文档库 最新最全的文档下载
当前位置:文档库 › 调节器的工作原理与调试方法

调节器的工作原理与调试方法

调节器的工作原理与调试方法
调节器的工作原理与调试方法

调节器的工作原理与调试方法

一、结构组成

1、采用标准嵌入式结构系统

2、由自动通道与模拟通道构成

3、自动通道由输入板、双CPU板、输出板组成

4、模拟(手动)通道独立工作板

二、作用

1、调节输入板

该板主要用于遥测、遥信输入,遥测信号主要采集定子电流、系统电压、机端电压、励磁电压、励磁电流,通过霍尔传感器变换后送到CPU进行处理;遥信主要采集开机令、停机令、灭磁开关位置、油开关位置、整流故障、停风等信号通过光电隔离后再送到CPU板。

2、CPU板

两块电路板共享模拟信号,互相监视,互为热备用,即两套微机板都在线工作,当一台出现故障,则立即切换到另一台微机运行,切换无扰动。

由PT、CT、励磁电压、励磁电流等送来的模拟及数字信号,先进行隔离变换,再送到微机板,在双微机系统中,每块微机板都得到相同的输入信号,进行同样的运算处理。其输出信号采取封门的方式由逻辑电路自动进行切换。微机的输出信号经过隔离放大后去推动执行器件。

3、输出板

主要功能是通过同步变压器实时跟踪励磁变压器副边的同步信号,根据调节器的控制信号输出六路脉冲,控制三相全控整流桥的输出,同时也具有完善的控制、逻辑、限制、保护和接口等功能。

4、手动模拟调节输出板

此模拟通道作为后备用,它与主控通道独立,按励磁电流闭环控制方式调节。

该板能通过调节增、减磁按钮进行独立调节励磁电流,在一般情况下均由微机自动完成调节任务。

三、调试方法

1、输入板:

可调节P1(机端电压)、P2(系统电压)、P4(励磁电流);以上调节均在并网前调节。

方法:

(1)、起励后在恒流位置时调节P1即机端电压,使数码显示中的A0000与实际电压一致,如机端电压此时为6000V时数显应调节为A6000。

(2)、在恒压位置时调节P4即励磁电流,使数码显示的D0000与实际电流一致,如并网前的励磁电流为100A时数显应调节为D0100。

(3)、P2在恒压、恒流时均可调,即调节P2使数显C与当前的系统电压一致即可。

2、CPU板

调节W1使模拟量工作电源(VREF)为5V

按键说明:

K1-----切换键

K3-----增Ukp值

K4-----减Ukp值

K5-----增Ikp值

K6-----减Ikp值

K7-----置位

3、手动板

在手动板工作时,调节P1可以改变机端电压限制值。

调节P2使U4(芯片LM308)的输入、输出的IK绝对值应相等;调节P3使U11(芯片LM308)的输入、输出的UK绝对值应相等。

四、显示板的按键机显示功能

1、S1、S2为数显功能切换键,S3为恒压/恒流切换键,S4为自动/

手动切换键。

2、数显功能

A 机端电压

B 给定电压

C 系统电压

D 励磁电流

E 励磁电流给定

F UKP值

G UKI值

H IKP值

I IKI值

电路图、工作原理、调试步骤

1、稳压电源电路图、工作原理、调试步骤 a)仪器的准备 1、调压器 2、变压器 3、指针万用表(2.5A插孔) 4、数字万用表 5、负载电阻12Ω/25W 6、电子电压表 b)电路的功能 该电路是一个串联形直流稳压电路,它是由电源变换电路、整流电路、滤波电路、稳压电路和负载组成。该电路可以实现整流、滤波、稳压。其中稳压部分包括基准电压、取样电路、比较放大器、调整电路等。 c)电路原理图 d)电路的原理 ◆稳压的工作原理 稳压电路是利用负反馈的原理,以输出电压的变化量ΔUL,经取样管VT3与基准电压7.5V(VD5稳压管提供)比较放大后,去控制调整管VT2的基极电流Ib,当Ib增大,调整管Uce将减小;当Ib减小,调整管Uce将增大;使输出电压UL基本保持不变。 当电网电压升高或输出电流减小时: Uo↑→Ub(VT3)↑→Ube(VT3)↑→Ic(VT3)↑→Uc(VT3)↓→Ub(VT1)↓→Ic(VT1)↓→Ic(VT2)↓→Uce(VT2) ↑→Uo↓ 当电网电压下降或输出电流变大时: Uo↓→Ub(VT3) ↓→Ube(VT3) ↓→Ic(VT3) ↓→Uc(VT3) ↑→Ub(VT1) ↑→Ic(VT1) ↑→Ic(VT2) ↑→Uce(VT2) ↓→Uo↓ ◆说明各元件在电路中的作用 VD1、VD2、VD3、VD4桥式整流电路。C6、C7、C8、C9滤波电容、保护整流二极管。VT1、VT2组成复合管,增大等效β值改善稳压性能。C1、C2、C3、C4、C5为滤波电容。R5为VD5限流电阻。R4给VT1的反向穿透电流提供一条通路,防止高温时,VT2出现失控。R8、RP1、R7为VT3分压偏置电阻。R1、R3为VT2负载电阻。R2、R6、R9为VT1偏置、负载电阻。 e)电路的测量步骤

燃油泵以及压力调节器的原理

燃油压力调节器 喷油器的喷油量取决于喷孔截面,喷油时间和喷油压差。ECU通过控制喷油嘴开启时间来控制喷油量,因此,在喷孔面积一定时还要保持一定的压差。 喷油压差是指输油管内燃油压力和进气歧管内气体压力的差值,而进气歧管内气压随转速和负荷(节气门开度)变化,要保持恒定的喷油压力必须根据进气管压力变化来调节燃油压力。不知道你有没有这个东西的图,我这里上不了图,就大概的讲一下:压力调节器的上方一般会有个开口用橡胶软管跟进气管连接,在内部这个开口的下方是个弹簧,弹簧下面是个膜片,膜片下面是个柱塞状的东西,堵住一个孔,这个孔就是连接回油软管的,工作时,膜片上方的压力为弹簧压力和进气压力之和,膜片下方为燃油压力,膜片上下压力相等时就会处在平衡位置,当进气管压力下降时,膜片上移回油阀开度上升,会油量上升,这样油轨中的油压就下降到原来水平。反之,气压上升时,膜片下移,回油阀开度变小,回油量变小油压就会上升到原来水平,这样油压就会控制到制造时要求的大小,也就是膜片位于平衡位置的弹力 燃油压力调节器的功用是调节至喷油器的燃油压力,使油路中的燃油压力与进气管压力之差保持常数,这样从喷油器喷出的燃油量便唯一地取决于喷油器的开启时间,使电控单元能够通过控制电脉冲宽度来精确控制喷油量。 油压调节器的构造如图5.19 所示。膜片4 将油压调节器分隔成上下两个腔。上腔有进油口1 连接燃油分配管,回油口2 与汽油箱连通。下腔通过真空接管6 与节气门后的进气管相连。当燃油压力与进气管压力之差超过预调的压力值时,膜片上方的燃油就推动膜片向下压缩弹簧,打开回油阀,超压的燃油流回燃油箱,以保持一定的燃油压力。燃油供给系统的压力与进气管压力之差由油压调节器中的弹簧5 的弹力限定,调节弹簧预紧力即可改变两者的压力差,也就是改变喷油压力。燃油压力调节器装在燃油分配管的一端,可使燃油压力调节在正常范围内(图5.20)。

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

(完整版)四种压力传感器的基本工作原理及特点

(1) 1 dR d R dA A 四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上, 使它产生变形,在其变形的部位粘 贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称 为电阻应变式压力传感器。 1.2电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片 箔式应变片是以厚度为0.002―― 0.008mm 的金属箔片作为敏感栅材料,,箔 栅宽度为0.003――0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝 (直 径0. 015--0. 05mm ),平行地排成栅形(一般2――40条),电阻值60――200 ?, 通常为 120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即 制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于 待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时, 电阻片 也跟随变形。如下图所示。B 为栅宽,L 为基长。 I 绘式应吏片 b )笹式应变片 材料的电阻变化率由下式决定:

式中; R—材料电阻2

3 —材料电阻率 由材料力学知识得; K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分 dR 、dL 改写成增 量出、/L,可得 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形 而形应变值可由丝式应变片或箔式应变片测出,从而得到了 ZR 的变化,也就得 到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 「测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括彳测中压用的膜片一一应变筒式压力传感器 -测高压用 的应变筒式压力传感器 1.3.1膜片一一应变筒式压力传感器的特点 该传感器的特点是具有 较高的强度和抗冲击稳定性,具有优良的静态特性、 动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。 适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如 火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性 较大。但小压力测量中由于变形很小,非线性误差可小于 0.5%,同时又有较高 的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片一应变筒式压力传感器相比, 自振频率较低,因此在低dR "R [(1 2 ) C(1 2 )]

调试器工作原理探究系列第三篇

本文是调试器工作原理探究系列的第三篇,在阅读前请先确保已经读过本系列的第一和第二篇。 本篇主要内容 在本文中我将向大家解释关于调试器是如何在机器码中寻找C 函数以及变量的,以及调试器使用了何种数据能够在C源代码的行号和机器码中来回映射。 调试信息 现代的编译器在转换高级语言程序代码上做得十分出色,能够将源代码中漂亮的缩进、嵌套的控制结构以及任意类型的变量全都转化为一长串的比特流——这就是机器码。这么做的唯一目的就是希望程序能在目标CPU上尽可能快的运行。大多数的C代码都被转化为一些机器码指令。变量散落在各处——在栈空间里、在寄存器里,甚至完全被编译器优化掉。结构体和对象甚至在生成的目标代码中根本不存在——它们只不过是对内存缓冲区中偏移量的抽象化表示。 那么当你在某些函数的入口处设置断点时,调试器如何知道该在哪里停止目标进程的运行呢?当你希望查看一个变量的值时,调试器又是如何找到它并展示给你呢?答案就是——调试信息。 调试信息是在编译器生成机器码的时候一起产生的。它代表着可执行程序和源代码之间的关系。这个信息以预定义的格式进行编码,并同机器码一起存储。许多年以来,针对不同的平台和可执行文件,人们发明了许多这样的编码格式。由于本文的主要目的不是介绍这些格式的历史渊源,而是为您展示它们的工作原理,所以我们只介绍一

种最重要的格式,这就是DWARF。作为Linux以及其他类Unix平台上的ELF可执行文件的调试信息格式,如今的DWARF可以说是无处不在。 ELF文件中的DWARF格式 根据维基百科上的词条解释,DWARF是同ELF可执行文件格式一同设计出来的,尽管在理论上DWARF也能够嵌入到其它的对象文件格式中。 DWARF是一种复杂的格式,在多种体系结构和操作系统上经过多年的探索之后,人们才在之前的格式基础上创建了DWARF。它肯定是很复杂的,因为它解决了一个非常棘手的问题——为任意类型的高级语言和调试器之间提供调试信息,支持任意一种平台和应用程序二进制接口(ABI)。要完全解释清楚这个主题,本文就显得太微不足道了。说实话,我也不理解其中的所有角落。本文我将采取更加实践的方法,只介绍足量的DWARF相关知识,能够阐明实际工作中调试信息是如何发挥其作用的就可以了。 ELF文件中的调试段

减压阀的工作原理

减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。 1.调节手柄; 2.调压弹簧; 3.溢流阀; 4.膜片; 5.阀杆; 6.反馈导管; 7.进气阀门; 8.复位弹簧 上图所示为一种常用的直动式减压阀结构。 压力为P1的压缩空气,由左端输入经进气阀门节流后,压力降为P2输出。P2的大小可由调压弹簧2进行调节。若顺时针旋转调节手柄,调压弹簧被压缩,推动膜片和阀杆下移,进气阀门打开,在输出口有气压输出。同时,输出气压经反馈导管作用在膜片上产生向上的推力。该推力与调压弹簧作用力相平衡时,阀便有稳定的压力输出。 若输出压力超过调定值,则膜片离开平衡位置而向上变形,使得溢流阀打开,多余的空气经溢流口排入大气。当输出压力降至调定值时,溢流阀关闭,膜片上的受力保持平衡状态。若逆时针放置手柄,调压弹簧放松,作用在膜片上的气压力大于弹簧力,溢流阀打开,输出压力降低直到为零。台湾DPC气动提醒您,反馈导管的作用是提高减压阀的稳压精度。另外,能改善减压阀的动

态性能,当负载突然改变或变化不定时,反馈导管起着阻尼作用,避免振荡现象发生。 若输入压力瞬时升高,输出将随之升高,使膜片气室内压力升高,在膜片上产生的推力相应增大,此推力破坏了原来力的平衡,使膜片向上移动,有少部分气流经溢流孔、排气孔排出。在膜片上移的同时,因复位弹簧的作用,使阀芯也向上移动,关小进气阀口,节流作用加大,使输出压力下降,直至达到新的平衡为止,输出压力基本又回到原来值。 若输入压力瞬时下降,输出压力也下降、膜片下移,阀芯随之下移,进气阀口开大,节流作用减小,使输出压力也基本回到原来值。逆时针旋转旋钮。使调节弹簧放松,气体作用在膜片上的推力大于调压弹簧的作用力,膜片向上曲,靠复位弹簧的作用关闭进气阀口。再旋转旋钮,进气阀芯的顶端与溢流阀座将脱开,膜片气室中的压缩空气便经溢流孔、排气孔排出,使阀处于无输出状态。 二、减压阀的基本性能 (1)?调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 (2)?压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

压力传感器工作原理

压力传感器 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

TI低功率SmartPA调试系列之一扬声器工作原理及软件

Application Notes 1 TI 低功率Smart PA 调试系列之一: 扬声器工作原理及软件调试入门 Anjin Du/Ding Wei/Xiangyan Xue 摘要 本系列汇集了关于TI 低功率Smart PA 的四篇应用笔记,分别从扬声器基础、软件调试、算法等方面介绍了TI 低功率Smart PA 技术。本文是这个系列的第一篇,主要介绍了扬声器的基础知识和工作原理,以及TI 低功率闭环Smart PA 器件的架构和调试入门,是后续文章的基础。 随后的系列应用笔记还包括《TI Smart PA 基础调音指南》、《TAS25xx Smart AMP Anti-Clipper 模块的音效调试》、《TI Smart PA 算法介绍》。 目录 1 扬声器工作原理及结构 (2) 1.1 电动式扬声器的工作原理: (2) 1.2 电动式扬声器的结构: (3) 1.3 扬声器的音质的评判 (6) 2 扬声器的主要参数 (6) 3 低功率Smart PA 的引入及其对扬声器性能的提升 (10) 3.1 传统应用中扬声器参数对其性能的限制 (10) 3.2 低功率Smart PA 的工作原理及其对扬声器性能的提升 (10) 4 PPC3 软件的使用以及喇叭参数的获取 (12) 4.1 PPC3(Pure Path Console 3)软件介绍 (12) 4.2 扬声器参数的建模提取 (13) 5 总结 .............................................................................................................................................. 15 6 参考资料 (15) 图 Figure 1电动式扬声器工作原理示意图 (3) Figure 2电动式扬声器结构框图 (4) Figure 3 扬声器的主要组成构件 (4) Figure 4 传统功放和低功率闭环Smart PA 功放的工作原理比较 (11) Figure 5 Smart PA 架构 (12) Figure 7 PPC3 典型界面 (13) Figure 8 扬声器参数提取的硬件环境 (14) Figure 9 Smart PA 参数界面 (15)

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

冷凝压力调节阀的工作原理

冷凝压力调节阀的工作原理 冷凝压力调节阀用于调理介质的流量、压力和液位。依据调理部位旌旗灯号,主动节制阀门的开度,然后到达介质流量、压力和液位的调理。冷凝压力调节阀分电动冷凝压力调节阀、气动冷凝压力调节阀和液动冷凝压力调节阀等。 冷凝压力调节阀由电动执行机构或气动执行机构和冷凝压力调 节阀两局部构成。冷凝压力调节阀凡间分为纵贯单座式冷凝压力调节阀和纵贯双座式冷凝压力调节阀两种,后者具有流畅才能大、不服衡办小和操作不变的特点,所以凡间特殊合用于大流量、高压降和走漏少的场所。 流畅才能Cv是选择冷凝压力调节阀的首要参数之一,冷凝压力调节阀的流畅才能的界说为:当冷凝压力调节阀全开时,阀两头压差为0.1MPa,流体密度为1g/cm3时,每小时流径冷凝压力调节阀的流量数,称为流畅才能,也称流量系数,以Cv透露表现,单元为t/h,液体的Cv值按下式核算。 依据流畅才能Cv值巨细查表,就可以确定冷凝压力调节阀的公

称通径DN。 冷凝压力调节阀的流量特征,是在阀两头压差坚持恒定的前提下,介质流经冷凝压力调节阀的相对流量与它的开度之间关系。冷凝压力调节阀的流量特征有线性特征,等百分比特征及抛物线特征三种。三种注量特征的意义如下: (1)等百分比特征(对数)等百分比特征的相对行程和相对流量不成直线关系,在行程的每一点上单元行程转变所惹起的流量的转变与此点的流量成正比,流质变化的百分比是相等的。所以它的长处是流量小时,流质变化小,流量大时,则流质变化大,也就是在分歧开度上,具有一样的调理精度。 (2)线性特征(线性)线性特征的相对行程和相对流量成直线关系。单元行程的转变所惹起的流质变化是不变的。流量大时,流量相对值转变小,流量小时,则流量相对值转变大。 (3)抛物线特征流量按行程的二方成比例转变,大体具有线性和等百分比特征的中心特征。 从上述三种特征的剖析可以看出,就其调理功能上讲,以等百分比特征为最优,其调理不变,调理功能好。而抛物线特征又比线性特征的调理功能好,可依据运用场所的要求分歧,遴选个中任何一种流

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

微机原理实验一调试程序的使用

物理与机电工程系 (2015——2016 学年第一学期) 《调试程序的使用》 上机实验报告 专业:电子信息科学与技术 学号: 1524812252 姓名:刷卡机 任课教师:风机房 实验地点:理工实验楼9007 项目编号:实验一

执行R命令,即查看、修改CPU寄存器的内容,此时执行结果为: AX =0000 DS=1420 BX=0000 SS=1420 CX=0000 CS=1420 DX=0000 ES=1420 执行D命令,即显示存储单元中的内容命令,此时执行结果为:1420:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 1420:0110 00 00 00 00 00 00 00 00-00 00 00 00 34 00 0F 14 ................ 1420:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 1420:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................

-T AX=EE9A BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000 DS=1420 ES=1420 SS=1420 CS=1420 IP=0129 NV UP EI NG NZ AC PE NC 1420 : 0129 0000 ADD [BX+SI] , AL DS:0000=D1 这是第一条指令执行后的结果和各寄存器内的存储变化码以及其机器显示,此时的标志位为NV UP EI NG NZ AC PE NC 即 溢出标志OF=0 不溢出方向标志DF=0增) 中断标志IF=1开中断符号标志SF=1为负 零标志ZF=0为非零辅助进位AF=1辅助有进位

自立式调节阀工作原理

工作原理 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀前压力。当阀后压力P1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。

3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。 4、自力式温度调节阀工作原理(冷却型)(如图4) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。

压电式压力传感器原理

压电式压力传感器原理、特点及应用 压电式压力传感器的原理 压电式压力传感器的原理主要是压电效应,它是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大 的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里, 压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度 和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,它的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

压电式压力传感器的特点 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。 它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等等。但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取一系列的防潮措施,而输出电流的响应又比较差, 那就要使用电荷放大器或者高输入阻抗电路来弥补这个缺点,让仪器更好地工作。 压电式压力传感器的应用 压电式压力传感器的应用领域很广泛:电声学、生物医学和工程力学等等。它能够测量发动机里面的燃烧压力,也能够应用在军事方面。它可以测量在膛中的枪炮子弹在击发的那一刻,膛压的改变量以及炮口所受到的冲击波压力。它能够测量很小的压力,也能够测量大 的压力。由于它的使用寿命很长、重量较轻、体积较小、结构较简单,因此它所涉及的领域远远不止这些。在对建筑物、桥、汽车和飞机等的冲击和震动的测量,也是非常广泛的。特别是在宇航和航空的领域

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。本文根据气动调节阀的结构和工作原理对在气动调节阀在日 常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。 本文以美国博雷(BARY)厂家生产的 S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。 1、气动调节阀的结构和工作原理 1.1、气动调节阀的结构 气动调节阀由执行机构和阀体两部分组成。 1.2、气动调节阀的工作原理 气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。执行机构是调节阀的推力

部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。 2、气动调节阀的日常维护 在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。 3、气动调节阀常见故障原因分析

压力传感器的工作原理

压力传感器的工作原理 您需要登录后才可以回帖登录|注册发布 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变

化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极 引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接 成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条?,两条受拉应力的电阻条与另两条受压应力的电阻条构 成全桥。 电子血压计中压力传感器的原理应用及常见故障 压力传感器是工业生应用中最为常见的一种传感器,其广泛应 用于各种工业自控环境,在医用中常见于电子血压计,下面,便来为您简单介绍一些压力传感器原理应用及常见故障。 电子血压计压力传感器的工作原理及应用 压力传感器一般有电容式的和压阻式的。电容式的利用两片金 属间的电容变化来对应压力值,压阻式利用电阻值变化来对应压力值。 电子血压计压力传感器的常见问题

相关文档
相关文档 最新文档