文档库 最新最全的文档下载
当前位置:文档库 › 高考物理动量守恒定律的基本方法技巧及练习题及练习题(含答案)含解析

高考物理动量守恒定律的基本方法技巧及练习题及练习题(含答案)含解析

高考物理动量守恒定律的基本方法技巧及练习题及练习题(含答案)含解析
高考物理动量守恒定律的基本方法技巧及练习题及练习题(含答案)含解析

高考物理动量守恒定律的基本方法技巧及练习题及练习题(含答案)含解析

一、高考物理精讲专题动量守恒定律

1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:

①物块C的质量?

②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?

【答案】(1)2kg(2)9J

【解析】

试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2

即m c=2 kg

②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

(m A+m C)v3=(m A+m B+m C)v4

得E p=9 J

考点:考查了动量守恒定律,机械能守恒定律的应用

【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.

2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:

(1)物块a与b碰后的速度大小;

(2)当物块a相对小车静止时小车右端B到挡板的距离;

(3)当物块a相对小车静止时在小车上的位置到O点的距离.

【答案】(1)1m/s (2) (3) x=0.125m

【解析】

试题分析:(1)对物块a,由动能定理得:

代入数据解得a与b碰前速度:;

a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,

由动量守恒定律得:,代入数据解得:;

(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,

代入数据解得:,

对小车,由动能定理得:,

代入数据解得,同速时车B端距挡板的距离:;

(3)由能量守恒得:,

解得滑块a与车相对静止时与O点距离:;

考点:动量守恒定律、动能定理。

【名师点睛】本题考查了求速度、距离问题,分析清楚运动过程、应用动量守恒定律、动能定理、能量守恒定律即可正确解题。

3.如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩擦因数为μ,求:

(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。

【答案】(1) 201v v =,4

302v v = (2)L g v x -=μ3220,1620

p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得2

1v v =

。 对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4

30

2v v =

(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从

P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律

)(2)2()2(212212212

22021x L mg u v m m m mv mv ++++=?+? 解得L g

v x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律

p 222021))(2()2(2

1221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能16

2

P mv E =

注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg

【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。中档题

4.匀强电场的方向沿x 轴正向,电场强度E 随x 的分布如图所示.图中E 0和d 均为已知量.将带正电的质点A 在O 点由能止释放.A 离开电场足够远后,再将另一带正电的质点B 放在O 点也由静止释放,当B 在电场中运动时,A 、B 间的相互作用力及相互作用能均为零;B 离开电场后,A 、B 间的相作用视为静电作用.已知A 的电荷量为Q ,A 和B 的质量分别为m 和.不计重力.

(1)求A 在电场中的运动时间t ,

(2)若B 的电荷量q =Q ,求两质点相互作用能的最大值E pm

(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m

【答案】(1)(2)1

45

QE0d (3)Q

【解析】

【分析】

【详解】

解:(1)由牛顿第二定律得,A在电场中的加速度 a ==

A在电场中做匀变速直线运动,由d =a得

运动时间 t ==

(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得

QE0d =m

qE0d =

A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,

由动量守恒定律得:(m +)v,= mv A0 +v B0

由能量守恒定律得:E Pm= (m+)—)

且 q =Q

解得相互作用能的最大值 E Pm=1

45

QE0d

(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0

根据能量守恒定律得:m+=m+

解得:v B = -+

因为B不改变运动方向,所以v B = -+≥0

解得:q≤Q

则B所带电荷量的最大值为:q m =Q

5.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于

450.

【答案】最多碰撞3次

【解析】

解:设小球m的摆线长度为l

小球m在下落过程中与M相碰之前满足机械能守恒:①

m和M碰撞过程是弹性碰撞,故满足:

mv0=MV M+mv1 ②

联立②③得:④

说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:

mv1=MV M1+mv2 ⑤

解得:

整理得:

故可以得到发生n次碰撞后的速度:

而偏离方向为450的临界速度满足:

联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界

即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.

分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.

点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.

6.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108

K 时,可以发生“氦燃烧”。

①完成“氦燃烧”的核反应方程:γBe ___He 8

442+→+。

②Be 84是一种不稳定的粒子,其半衰期为2.6×10-16

s 。一定质量的Be 8

4,经7.8×10-16

s

后所剩下的Be 8

4占开始时的 。

(2)如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。开始时C 静止,A 、B 一起以

s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段

时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。求A 与C 发生碰撞后瞬间A 的速度大小。

【答案】(1)①4

2He (或α) ②1

8

(或12.5%) (2)2m/s

【解析】(1)①由题意结合核反应方程满足质量数和电荷数守恒可得答案。 ②由题意可知经过3个半衰期,剩余的8

4Be 的质量30011

()28

m m m ==

。 (2)设碰后A 的速度为A v ,C 的速度为C v ,由动量守恒可得0A A A C C m v m v m v =+, 碰后A 、B 满足动量守恒,设A 、B 的共同速度为1v ,则01()A A B A B m v m v m m v +=+ 由于A 、B 整体恰好不再与C 碰撞,故1C v v =

联立以上三式可得

A

v=2m/s。

【考点定位】(1)核反应方程,半衰期。

(2)动量守恒定律。

7.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m

的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)

【答案】0

4v

【解析】

【分析】

在抛货物的过程中,乙船与货物组成的动量守恒,在接货物的过程中,甲船与货物组成的系统动量守恒,在甲接住货物后,甲船的速度小于等于乙船速度,则两船不会相撞,应用动量守恒定律可以解题.

【详解】

设抛出货物的速度为v,以向右为正方向,由动量守恒定律得:乙船与货物:

12mv0=11mv1-mv,甲船与货物:10m×2v0-mv=11mv2,两船不相撞的条件是:v2≤v1,解得:v≥4v0,则最小速度为4v0.

【点睛】

本题关键是知道两船避免碰撞的临界条件是速度相等,应用动量守恒即可正确解题,解题时注意研究对象的选择以及正方向的选择.

8.如图所示,光滑水平面上依次放置两个质量均为m的小物块A和C以及光滑曲面劈B,B的质量为M=3m,劈B的曲面下端与水平面相切,且劈B足够高,现让小物块C以水平速度v0向右运动,与A发生弹性碰撞,碰撞后小物块A又滑上劈B,求物块A在B上能够达到的最大高度.

【答案】

2

3

8

v h

g

【解析】

试题分析:选取A 、C 系统碰撞过程动量守恒,机械能守恒,应用动量守恒定律与机械能守恒定律求出A 的速度;A 、B 系统在水平方向动量守恒,由动量守恒定律与机械能守恒定律可以解题.

小物块C 与A 发生弹性碰撞, 由动量守恒得:mv 0=mv C +mv A

由机械能守恒定律得:

2220111222

C A mv mv mv =+ 联立以上解得:v C =0,v A =v 0

设小物块A 在劈B 上达到的最大高度为h ,此时小物块A 和B 的共同速度大小为

v ,对小物块A 与B 组成的系统,

由机械能守恒得:

()2211

22

A mv mgh m M v =++ 水平方向动量守恒()A mv m M v =+

联立以上解得: 2

38v h g

=

点睛:本题主要考查了物块的碰撞问题,首先要分析清楚物体运动过程是正确解题的关键,应用动量守恒定律与机械能守恒定律可以解题.要注意A 、B 系统水平方向动量守恒,系统整体动量不守恒.

9.如图,水平面上相距为L=5m 的P 、Q 两点分别固定一竖直挡板,一质量为M=2kg 的小物块B 静止在O 点,OP 段光滑,OQ 段粗糙且长度为d=3m .一质量为m=1kg 的小物块A 以v 0=6m/s 的初速度从OP 段的某点向右运动,并与B 发生弹性碰撞.两物块与OQ 段的动摩擦因数均为μ=0.2,两物块与挡板的碰撞时间极短且均不损失机械能.重力加速度g=10m/s 2,求

(1)A 与B 在O 点碰后瞬间各自的速度; (2)两物块各自停止运动时的时间间隔. 【答案】(1),方向向左;

,方向向右.(2)1s

【解析】

试题分析:(1)设A 、B 在O 点碰后的速度分别为v 1和v 2,以向右为正方向 由动量守恒:

碰撞前后动能相等:

解得:

方向向左,

方向向右)

(2)碰后,两物块在OQ段减速时加速度大小均为:

B经过t1时间与Q处挡板碰,由运动学公式:得:(舍去)与挡板碰后,B的速度大小,反弹后减速时间

反弹后经过位移,B停止运动.

物块A与P处挡板碰后,以v4=2m/s的速度滑上O点,经过停止.

所以最终A、B的距离s=d-s1-s2=1m,两者不会碰第二次.

在AB碰后,A运动总时间,

整体法得B运动总时间,则时间间隔.

考点:弹性碰撞、匀变速直线运动

10.如图所示,质量为m A=3kg的小车A以v0=4m/s的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B=1kg的小球B(可看作质点),小球距离车面h=0.8m.某一时刻,小车与静止在光滑水平面上的质量为m C=1kg的物块C发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g=10m/s2.求:

(1)小车系统的最终速度大小v共;

(2)绳未断前小球与砂桶的水平距离L;

(3)整个过程中系统损失的机械能△E机损.

【答案】(1)3.2m/s (2)0.4m (3)14.4J

【解析】

试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能.

(1)设系统最终速度为v共,由水平方向动量守恒:

(m A+m B) v0=(m A+m B+m C) v共

带入数据解得:v共=3.2m/s

(2)A与C的碰撞动量守恒:m A v0=(m A+m C)v1

解得:v1=3m/s

设小球下落时间为t ,则: 212

h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m

(3)由能量守恒得:()()22

01122

B A B A B E m gh m m v m m m v ?=++-++共损 带入数据解得:14.4E J ?=损

点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.

11.如图所示,A 为有光滑曲面的固定轨道,轨道底端的切线方向是水平的,质量

140kg m =的小车B 静止于轨道右侧,其上表面与轨道底端在同一水平面上,一个质量

220kg m =的物体C 以2.0/m s 的初速度从轨道顶端滑下,冲上小车B 后经过一段时间与

小车相对静止并一起运动。若轨道顶端与底端的高度差 1.6h m =,物体与小车板面间的动摩擦因数0.40μ=,小车与水平面间的摩擦忽略不计,取2

/10g m s =,求:

(1)物体与小车保持相对静止时的速度v ;

(2)物体冲上小车后,与小车发生相对滑动经历的时间t ; (3)物体在小车上相对滑动的距离l 。 【答案】(1)2 /m s ;(2)1 s ;(3)3 m 【解析】

试题分析:(1)下滑过程机械能守恒,有:22

121122

0mgh m m v v +

=+ ,代入数据得:26/v m s =;设初速度方向为正方向,物体相对于小车板面滑动过程动量守恒为: 2mv m M v =+()

联立解得:2206

2 /2040

mv v m s M m ?=

==++。 (2)对小车由动量定理有:mgt Mv μ=,解得:402

1 0.42010

Mv t s mg μ?=

==??。 (3)设物体相对于小车板面滑动的距离为L ,由能量守恒有:

22

21122mgL m m M v v μ=-+()代入数据解得:()2

22 3 2m M m v L m m g

v μ-+==。

考点:动能定理、动量守恒定律、机械能守恒定律

【名师点睛】本题考查动量定恒、机械能守恒及功能关系,本题为多过程问题,要注意正确分析过程,明确各过程中应选用的物理规律。

12.如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B ,C 的上表面相平且B ,C 不粘连,A 滑上C 后恰好能到达C 板的最右端,已知A ,B ,C 质量均相等,木板C 长为L ,求

①A 物体的最终速度 ②A 在木板C 上滑行的时间

【答案】①

34

v ;②04L v 【解析】

试题分析:①设A 、B 、C 的质量为m ,B 、C 碰撞过程中动量守恒, 令B 、C 碰后的共同速度为

,则

,解得

B 、

C 共速后A 以0v 的速度滑上C ,A 滑上C 后,B 、C 脱离

A 、C 相互作用过程中动量守恒,设最终A 、C 的共同速度

则 解得

②在A 、C 相互作用过程中,根据功能关系有

(f 为A 、C 间的摩擦力)

代入解得2

16mv f L

=· 此过程中对C ,根据动量定理有

代入相关数据解得0

4L t v =

考点:动量守恒定律;能量守恒定律及动量定理.

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

高中物理力学选择题

物理力学选择题1.如图为A、B两质点作直线运动的v-t图象,已知两质点在同一直线上运动,由图知

A.两质点定从同一位置出发B.两质点定同时由静止开始运动 C.t2秒末两质点相遇D.0~t2秒时间内B质点可能领先A 2.a、b两物体同时、同地、同向做匀变速直线运动,若加速度相同,初速度不同,则在运动过程中,下列说法正确的是 A.a、b两物体速度之差保持不变B.a、b两物体速度之差与时间成正比C.a、b两物体位移之差与时间成正比D.a、b两物体位移之差与时间平方成正比3.放在水平光滑平面上的物体A和B,质量分别为M和m,水平恒力F作用在A上,A、B间的作用力为F1;水平恒力F作用在B上,A、B间作用力为F2,则 A.F1+F2=FB.F1=F2C.F1/F2=m/MD.F1/F2=M/m 4.完全相同的直角三角形滑块A、B,按图所示叠放,设A、B接触的斜面光滑,A与桌面的动摩擦因数为μ.现在B上作用一水平推力F,恰好使A、B一起在桌面上匀速运动,且A、B保持相对静止,则A与桌面的动摩擦因数μ跟斜面倾角θ的关系为 A.μ=tgθB.μ=(1/2)tgθC.μ=2·tgθD.μ与θ无关 5.如图一根柔软的轻绳两端分别固定在两竖直的直杆上,绳上用一光滑的挂钩悬一重物,AO段中张力大小为T1,BO段张力大小为T2,现将右杆绳的固定端由B缓慢移到B′点的过程中,关于两绳中张力大小的变化情况为 A.T1变大,T2减小B.T1减小,T2变大C.T1、T2均变大D.T1、T2均不变 6.质量为m的物体放在一水平放置的粗糙木板上,缓慢抬起木板的一端,在如图所示的几个图线中,哪一个最能表示物体的加速度与木板倾角θ的关系 7.一木箱在粗糙的水平地面上运动,受水平力F的作用,那么[] A.如木箱做匀速直线运动,F定对木箱做正功B.如木箱做匀速直线运动,F可能对木箱做正功C.如木箱做匀加速直线运动,F定对木箱做正功D.如木箱做匀减速直线运动,F定对木箱做负功8.吊在大厅天花板上的电扇重力为G,静止时固定杆对它的拉力为T,扇叶水平转动起来后,杆对它的拉力为T′,则[]

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

高中物理复习专题:力学基础选择题

力学基础(一) 1、如图所示,一根轻质细绳跨过定滑轮连接两个小球A 、B ,它们都穿在一根光滑的竖直杆上,不 计细绳与滑轮之间的摩擦,当两球平衡时OA 绳与水平方向的夹角为60°,OB 绳与水平方向的夹 角为30°,则球A 、B 的质量之比和杆对A 、B 的弹力之比分别为( ) A.13=B A m m B.33=B A m m C. 33=NB NA F F D. 2 3=NB NA F F 2、如图所示,倾角为θ的斜面体c 置于水平地面上,小物块b 置于斜面上, 通过细绳跨过光滑的定滑轮与沙漏a 连接,连接b 的一段细绳与斜面平行.在a 中的沙子缓慢流出的过程中,a 、b 、c 都处于静止状态,则( ) A .b 对c 的摩擦力一定减小 B .b 对c 的摩擦力方向可能平行斜面向上 C .地面对c 的摩擦力方向一定向右 D .地面对c 的摩擦力一定减小 3、如图所示,甲、乙两物块用跨过定滑轮的轻质细绳连接,分别静止在斜面AB 、AC 上,滑轮两侧细绳与斜面平行.甲、乙两物块的质量分别为m 1、m 2.AB 斜面粗糙,倾角为α,AC 斜面光滑,倾角为β,不计滑轮处摩擦,则以下分析正确的是( ) A .若m 1sin α>m 2sin β,则甲所受摩擦力沿斜面向上 B .若在乙物块上面再放一个小物块后,甲、乙仍静止,则甲所受的摩擦力一定变小 C .若在乙物块上面再放一个小物块后,甲、乙仍静止,则甲所受的拉力一定变大 D .若在甲物块上面再放一个小物块后,甲、乙仍静止,则甲所受拉力一定变大 4、如图所示,A 、B 两球质量均为m .固定在轻弹簧的两端,分别用细绳悬于O 点,其中球A 处在光滑竖直墙面和光滑水平墙面的交界处,已知两球均处于平衡状态,OAB 恰好构成一个正三角形,则下列说法正确的是( ) A .球A 可能受到四个力的作用 B .弹簧对球A 的弹力大于对球B 的弹力 C .绳OB 对球B 的拉力大小一定等于mg D .绳OA 对球A 的拉力大小等于或小于1.5mg 5、如图所示,光滑斜面静止于粗糙水平面上,斜面倾角θ=30°,质量为m 的小球被轻质细绳系住斜吊着静止于斜面上,悬线与竖直方向夹角α=30°,则下列说法正确的是 A .悬线对小球拉力是 B .地面对斜面的摩擦力是 C .将斜面缓慢向右移动少许,悬线对小球拉力减小 D .将斜面缓慢向右移动少许,小球对斜面的压力减小

高考物理力学知识点之分子动理论真题汇编含答案

高考物理力学知识点之分子动理论真题汇编含答案 一、选择题 1.关于热现象,下列说法正确的是() A.物体温度不变,其内能一定不变 B.物体温度升高,其分子热运动的平均动能一定增大 C.外界对物体做功,物体的内能一定增加 D.物体放出热量,物体的内能一定减小 2.下列说法中正确的是 A.液体分子的无规则运动是布朗运动 B.液体屮悬浮颗粒越大,布朗运动越明显 C.如果液体温度降到很低,布朗运动就会停止 D.将红墨水滴入一杯清水中,水的温度越高整杯清水都变成红色的时间越短 3.采用油膜法估测分子的直径,先将油酸分子看成球形分子,再把油膜看成单分子油膜,在实验时假设分子间没有间隙。实验操作时需要测量的物理量是 A.1滴油酸的质量和它的密度 B.1滴油酸的体积和它的密度 C.油酸散成油膜的面积和油酸的密度 D.1滴油酸的体积和它散成油膜的最大面积 4.用分子动理论的观点看,下列表述正确的是() A.对一定质量的气体加热,其内能一定增加 B.一定质量100℃的水转变成100℃的水蒸汽,其分子的平均动能增加 C.一定质量的理想气体,如果压强不变而体积增大,其分子的平均动能增加 D.如果气体温度升高,物体中所有分子的速率都一定增大 5.下列说法正确的是() A.给汽车轮胎充气时费力,说明分子间有斥力 B.温度是物体分子热运动的平均速率的标志 C.当分子间引力和斥力相等时,分子势能最小 D.高压密闭的钢筒中的油沿筒壁溢出,这是钢分子对油分子的斥力 6.测得一杯水的体积为V,已知水的密度为ρ,摩尔质量为M,阿伏伽德罗常数为NA,则水分子的直径d和这杯水中水分子的总数N分别为 A . A M d N VN ρ == B .A VN d N M ρ == C .A VN d N M ρ ==

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理动量定理解题技巧(超强)及练习题(含答案)

高中物理动量定理解题技巧(超强)及练习题(含答案) 一、高考物理精讲专题动量定理 1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求: (1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度. 【答案】(1)4.5N s ? (2)5.5m 【解析】 ①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有: 0011()o m v m m v =+,可解得110/v m s =; 对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有: 0110122()()m m v m m v m v +=++; 设小车长为L ,由能量守恒有:22220110122111()()222 m gL m m v m m v m v μ= +-+- 联立并代入数值得L =5.5m ; 点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度. 2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小; (2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。 【答案】(1)6.0m/s 2(2)18J (3)20N· s ,方向竖直向下。 【解析】 【详解】

高考物理力学知识点之分子动理论经典测试题及答案

高考物理力学知识点之分子动理论经典测试题及答案 一、选择题 1.关于分子间的作用力,下列说法错误的是() A.分子之间的斥力和引力同时存在 B.分子之间的斥力和引力大小都随分子间距离的增大而减小 C.分子之间的距离减小时,分子力一直做正功 D.当分子间的距离大于109 米时,分子力已微弱到可以忽略 2.物质由大量分子组成,下列说法正确的是() A.1摩尔的液体和1摩尔的气体所含的分子数不相同 B.分子间引力和斥力都随着分子间距离减小而增大 C.当分子间距离减小时,分子间斥力增大,引力减小 D.当分子间距离减小时,一定是克服分子力做功 3.根据分子动理论,物质分子之间的距离为r0时,分子所受的斥力和引力相等,以下关于分子力和分子势能的说法正确的是 A.当分子间距离为r0时,分子具有最大势能 B.当分子间距离为r0时,分子具有最小势能 C.当分子间距离大于r0时,分子引力小于分子斥力 D.当分子间距离小于r0时,分子间距离越小,分子势能越小 4.下列说法正确的是( ). A.液体表面层的分子分布比较稀疏,分子之间只存在引力,故液体表面具有收缩趋势B.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动 C.当液晶中电场强度不同时,液晶对不同颜色光的吸收强度不同,就显示不同颜色D.高原地区水的沸点较低,这是高原地区温度较低的缘故 5.以下说法正确的是() A.机械能为零、内能不为零是可能的 B.温度相同,质量相同的物体具有相同的内能 C.温度越高,物体运动速度越大,物体的内能越大 D.0 ℃的冰的内能比等质量的0 ℃的水的内能大 6.甲、乙两个分子相距较远,它们之间的分子力弱到可忽略不计的程度.若使甲分子固定不动,乙分子逐渐靠近甲分子,直到不能再靠近的整个过程中,分子力对乙分子做功的情况是 A.始终做正功B.始终做负功 C.先做正功,后做负功D.先做负功,后做正功 7.下列说法正确的是() A.布朗运动的无规则性反映了液体分子运动的无规则性 B.悬浮在液体中的固体小颗粒越大,则其所做的布朗运动就越剧烈 C.物体的温度为0 ℃时,物体的分子平均动能为零 D.布朗运动的剧烈程度与温度有关,所以布朗运动也叫热运动

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析

高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零. 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小. 【答案】v0v0 【解析】设A、B球碰撞后速度分别为v1和v2 由动量守恒定律得2mv0=2mv1+mv2 且由题意知= 解得v1=v0,v2=v0 视频 3.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小; (3)第一次与第二次碰撞系统功能损失之比。

(word完整版)高三物理力学综合测试题

实验高中高三物理力学综合测试题 (时间:90分钟) 一、选择题(共10小题,每小题4分,共计40分。7、8、9、10题为多选。) 1.一辆汽车以10m/s的速度沿平直公路匀速运动,司机发现前方有障碍物立即减速,以0.2m/s2的加速度做匀减速运动,减速后一分钟内汽车的位移是() A.240m B。250m C。260m D。90m 2.某人在平静的湖面上竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中一段深度。不计空气阻力,取向上为正方向,在下面的图象中,最能反映小铁球运动过程的v-t图象是() A B C D 3. 我国“嫦娥一号”探月卫星经过无数人的协 作和努力,终于在2007年10月24日晚6点05 分发射升空。如图所示,“嫦娥一号”探月卫星 在由地球飞向月球时,沿曲线从M点向N点飞行 的过程中,速度逐渐减小。在此过程中探月卫星 所受合力的方向可能的是() 4.设物体运动的加速度为a、速度为v、位移为s。现有四个不同物体的运动图象如图所示,假设物体在t=0时的速度均为零,则其中表示物体做单向直线运动的图象是() 5.如图所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为 A.都等于 2 g B. 2 g 和0 C. 2 g M M M B B A? + 和0 D.0和 2 g M M M B B A? + 6.如图1所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则() A.A、B两处的场强方向相同 B.因为A、B在一条电场上,且电场线是直线,所以E A=E B C.电场线从A指向B,所以E A>E B a t a t 2 4 6 -1 1 2 5 6 -1 1 C 3 4 1 S t v 2 4 6 -1 1 2 4 6 -1 1 A B v v v v

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

高考理综答题时间分配及考试技巧

高考理综答题时间分配及考试技巧 导读:我根据大家的需要整理了一份关于《高考理综答题时间分配及考试技巧》的内容,具体内容:理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助!高考理综答题时间分配技巧如果... 理综考试的试卷结构是按学科排布的;因此,考生们要掌握答题技巧,做好答题时间的分配安排。下面我为大家分享的是的详细内容,希望对大家有帮助! 高考理综答题时间分配技巧 如果要在150分钟内处理300分的题目,则每分钟平均要处理2分的难度中等的题目,练习中要注意时间与节奏把控。 具体时间分配课参考下述说明: 一卷上有21道选择题,不同地区选择题会有单项选择题和不定向选择题两类,每一小题都是6分,那么120分的第一卷答题时间应该大体控制在50分钟,每一分钟的时间应该至少拿下两分,选择题应该在2分或者不超过3分钟的时间里面解决,到了后面计算题中也要大致按照这样的策略,每一分钟大概完成两分,对大题原则上要8、9分钟,不能超过10分钟。 物理、化学、生物三个学科从考试时间上最好依次控制在1、1、0.5小时左右(可以有正负十分钟的浮动,根据学生科目的强弱调节),也就是说生物应该保持在半个小时尽可能拿到自己会做的分数为宜。 先做哪个学科可按自己习惯,也可先答自己的优势学科及基础试题,不要

在某一道难题上停留时间过久,使本来会的题目由于时间分配不好或者答题技巧掌握不好影响到理综成绩。事实证明,做得过慢直接丢掉整道大题的话,得分往往都比做得快但是正确率略微下降要低,而我们在练习中,需要有意识的提升自己在紧张状态下的"一次正确率"。 一、科学分配考试时间 理科综合三科合一,按分值分配,生物需30-35分钟完成,化学需50—55分钟完成,物理需要1小时完成,剩下的分钟为机动时间,这是最合理的安排。 二、做题顺序 自信,就从头到尾做;不自信,就可以有选择的先做。一般情况下,各科都不太难。只是因为有的学生在前面用的时间很多,后边相对简单一点的题没有时间做。而后面多是大分值的题。这属于时间安排上的失误。而有的题时间再充裕,也不一定做出来,这就应该主动地放弃,给可做出的题腾出一点时间。 做题顺序有几种,如,先做各科简单题,再做难一点的,但是尽量不要分科做。因为读完一个题后,才能知道是哪一科的题,如果不想做,放过去,做下面的题,但是回过头来再看刚才这一题的时候,还得从新熟悉,那么读题就浪费了时间。所以只要挨着做题就行。 三、选择题怎么做虽然是"选择题",但重要的不是在"选",不是看着选项去挑。在练习中,应该明白选项对,为什么不对,改成什么样子就对了。养成推导的习惯,掌握过程,要知道是"因为是怎样的,所以才怎样的"。做选择时,不要轻易地把生活经验往物理题上套。应该用物理规律往物理题上做。选择题是做出来的,不是选出来的。

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得 ,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】

高考物理力学知识点之牛顿运动定律易错题汇编附答案

高考物理力学知识点之牛顿运动定律易错题汇编附答案 一、选择题 1.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A点为最高位置,B点为最低位置,不计空气阻力,下列说法正确的是() A.在A点时,人所受的合力为零 B.在B点时,人处于失重状态 C.从A点运动到B点的过程中,人的角速度不变 D.从A点运动到B点的过程中,人所受的向心力逐渐增大 2.在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球() A.可能落在A处B.一定落在B处 C.可能落在C处D.以上都有可能 3.如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g=10 m/s2) A.12 N B.22 N C.25 N D.30N 4.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图象如图乙所示,g为重力加速度,则()

A .升降机停止前在向下运动 B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态 C .13t t -时间内小球向下运动,动能先增大后减小 D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量 5.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( ) A . B . C . D . 6.一物体放置在粗糙水平面上,处于静止状态,从0t =时刻起,用一水平向右的拉力F 作用在物块上,且F 的大小随时间从零均匀增大,则下列关于物块的加速度a 、摩擦力 f F 、速度v 随F 的变化图象正确的是( )

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

相关文档
相关文档 最新文档