态和强度理论

材料力学孙训芳版解答第7章_应力状态和强度理论
材料力学孙训芳版解答第7章_应力状态和强度理论

材料力学强度理论

9 强度理论 1、 脆性断裂和塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 0 1εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值, 即: 0 max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即: u u0 d d = 强度准则的统一形式[]σ σ≤ * 其相当应力: r11 σ=σ r2123 () σ=σ-μσ+σ r313 σ=σ-σ 222 r4122331 1 ()()() 2 ?? σ=σ-σ+σ-σ+σ-σ ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9.1图9.1所示的两个单元体,已知正应力σ=165MPa,切应力τ=110MPa。试求两个单元体的第三、第四强度理论表达式。 图9.1 [解](1)图9.1(a)所示单元体的为空间应力状态。注意到外法线为y及-y的两个界面上没有切应力,因而y方向是一个主方向,σ是主应力。显然,主应力σ对与y轴平行的斜截面上的应力没有影响,因此在xoz坐标平面内可以按照平面应力状态问题对待。外法线为x、z轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a)所示单元体的三个主应力为: τ σ τ σ σ σ- = = = 3 2 1 、 、 , 第三强度理论的相当应力为 解题范例r4σ=

四大强度理论

第10章强度理论 10.1 强度理论的概念 构件的强度问题是材料力学所研究的最基本问题之一。通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。 各种材料因强度不足而引起的失效现象是不同的。如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。对以铸铁为代表的脆性材料,失效现象则是突然断裂。在单向受力情 况下,出现塑性变形时的屈服点 σ和发生断裂时的强度极限bσ可由实 s 验测定。 σ和bσ统称为失效应力,以安全系数除失效应力得到许用应s 力[]σ,于是建立强度条件 可见,在单向应力状态下,强度条件都是以实验为基础的。 实际构件危险点的应力状态往往不是单向的。实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。常用的方法是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。这种薄壁筒

试验除作用内压和轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。此外,还有一些实现复杂应力状态的其他实验方法。尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。况且复杂应力状态中应力组合的方式和比值又有各种可能。如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。由于技术上的困难和工作的繁重,往往是难以实现的。解决这类问题,经常是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。 图10-1 经过分析和归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还是屈服和断裂两种类型。同时,衡量受力和变形程度的量又有应力、应变和变形能等。人们在长期的生产活动中,综合分析材料的失效现象和资料,对强度失效提出各种假说。这类假说认为,材料之所以按某种方式(断裂或屈服)失效,是应力、应变或变形能等因素中某一因素引起的。按照这类假说,无论是简单应力状态还是复杂应力状态,引起失效的因素是相同的。也就是说,造成失效的原因与应力状态无关。这类假说称为强度理论。利用强度理论,便可由简单应力状态的实验结果,建立复杂应力状态下的强度条件。至于某种强

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

应力状态——材料力学

土体应力计算 补充一、力学基础知识 材料力学研究物体受力后的内在表现,即变形规律和破坏特征。 一、材料力学的研究对象 材料力学以“梁、杆”为主要研究对象。

二、材料力学的任务 材料力学的任务:在满足强度、刚度、稳定性的要求下,以最经济的代价,为构件确定合理的形状和尺寸,选择适宜的材料,而提供必要的理论基础和计算方法。 强度:杆件在外载作用下,抵抗断裂或过量塑性变形的能力。刚度:杆件在外载作用下,抵抗弹性变形的能力。 稳定性:杆件在压力外载作用下,保持其原有平衡状态的能力。 如:自行车结构也有强度、刚度和稳定问题; 大型桥梁的强度、刚度、稳定问题 强度、刚度、稳定性

三、基本假设 1、连续性假设:物质密实地充满物体所在空间,毫无空隙。(可用微积分数学工具) 2、均匀性假设:物体内,各处的力学性质完全相同。 3、各向同性假设:组成物体的材料沿各方向的力学性质完全相同。(这样的材料称为各项同性材料;沿各方向的力学性质不同的材料称为各项异性材料。) 4、小变形假设:材料力学所研究的构件在载荷作用下的变形与原始尺寸相比甚小,故对构件进行受力分析时可忽略其变形。 假设

四、杆件变形的基本形式

五、内力?截面法?轴力 1、内力 指由外力作用所引起的、物体内相邻部分之间分布内力系的合成(附加内力)。 2、截面法 内力的计算是分析构件强度、刚度、稳定性等问题的基础。求内力的一般方法是截面法。

(1)截面法的基本步骤: ①截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面上的未知内力(此时截开面上的内力对所留部分而言是外力) 截面法

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

第7章 应力状态和强度理论 (答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()113 1 1E E υ εσυστ+= -= 又()21E G υ= +V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60 方向上的正应变4 60101.4-?= ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN

材料力学四个强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

(完整版)四大强度理论基本内容介绍

四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为:σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)

由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 四大强度理论适用的范围 各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。

材料力学应力状态

材料力学应力状态

关键词:单元体的取法,莫尔应力圆的前提 有那么一个单元体后(单元体其中的一对截面上主应力=0(平面)或平衡(空间),也就是单元体的一对截面为主平面),才有这么 一个隔离体,才有那么一个莫尔应力圆和表达式 也就是:取的单元体不同,则单元体的应力特点不一样,从而用截面法求任意截面上的应力取隔离体列平衡方程时,隔离体的受力特点不同,从而球出来的表达式也不同,只有这种表达式才适合 莫尔应力圆。 因此拿到一个单元体后,不要急着应用莫尔应力圆,要先看它的特点适合不适合莫尔应力圆,也就是σα和τα的表达式球出来以后还是 不是下面的这个公式。

特别还要记住,这个公式里的夹角α是斜截面的外法线与σx 作用平

σy的形式。比如,面的外法线之间的夹角,这样公式中才是σx— 当α表示的是斜截面的外法线与σ1所在平面的夹角,那么公式就是σ1—σ2的形式;不论是谁减谁,应力圆的性状都不变; 1.首先,先有主平面和主应力的概念,剪应力为0的平面为主平面,主平面上的正应力为主应力; 2.然后,由于构件受力情况的不同,各点的应力状态也不一样,可以按三个主应力中有几个不等于零而将一点处的应力状态划分为三类: ?单向应力状态:只有一个主应力不等于零,如受轴向拉伸和压缩的直杆及纯弯曲的直杆内各点的应力状态。 ?二向应力状态(平面应力状态):有两个主应力不等于零,如受扭的圆轴,低压容器器壁各点的应力状态。 ?三向应力状态:三个主应力都不等于零,如高压容器器壁内各点的应力状态。 3.然后,根据受力宏观判断是单轴应力状态还是平面应力状态还是三轴应力状态,取单元体关键,单元体取的不同,单元体上的应力也不同,做莫尔圆的繁简程度也不同,对于平面应力状态,当然要用主应力=0的那个截面参与单元体截取;

材料力学带答疑

第七章应力和应变分析强度理论 1.单元体最大剪应力作用面上必无正应力 答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。) 2. 单向应力状态有一个主平面,二向应力状态有两个主平面 答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零) 3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态 答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零 答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零) 5.应力超过材料的比例极限后,广义虎克定律不再成立 答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。) 6. 材料的破坏形式由材料的种类而定 答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同

答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。) 二、选择 1.滚珠轴承中,滚珠与外圆接触点为应力状态。 A:二向; B:单向C:三向D:纯剪切 答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。) 2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。 A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间 答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。) 3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面 中。 A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面; 答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力 状态为二向不等值拉伸,其σ x =pD/4t、σ y =pD/2t。单元体上无剪应力的作用, 固纵、横截面均为主平面。) 4.广义虎克定律ε i =(σ i -u(σ j +σ k )/E 适用于。

四大强度理论对比

四大强度理论 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力 状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为: 2、sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ] 四个强度理论的比较

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容 一、四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力

状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 二、四大强度理论适用的范围 1、各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。 第三理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 没考虑σ2对材料的破坏影响,计算结果偏于安全。 第四理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 与第三强度理论相比更符合实际,但公式过于复杂。 2、总结来讲: 第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂形式失效的脆性材料。 第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服形式失效的塑性材料。 以上是通常的说法,在实际中,有复杂受力条件下,哪怕同种材料的失效形

材料力学基本概念

材料力学 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应 变沿横截面均匀分布N F A σ= 2、 材料力学应力分析的基本方法:①几何方程:const ε=即变形关系②物理方程:E σε=即应力应变 关系③静力学方程:N A F σ?=即内力构成关系 3、 N F A σ= 适用范围:①等截面直杆受轴向载荷(一般也适用于锥角小于5度的变截面杆)②若轴向载荷沿横截面非均匀分布,则所取截面应远离载荷作用区域 4、 圣维南原理(局部效应原理):力作用于杆端的分布方式,只影响杆端局部范围的应力分布,影响区的 轴向范围约离杆端1—2个杆的横向尺寸 5、 拉压杆斜截面上的应力:0c o s /c o s N N F F p A A αασαα= ==;2 0cos cos p αασασα==, sin sin 22 p αασταα==;0o α=, max 0σσ=;45o α=,0 max 2 στ= 第二节 材料拉伸时的力学性能 1、 材料拉伸时经过的四个阶段:线弹性阶段,屈服阶段,硬化阶段,缩颈阶段 2、 线(弹)性阶段:E σε=;变形很小,弹性;p σ为比例极限,e σ为弹 性极限 3、 屈服阶段:应力几乎不变,变形急剧增大,含弹性、塑性形变;现象是出 α p α α τα

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

材料力学强度理论

9强度理论 1、脆性断裂与塑性屈服 脆性断裂:材料无明显得塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力得截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著得塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂得主要因素就是最大拉应力达到极限值,即: (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都就是由于最大拉应变(线变形)达到极限值导致得,即: (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于最大切应力达到了某一极限值, 即: (4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于单元体得最大形状改变比能达到一个极限值,即: 强度准则得统一形式 其相当应力:

3、摩尔强度理论得概念与应用; 4、双剪强度理论概念与应用. 9、1图9、1所示得两个单元体,已知正应力σ =165MPa ,切应力=110MPa.试求两个单元体得第三、第四强度理论表达式。 图9、1 [解] (1)图9、1(a )所示单元体得为空间应力状态。注意到外法线为y及-y 得两个界面上没有切应力,因而y方向就是一个主方向,s就是主应力。显然,主应力σ 对与y 轴平行得斜截面上得应力没有影响,因此在x oz 坐标平面内可以按照平面应力状态问题对待。外法线为x、z 轴两对平面上只有切应力t,为纯剪切状态,可知其最大与最小正应力绝对值均为t,则图9、1(a)所示单元体得三个主应力为: , 第三强度理论得相当应力为 MPa 第四强度理论得相当应力为: MPa (2)图9、1(b)所示单元体,其主应力为 第三强度理论得相当应力为: MPa 第四强度理论得相当应力为: MPa 9、2一岩石试件得抗压强度为14OMPa ,E=55GPa, μ=0、25, 承受三向压缩.己知试件破坏时得两个主应力分别为=—1、4MP a 与 —2、8MPa,试根据第四强度理论推算这时得另一个方向得主应力为多少? [解] 设另一个方向得主应力为,则根据第四强度理论可得 123220.011165, 55.022 σσσσ??=±=±==??-解题范例

四种强度理论

1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。

脆断破坏条件:ε1= εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) = σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3 ) 破坏条件:σ1?σ3= σs 强度条件:σ1?σ3≤[σ]

四种强度理论(1)

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。 1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达

到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件:ε1=εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) =σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3)

材料四大强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。τmax=τ0。依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs--横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσα x y x y x MPa 7.322cos 2sin 2 -=+-=ατασστα x y x (2) 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02 =σ,98.1213-=σ MPa 35.3940 200 arctan 21)2arctan( 2 10== --=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2m in m ax )2 (2xy y x y x τσσσσσσ+-± += 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一 点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?= x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

材料力学强度理论

9 强度理论 1、 脆性断裂和塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 0 1εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值, 即: 0max ττ= (4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u 0 d d = 强度准则的统一形式 [] σσ≤* 其相当应力: r11σ=σ r2123()σ=σ-μσ+σ

r313 σ=σ-σ 222 r4122331 1 ()()() 2 ?? σ=σ-σ+σ-σ+σ-σ ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9.1图9.1所示的两个单元体,已知正应力σ=165MPa,切应力τ=110MPa。试求两个单元体的第三、第四强度理论表达式。 图9.1 [解](1)图9.1(a)所示单元体的为空间应力状态。注意到外法线为y及-y的两个界面上没有切应力,因而y方向是一个主方向,σ是主应力。显然,主应力σ对与y轴平行的斜截面上的应力没有影响,因此在xoz坐标平面可以按照平面应力状态问题对待。外法线为x、z轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a)所示单元体的三个主应力为: τ σ τ σ σ σ- = = = 3 2 1 、 、 , 第三强度理论的相当应力为 () eq313 165110275 a σσσστ =-=+=+= MPa 第四强度理论的相当应力为: ()()() 222 () eq4122331 1 2 a σσσσσσσ ?? =-+-+- ?? ()()() 222 1 2 σττττσ ?? =-+++-- ?? ()()() 222 1 1651102110110165252.0 2 ?? =-+?+--= ?? MPa 解题范例

相关文档
相关文档 最新文档