文档库 最新最全的文档下载
当前位置:文档库 › 力矩和角动量定理

力矩和角动量定理

力矩和角动量定理
力矩和角动量定理

定义1 向量的向量积

设a和b为两个向量,a与b之间的夹角为θ(0 ≤ θ ≤ π),则存在向量c,满足

(1)向量c的模|c| = |a||b|sinθ;

(2)向量c与向量a和b分别垂直,c的方向与a和b的方向按照由a转向b的右手螺旋法则确定(图1.1)。

这样规定的向量c定义为向量a和b的向量积(也称叉积或外积),记为

c = a × b

注意,对于两个向量a和b,与a和b的数量积a ? b不同,a和b的向量积a × b也是一个向量,如果向量a和b不平行,则a × b与向量a和b构成的平面垂直,即a × b与a和b都垂直。

向量a和b的向量积a × b满足以下运算性质:

(1)反交换律:a × b = ? b × a;图1.1 向量的向量积 (2)分配律:(a + b) × c = a × c + b × c;

(3)数乘结合律:(λa) × b = a ×(λb) = λ(a × b)(λ为任意实数)。

根据向量积的定义和运算性质,容易得到(这里0表示零向量): (1)a × a = 0;

(2)设a和b为两个非零向量,则有a × b = 0 ? a∥b。

设i,j,k为空间直角坐标系中的基向量(单位向量),则有

(1)i ? i = j ? j = k ? k = 1,i ? j = j ? k = k ? i = 0;

(2)i × i = j × j = k × k = 0;

(3)i × j = k,j × k = i,k × i = j,图1.2 基向量之间的关系

j × i = ? k,k × j = ? i,i × k = ? j。

向量积可以根据运算性质计算,设向量a和b在空间直角坐标系中的形式分别为a = axi + ayj + azk = (ax,ay,az),b = bxi + byj + bzk = (bx,by,bz),则(运算过程略)

a ×

b = (axi + ayj + azk) × (bxi + byj + bzk)

= (aybz ? azby)i + (azbx ? axbz)j + (axby ? aybx)k

= (aybz ? azby,azbx ? axbz,axby ? aybx)

向量积也可以用三阶行列式展开成二阶行列式进行形式上的计算:a × b ==i ?j +k

= (aybz ? azby)i ? (axbz ? azbx)j + (axby ? aybx)k 计算时可按第一行展开,先去掉三阶行列式中基向量所在的行和列的元素,把余下的二阶行列式(称为余子式)的元素按对角线的乘积相减,然后把结果写成向量形式。

若三个向量a、b、c分别为a = (ax,ay,az),b = (bx,by,bz),c = (cx,cy,cz),则它们的混合积可以按下式进行计算:

(a × b) ? c ==cx ?cy +cz

计算方法和向量积相似,把三阶行列式化为二阶行列式,只需把基向量i、j、k换成向量c的分量cx、cy、cz即可。

定义2 力矩

在确定的参考系中,设有力F和参考点O,力的作用点A相对于参考点O的位移向量为r(由O指向A的向量),则力F对参考点O的力矩M定义为(图2.1)

M = r × F

根据上述定义,力矩M是力F的作用点相对于参考点的位移r与力F的向量积,因此力矩也是一个向量。

上述定义是力矩的一般定义,中学力学中对一点(或轴)的力矩M 定义为力F的大小F与位移r垂直于力F的分量d(称为力臂)的乘积,即 M = Fd 图2.1 对参考点的力矩

这个力矩实际上是在一般定义中的力矩的一个分量(另一个分量实际上等于零)。

定义3 角动量

在惯性参考系中,设质量为m的质点A的运动速度为v,动量为p = mv,质点A相对于参考点O的位移向量为r(由O指向A的向量),则质点A相对于参考点O的动量矩L定义质点A的动量p对参考点O的矩,即(图2.2)

L = r × p

动量矩又称为角动量,这是比动量矩更通的名称,角动量也经常用字母J表示。根据上述定义,角动量L是质点相对于参考点的位移r与质点的动量p的向量积,因此角动量是向量。

按照定义,角动量与参考点的位置有关,选取不同位置的参考点,角动量的大小和方向也将不同。

如果有外力作用于质点,质点运动速度会发生变化,动量图2.2对参考点的力矩

也会发生变化,于是质点相对于参考点的角动量也会改变,即

角动量定理

在惯性参考系中,质点相对于参考点的角动量L对于时间t的变化率等于作用于质点上的外力F相对于参考点的力矩M,即

= M

证明:按照角动量的定义L = r × p和向量积微分法则d(a × b) = da × b + a × db,可以得到角动量L对时间t的变化率为

= (r × p) = (r × p) = × p + r ×

按照速度的定义和牛顿第二定律

v = ,F =

因此以上两式分别为质点的运动速度v和作用于质点上的外力F,于是

= v × p + r × F

因为p = mv为质点的动量,根据向量叉积的性质v × v = 0,可得

= v × p + r × F = v × mv + r × F = r × F

按照力矩的定义M = r × F,即得

= M

质点的角动量定理可以写成微分形式

dL = Mdt

上式对时间t从t1到t2积分,可得

= L2 ? L1 =

ΔL = H

式中ΔL = L2 ? L1,H = 称为外力的冲量矩,上式表明,外力对质点的力矩的时间积累(冲量矩)等于质点角动量的增量,这就是质点角动量定理的积分形式。

力对点的矩和平面力偶系

第三章 力对点的矩和平面力偶系 一、内容提要 本章研究了力矩和力偶。 1.力矩及计算 (1)力矩 力矩表示力使物体绕矩心的转动效应。力矩等于力的大小与力臂的乘积。在平面问题中它是一个代数量。一般规定:力使物体绕矩心产生逆时针方向转动为正,反之为负。用公式表达为 ()Fd F M O ±= (2)合力矩定理 平面汇交力系的合力对平面内任一点的力矩,等于力系中各力对同一点的力矩的代数和。用公式表达为 ()()F M F M O O ∑=R 2.力偶的基本理论 (1)力偶 由两个大小相等、方向相反、不共线的平行力组成的力系,称为力偶。力偶与力是组成力系的两个基本元素。 (2)力偶矩 力与力偶臂的乘积称为力偶矩。为代数量,规定:逆时针方向转动为正,反之为负。用公式表达为: Fd M ±= (3)力偶的性质 力偶不能合成为一个合力,不能用一个力代替,力偶只能与力偶平衡。 力偶在任一轴上的投影恒为零。 力偶对其平面内任一点矩都等于力偶矩,与矩心位置无关。 在同一平面内的两个力偶,如果它们的力偶矩大小相等,转向相同,则这两个力偶等效。 力偶对物体的转动效应完全取决于力偶的三要素:力偶矩的大小、力偶的转向和力偶所在的作用面。 (4)平面力偶系的合成与平衡 平面力偶系的合成结果为一个合力偶,合力偶矩等于平面力偶系中各个力偶矩的代数和。用公式表达为: M R =ΣM 平面力偶系的平衡条件是合力偶矩等于零。用公式表达为: ΣM = 0 二、思考题提示或解答 3-1 试比较力矩与力偶矩的异同点。

答:平面汇交力系的合力对平面内任一点的力矩,等于力系中各分力对同一点的力矩的代数和。这就是平面力系的合力矩定理。 应用合力矩定理在于简化力矩的计算。当力臂不易确定时,可将力分解为易找到力臂的两个互相垂直的分力,在求出两分力的力矩后,再代数相加即可。 3-3 二力平衡中的两个力,作用与反作用公理中的两个力,构成力偶的两个力各有什么不同? 答:二力平衡中的两个力等值、反向、共线,共同作用在一个物体上; 作用与反作用公理中的两个力等值、反向、共线,分别作用在两个物体上; 构成力偶的两个力等值、反向、互相平行,也作用在一个物体上。 3-4 力偶不能用一个力来平衡。如图所示的结构为何能平衡? 答;由于力偶不能简化为一个力,所以力偶不能与一个力平衡。图中的转轮除受到F 和M 作用外,固定铰支座O 处的反力F R 与F 必组成另一与M 反向的力偶,从而平衡。究其本质,仍是力偶与力偶的平衡。 (空10行) (空10行) 思3-4图 思3-5图 3-5 在物体A 、B 、C 、D 四点作用两个平面力偶,其力多边形封闭,如图所示。试问物体是否平衡。 答:物体不平衡。力多边形自行封闭是平面汇交力系的平衡条件,这四个力构成的是平面力偶系。 三、习题解答 3-1 计算下列各图中力F 对点O 的矩。 (空14行) 题3-1图 解 a) M O (F ) = 0 b) M O (F ) = Fl c) M O (F ) = F · 30sin ·l =2 1F l d) M O (F ) = -Fa e) M O (F ) = F (l +r ) f) M O (F ) = -F ·2 2l a +·βsin 3-2 如图所示,每米长挡土墙所受F =120kN 的土压力。求土压力F 对挡土墙的倾覆力矩。 (空10行) 题3-2图

大学物理第5章 角动量守恒定律 刚体的转动

第5章 角动量守恒定律 刚体的转动 5-1 质点的动量守恒与角动量守恒的条件各是什么,质点动量与角动量能否同时守恒?試说明之。 答:质点的动量守恒的条件是: 当0F = 时,p mv == 恒矢量。 质点的角动量守恒的条件是: 当0M = 时,即000,F r θπ?=??=??=?? 时,L = 恒矢量。 可见,当0F = 时,质点动量与角动量能同时守恒。 5-2 质点在有心力场中的运动具有什么性质? 答:质点在有心力场中运动时,0,0F M ≠= ,则角动量守恒,即: 当0M = 时,L = 恒矢量。 又因为有心力是保守力,则机械能守恒,即: 当0ex in nc A A +=时,K P E E E =+=恒量。 5-3 人造地球卫星是沿着一个椭圆轨道运行的,地心O 是这一轨道的一个焦点。卫星经过近地点和远地点时的速率一样吗?卫星在近地点和远地点时的速率与地心到卫星的距离有什么关系? 答:卫星经过近地点和远地点时的速率不一样,由角动量守恒定律得: a a b b r mv r mv = a b b a v r v r ∴= 可见,速率与距离成反比。 5-4 作匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒?对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量是否守恒?对于哪一个定点,它的角动量守恒? 答:作匀速圆周运动的质点,对于圆周上某一定点,它的角动量不守恒;对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量不守恒;对于圆心定点,

它的角动量守恒。 5-5 以初速度0v 将质量为m 的小球斜上抛,抛射角为θ,小球运动过程中, 相对于抛射点的角动量如何变化?小球运动到轨道最高点时,相对于抛射点的角动量为多少? 答:取抛射点为坐标原点,取平面直角坐标系Oxy ,y 轴正方向向上,则质点的运动方程和速度表达式为: 020cos 1sin 2x v t y v t gt θθ=???=-?? , 00c o s s i n x y v v v v gt θθ=??=-? 对于抛射点的角动量: ()() x y y x L r mv xi y j mv i mv j xmv k ymv k =?=+?+=- 将,,,x y x y v v 代入得: 201cos 2 L mgv t k θ=- 当小球到达最高点时,时刻为:0sin v t g θ=,代入上式得: 小球相对于抛射点的角动量为:320sin cos 2mv L k g θθ=- 。 5-6 为什么说刚体平动的讨论可归结为对质点运动的研究? 答:由于刚体平动时,各点的运动状态相同,则可取刚体上任意一点运动代表刚体的运动,所以刚体的平动可用质点运动来描述。 5-7如果刚体所受的合外力为零,其合外力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否一定为零? 答:如果0i i F =∑ ,但力不共轴,则力矩不为零0i i M ≠∑ 。 如果0i i M =∑ ,但力方向相同,则力不为零0i i F ≠∑ 。 5-8 在某一瞬时,如果刚体受到的合外力矩不为零,其角加速度可以为零吗?其角速度可以为零吗? 答:由刚体的转动定理:M J β=

2021年力矩与角动量的关系

在物理学里,作用力使物体绕着转动轴或支点转动的趋向,[1]称为力矩(torque)。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推挤或拖拉涉及到作用力,而扭转则涉及到力矩。 欧阳光明(2021.03.07) 根据国际单位制,力矩的单位是牛顿米。本物理量非能量,因此不能以焦耳(J)作单位; 力矩的表示符号是希腊字母,或。 力矩与三个物理量有关:施加的作用力、从转轴到施力点的位移矢量、两个矢量之间的夹角。力矩以矢量方程表示为 。 力矩的大小为 。 力矩的概念,起源于阿基米德对杠杆的研究。

力矩的定义:力矩等于作用于杠杆的作用力乘以支点到力的垂直距离。假设作用力施加于位置为的粒子。选择原点为参考点,力矩以方程定义为 。 力矩大小为 ; 其中,是两个矢量与之间的夹角。 力矩大小也可以表示为 ; 其中,是作用力对于的垂直分量。 任何与粒子的位置矢量平行的作用力不会产生力矩。 从叉积的性质,可以推论,力矩垂直于位置矢量和作用 力。力矩的方向与旋转轴平行,由右手定则决定。 使1牛顿米的力矩,作用1 全转,需要恰巧焦耳的能量: 。 其中,是能量,是移动的角度,单位是弧度。 力矩有大小方向是矢量,与动量等道理一样,只是一个力学名称。角动量在物理学中是与物体到原点的位移和动量相关的物理量,在经典力学中表示为到原点的位移和动量的叉积,通常写做。角动量是矢量。

其中,表示质点到原点的位移,表示角动量。表示动量。而又可写为: 其中表示杆状系统的转动惯量,ω是角速度矢量。 在不受非零合外力矩作用时,角动量是守恒的。需要注意的 是,由于成立的条件不同,角动量是否守恒与动量是否守恒 没有直接的联系。 角动量在量子力学中与角度是一对共轭物理量。 若物体(或系统)所受外力矩和为零,则物体(系统)的角动量守恒. 例如静电力或万有引力均是径向力. 因此不会产生力矩. 行星运动的相互作用力源自于万有引力.故行星运动满足角动量守恒. 所对应的就是开普勒行星运动定律中的第二定律. 需要特别说明的是:动量, 也就是说动量的方向和速度的方向一致. 角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不变。当方程式右边力矩为零时,可知角动量不随时间变化。 角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。例如,当考虑到太阳系中的行星受到太阳的万有引力这一有心力时,由于万有引力对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒,这也说明了行

力矩

力矩和力偶 【学习目标】 学习内容分析 (1)熟悉力矩的概念,掌握合力矩定理。 (2)掌握力偶的性质及力偶系的合成方法。 (3)掌握力偶系作用下物体的平衡条件及其应用。 【学习方法】 课堂讲授与多媒体相结合 一、【温故知新】 (1)掌握汇交力系合成的几何法与解析法。 (2)掌握汇交力系平衡的条件及其实际应用。 (3)合力投影定理及其应用。 二、【学习过程】 一)自主探究 (1)重点:力矩的计算,合力矩定理,力偶系作用下物体的平衡条件及其应用。 (2)难点:合力矩定理的应用,力偶的性质。 二)合作探究 任务一:力对点之矩 其定义为:力F对某点O的矩等于力的大小与点O到力的作用线距离h的乘积。记作 M (F)=±Fh(2-10) o 式中,点O称为矩心,h称为力臂,Fh表示力使物体绕点O转动效果的大小,而正负号则表明:M o(F)是一个代数量,可以用它来描述物体的转动方向。通常规定:使物体逆时针方向转动的力矩为正,反之为负。力矩的单位为牛顿·米(N·m)或牛顿·毫米(N·m m)。 根据定义,书图2.27中所示的力F1对点O的矩为 M (F1)=-F1h1=-F1h sinα(2-11) o 力对点的矩与矩心的位置有关,同一个力对不同点的矩是不同的。因此,对力矩要指明矩心。 如图2.28所示,从几何上看,力F对点O的矩在数值上等于三角形OAB面积的两倍。力对点的矩在两种情况下等于零:(1)力为零;(2)力臂为零,即力的作用线过矩心。 前述扳手通过螺母中心的情况即属于第(2)种情况。 任务二:合力矩定理 在计算力系的合力对某点的矩时,除根据力矩的定义计算外,还常用到合力矩定理,即:平面汇交力系的合力对平面上任一点之矩,等于所有分力对同一点力矩的代数和。 若在A点有一平面汇交力系F1、F2、…、F n作用,合力矩定理的表达式为: M o(F R)=∑M o(F)(2-12)

对质点系角动量定理的讨论

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 惯性系中质点系角动量定理 (1) 2.1惯性系中角动量定理的推导 (1) 2.2在惯性系中角动量表达式的一点讨论 (2) 2.3惯性系中质点对轴的角动量定理 (3) 2.4刚体定轴转动时对转轴的角动量 (3) 3 非惯性系中的角动量定理 (4) 4 应用 (5) 4.1质点系质心系的角动量定理在刚体定轴转动中的应用 (5) 4.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (5) 5 结论 (6) 参考文献 (7)

对质点系角动量定理的讨论 摘 要:通过对质点系角动量定理推导以及讨论其在具,体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 Discussion on the Theorem of Angular Momentum of Particle Abstract : Through to discuss of the particle system and angular moment theorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them, we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly , and proved a lot of help to solve the related mechanical problems. Key W ords : Particle; Angular momentum; Reference points; Axis; centroid. 1引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯。性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 2惯性系中质点系角动量定理 2.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v 表示,相对于参考点O 的位置矢量分别为1r ,2r ……i r …n r ,质量分别为1m , 2m ……i m ……n m 将质点系的角动量记作L 。则

2-3-1.1力矩的概念与求法式

高一建筑力学教学案 授课时间: 课题 :力矩 课 型:新授 教学目标: 了解力矩概念,掌握力矩的求法 教学重点:求力矩 教学难点:力臂,合力矩定律 知识结构 : 力对点的矩是很早以前人们在使用杠杆、滑车、绞盘等机械搬运或提升重物时所形成的一个概念。现以板手拧螺母为例来说明。如图所示,在板手的A 点施加一力F ,将使板手和螺母一起绕螺钉中心O 转动,这就是说,力有使物体(扳手)产生转动的效应。实践经验表明,扳手的转动效果不仅与力F 的大小有关,而且还与点O 到力作用线的垂直距离d 有关。当d 保持不变时,力F 越大,转动越快。当力F 不变时,d 值越大,转动也越快。若改变力的作用方向,则扳手的转动方向就会发生改变,因此,我们用F 与d 的乘积再冠以适当的正负号来表示力F 使物体绕O 点转动的效应,并称为力F 对O 点之矩,简称力矩,以符号M O (F )表示,即d F F M ?±=)(O O 点称为转动中心,简称矩心。矩心O 到力作用线的垂直距离d 称为力臂。 式中的正负号表示力矩的转向。通常规定:力使物体绕矩心作逆时针方向转动时,力矩为正,反之为负。在平面力系中,力矩或为正值,或为负值,因此,力矩可视为代数量。 由图可以看出,力对点之矩还可以用以矩心为顶点,以力矢量为底边所构成的三角形的面积的二倍来表示。即面积OAB 2)(O ?±=F M 显然,力矩在下列两种情况下等于零: (1)力等于零;(2)力的作用线通过矩心,即力臂等于零。力矩的单位是牛顿?米(N ?m )或千牛顿?米(kN ?m ) 【例3-1】 分别计算图3-3所示的F 1、F 2对O 点的力矩。 【解】:由式(3-1),有

力矩与角动量的关系

而扭转则涉及到力矩。 根据国际单位制,力矩的单位是牛顿米。本物理量非能量,因此不能以焦耳(J)作单位; 力矩的表示符号是希腊字母,或。 力矩与三个物理量有关:施加的作用力、从转轴到施力点的位移矢量、两个矢量之间的夹角。力矩以矢量方程表示为 。 力矩的大小为 。 力矩的概念,起源于阿基米德对杠杆的研究。 力矩的定义:力矩等于作用于杠杆的作用力乘以支点到力的垂直距离。假设作用力施加于位置为的粒子。选择原点为参考点,力矩以方程定义为 。 力矩大小为 ; 其中,是两个矢量与之间的夹角。 力矩大小也可以表示为 ; 其中,是作用力对于的垂直分量。 任何与粒子的位置矢量平行的作用力不会产生力矩。 从叉积的性质,可以推论,力矩垂直于位置矢量和作用力。力矩的 方向与旋转轴平行,由右手定则决定。 使1牛顿米的力矩,作用1 全转,需要恰巧焦耳的能量: 。 其中,是能量,是移动的角度,单位是弧度。 力矩有大小方向是矢量,与动量等道理一样,只是一个力学名称。

角动量在物理学中是与物体到原点的位移和动量相关的物理量,在经典力学中表示为到原点的位移和动量的叉积,通常写做。角动量是矢量。 其中,表示质点到原点的位移,表示角动量。表示动量。而又可写为: 其中表示杆状系统的转动惯量,ω是角速度矢量。 在不受非零合外力矩作用时,角动量是守恒的。需要注意的是,由于成立的 条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 角动量在量子力学中与角度是一对共轭物理量。 需要特别说明的是:动量, 也就是说动量的方向和速度的方向一致. 角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不 变。当方程式右边力矩为零时,可知角动量不随时间变化。 需要搞懂有心力也就是向心力的作用不能产生力矩。

大学物理角动量小论文

角动量守恒及其应用 ————角动量守恒及其应用 姓名:咫尺天涯学号:0909009 班级:12-1 摘要:角动量及其规律是从牛顿定律基础上派生出来的又一重要结果.角动量定理对质点及质点系都成立。在一些体育运动及猫的下落问题中都会用到角动量守恒来解释相关现象。 一、理论基础 质点的角动量定理为:M= 对其推广到质点系。一质点系由N个质点组成。对质点系中任一个质元J,应用角动量定理得: M是第J个质元受到的合力矩。将每个质元受到的力矩分为外力矩和内力矩,分别记作这样,对第J个质元 将它对N个质元求和得 式中,为质点系所有质点受到和外力矩矢量和,为质点系所有质点受到和内力矩矢量和。可知质点系所有质点受到和外力矩矢量和为零(读者可自行证明,在此不做赘述)。 故对质点系来说 前面证明了角动量定理对质点及质点系都成立。接下来探讨角动量守恒所应该满足的条件: (1)系统不受外力。 (2)系统所受和外力矩为零。 此两种情况下M=0,由角动量定理:M= 得系统角动量变化率为0。即系统角动量为常量,也说明了此时角动量是守恒的。

另外:L= 此时 ,当I 增大时 减小,当I 减小时 增大.利用此性质可以解释一些物理现象。 二、 联系实际: (1) 人体作为一个一个质点系,在运动过程中也应遵循角动 量定理。人体脱离地面和运动器械后。仅受重力作用, 故人体相对质心 角动量守恒。利用 人体形状可变的 性质,应用角动量 守恒定律就可做 出千姿百态的动 作出来。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I 的改变而变,但两者之乘积却保持不变,因而当I 变大时, 变小;I 变小时, 变大。 在花样滑冰中,运动员利用身体的伸缩改变自身的转动惯量,以改变绕自身竖直轴的角速度。 (3) 猫在自由下落中的翻身与角动量守恒 让一只猫四脚朝天的下落,它总能在落地前翻身180度,变成四脚着地的安全姿势着陆。猫在自由下落过程中唯一受到的外力便是重力,而重力对猫的质心没有力矩,故猫在下落的过程中和外力矩为零。那么它如何获得这180度的角位移? 人们很早就意识到猫此时不能当 作一个刚体来其后又出现了双轴转动解释,意为猫先躬身,使前半身和后半身几乎成90角,然后其前半身与后半身分别旋转,但前后身旋转方向相反。猫身体前后两部分角动量大小可以相同,但符号相反。故其和角动量仍能和猫开始下降时一样,都为0。 这样,对于猫整体而言,其角动量仍能保持不变。 后来有人对猫的下落进行高速摄影,发现了双轴转动现象,此解释宣告成功。 (4)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的 特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。 条件: 结论: 常量

对质点系角动量定理的讨论

目录 摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 引言 (1) 1惯性系中质点系角动量定理 (1) 1.1惯性系中角动量定理的推导 (1) 1.2在惯性系中角动量表达式的一点讨论 (2) 1.3惯性系中质点对轴的角动量定理 (3) 1.4刚体定轴转动时对转轴的角动量 (4) 2非惯性系中的角动量定理 (5) 3应用 (6) 3.1质点系质心系的角动量定理在刚体定轴转动中的应用 (6) 3.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (7) 结束语: (8) 参考文献: (8)

对质点系角动量定理的讨论 姓名:杜晨阳 学号:20095040038 单位:物理电子工程学院 专业:物理学 指导老师:贾老师 职称:副教授 摘 要:通过对质点系角动量定理推导以及讨论其在具体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 To express theorem of angular momentu Abstract: Through to discusse of the particle system and angular momenttheorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them,we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly,and proved a lot of help to solve the related mechanical problems. Key Words : Particle, Angular momentum, Reference points, Axis, centroid. 引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 1惯性系中质点系角动量定理 1.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设 由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v

第3章力矩与力偶

第3章力矩与平面力偶系 教学提示:本章主要研究力矩、力偶和平面力偶系的理论。这都是有关力的转动效应的基本知识,在理论研究和工程实际应用中都有重要的意义。 教学要求:本章让学生掌握力矩、力偶和平面力偶系的概念,掌握力对点之矩的两种求解方法,即直接作力臂的方法与利用合力矩定理求解的方法,掌握平面力偶的性质及平面力偶系的合成与平衡条件,会利用平衡条件求解约束反力。 力对点之矩 1.力矩的概念 力不仅可以改变物体的移动状态,而且还能改变物体的转动状态。力使物体绕某点转动的力学效应,称为力对该点之矩。以扳手旋转螺母为例,如图3-1所示,设螺母能绕点O转动。由经验可知,螺母能否旋动,不仅取决于作用在扳手上的力F的大小,而且还与点O到F的作用线的垂直距离d有关。因此,用F与d的乘积作为力F使螺母绕点O转动效应的量度。其中距离d称为F对O 点的力臂,点O称为矩心。由于转动有逆时针和顺时针两个转向,则力F对O 点之矩定义为:力的大小F与力臂d的乘积冠以适当的正负号,以符号m o(F)表示,记为 m o(F)=±Fh(3-1)通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。 图 由图3-1可见,力F对O点之矩的大小,也可以用三角形OAB的面积的两倍表示,即 m o(F)=±2ΔABC(3-2)在国际单位制中,力矩的单位是牛顿?米(N?m)或千牛顿?米(kN?m)。 由上述分析可得力矩的性质: (1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。力矩随矩

心的位置变化而变化。 (2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变,再次说明力是滑移矢量。 (3)力的大小等于零或其作用线通过矩心时,力矩等于零。 2.合力矩定理 定理:平面汇交力系的合力对其平面内任一点的矩等于所有各分力对同一点之矩的代数和。 m o(F R)=m o(F1)+m o(F2)+…+m o(F n) 即 m o(F R)=Σm o(F)(3-3) 上式称为合力矩定理。合力矩定理建立了合力对点之矩与分力对同一点之矩的关系。这个定理也适用于有合力的其它力系。 例试计算图中力对A点之矩。 图 解本题有两种解法。 (1)由力矩的定义计算力F对A点之矩。 先求力臂d。由图中几何关系有: d=ADsinα=(AB-DB)sinα=(AB-BCctg)sinα=(a-bctgα)sinα=asinα-bcosα 所以 m A(F)=F?d=F(asinα-bcosα) (2)根据合力矩定理计算力F对A点之矩。 将力F在C点分解为两个正交的分力和,由合力矩定理可得 m A(F)= m A(F x)+ m A(F y)=-F x?b+ F y?a=-F(bcosα+asinα) =F(asinα-bcosα) 本例两种解法的计算结果是相同的,当力臂不易确定时,用后一种方法较为简便。 力偶和力偶矩

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

质点角动量定理附角动量守恒定律

第六章角动量 内容: §6-1 力矩(4课时) §6-2 质点的角动量定理及角动量守恒定律(4课时) 要求: 1.熟练掌握力对点的力矩。 2.理解对点的角动量定理及角动量守恒定律。 重点与难点: 角动量守恒定律。 作业: P219 1,2,3,4, P220 5,6,,

第六章 角动量 §6-1 力矩 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θs i n Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋 法则来判断:把右手拇指伸直,其余四指弯曲,弯曲 的方向由矢径通过小于1800的角度转向力的方向 时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θs i n Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方 向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、单位: m N ? 注意:力矩的单位和功的单位不是一回事,力矩的单位不能写成焦耳。 (1)与转动垂直但通过转轴的力对转动不产生力矩; (2)与转轴平行的力对转轴不产生力矩;

力矩和角动量定理

定义1 向量的向量积 设a和b为两个向量,a与b之间的夹角为θ(0 ≤ θ ≤ π),则存在向量c,满足 (1)向量c的模|c| = |a||b|sinθ; (2)向量c与向量a和b分别垂直,c的方向与a和b的方向按照由a转向b的右手螺旋法则确定(图1.1)。 这样规定的向量c定义为向量a和b的向量积(也称叉积或外积),记为 c = a × b 注意,对于两个向量a和b,与a和b的数量积a ? b不同,a和b的向量积a × b也是一个向量,如果向量a和b不平行,则a × b与向量a和b构成的平面垂直,即a × b与a和b都垂直。 向量a和b的向量积a × b满足以下运算性质: (1)反交换律:a × b = ? b × a;图1.1 向量的向量积 (2)分配律:(a + b) × c = a × c + b × c; (3)数乘结合律:(λa) × b = a ×(λb) = λ(a × b)(λ为任意实数)。 根据向量积的定义和运算性质,容易得到(这里0表示零向量): (1)a × a = 0; (2)设a和b为两个非零向量,则有a × b = 0 ? a∥b。 设i,j,k为空间直角坐标系中的基向量(单位向量),则有 (1)i ? i = j ? j = k ? k = 1,i ? j = j ? k = k ? i = 0; (2)i × i = j × j = k × k = 0; (3)i × j = k,j × k = i,k × i = j,图1.2 基向量之间的关系 j × i = ? k,k × j = ? i,i × k = ? j。 向量积可以根据运算性质计算,设向量a和b在空间直角坐标系中的形式分别为a = axi + ayj + azk = (ax,ay,az),b = bxi + byj + bzk = (bx,by,bz),则(运算过程略) a × b = (axi + ayj + azk) × (bxi + byj + bzk) = (aybz ? azby)i + (azbx ? axbz)j + (axby ? aybx)k = (aybz ? azby,azbx ? axbz,axby ? aybx) 向量积也可以用三阶行列式展开成二阶行列式进行形式上的计算:a × b ==i ?j +k

角动量定理

角动量守恒 现在我们来讨论物体的转动。有关转动的运动学我们在第一章已经了解得很 清楚了,有趣的是,你发现在转动和线性运动之间几乎每一个量都是相互对应的。 譬如,就象我们讨论位置和速度那样,在转动中可以讨论角位置和角速度。速度 说明物体运动得多快,而角速度则反映了物体转动的快慢,角速度越大,物体转动得越快,角度变化也越快。再继续下去,我们可以把角速度对时间微分,并称2 d dt d dt αω==ΦK K K 2为角加速度,它与通常的加速度相对应。 当然,转动只是一种形式稍微特殊一点的运动,其动力学方程也就无外乎 Newton 定律了。当然,由于这种运动只涉及转动,因此,我们也许可以找到一 些更加适合描述转动的物理量以及相应的作为Newton 第二定律推论的动力学 方。为了将该转动动力学和构成物体的质点动力学规律联系起来,我们首先就应 当求出,当角速度为某一值时,某一特定质点是如何运动的。这一点我们也是已 经知道了的:假如粒子是以一个给定的角速度ωK 转动,我们发现它的速度为 v r ω=×K K K (1) 接下来,为了继续研究转动动力学,就必须引进一个类似于力的新的概念。 我们要考察一下是否能够找到某个量,它对转动的关系就象力对线性运动的关系 那样,我们称它为转矩(转矩的英文名称torque 这个字起源于拉丁文torquere ,即 扭转的意思)。力是线性运动变化所必须的,而要使某一物体的转动发生变化就 需要有一个“旋转力”或“扭转力”,即转矩。定性地说,转矩就是“扭转’;但 定量地说,转矩又应该是什么呢?因为定义力的一个最好的办法是看在力作用下 通过某一给定的位移时,它做了多少功,所以通过研究转动一个物体时做了多少 功就能定量地得出转矩的理论。为了保持线性运动和转动的各个量之间的对应关 系,我们让在力作用下物体转过一个微小距离时所做的功等于转矩与物体转过的 角度的乘积。换句话说,我们是这样来定义转矩,使得功的定理对两者完全相同: 力乘位移是功,转矩乘角位移也是功。这就告诉了我们转矩是什么。如果粒子的 位矢转过一个很小的角度,它做了多少功呢?这很容易。所做的功是

专题六:力矩和角动量

专题六:力矩和角动量 例1.如图所示,一个质量均匀分布的直杆搁置在质量均匀的圆环上,杆与圆环相切,系统静止在水平地面上,杆与地面接触点为A ,与环面接触点为B 。已知两个物体的质量线密度均为ρ,直杆与地面的夹角为θ,圆环半径为R ,所有接触点的摩擦力足够大。求: (1)地给圆环的摩擦力; (2)求A 、B 两点静摩擦因数的取值范围。 例2.有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙上,另一端用水平轻绳CB 拉住。板上依次放着A 、B 、C 三个圆柱体,半径均为r ,重均为G ,木板与墙的夹角为θ,如图所示,不计一切摩擦,求BC 绳上的张力。 例3.有一质量为m =50kg 的直杆,竖立在水平地面上,杆与地面间静摩擦因数μ=0.3,杆的上端由固定在地面上的绳索拉住,绳与杆的夹角θ=300,如图所示。 (1)若以水平力F 作用在杆上,作用点到地面的距离h 1=2L /5(L 为杆长),要使杆不滑倒,力F 最大不能超过多少? (2)若将作用点移到h 2=4L /5处时,情况又如何? 例4.如图所示,矩形板N 上有两个光滑的圆柱,还有三个小孔A 、B 、C ,通 过小孔可以用销钉把此板固定在光滑的水平面M 上。一柔性带按图示方式绕过 两圆柱后,两端被施以拉力T'=T =600 N ,且T'∥T ,相距40 cm ;已知AB = 30 cm ,AC =145 cm ,BC =150 cm 。为了保持物块静止, (1)若将两个销钉分别插入A 、B 中,这两个孔将受受怎样的力? (2)将两个销钉插入哪两个孔才最省力?此时所插的销钉受力多大? 例5. 如图所示,质量为 m 的小球 B 放在光滑的水平A B θ

第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量 守恒定理

第五章角动量角动量守恒定理 本章结构框图 学习指导 本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。 基本要求 1.理解质点、质点系、定轴刚体的角动量概念。 2.理解定轴刚体的转动惯量概念,会进行简单计算。 3.理解力矩的物理意义, 会进行简单计算。

4.掌握刚体定轴转动定律,熟练进行有关计算。 5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定 理,熟练进行有关计算。 6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。 内容提要 1.基本概念 刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即: I的大小与刚体总质量、质量分布及转轴位置有关。 质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。 表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

力矩与角动量的关系

在里,使物体绕着或转动的趋向,称为力矩(torque)。转动力矩又称为转矩。力矩能够使物体改变其。推挤或拖拉涉及到作用力,而扭转则涉及到力矩。 根据,力矩的单位是。本物理量非能量,因此不能以(J)作单位; 力矩的表示符号是,或。 力矩与三个物理量有关:施加的作用力、从转轴到施力点的位移矢量、两个矢量之间的夹角。力矩以矢量方程表示为 。 力矩的大小为 。 力矩的概念,起源于对的研究。 力矩的定义:力矩等于作用于杠杆的乘以到力的垂直。假设作用力施加于位置为的粒子。选择原点为参考点,力矩以方程定义为 。 力矩大小为 ; 其中,是两个矢量与之间的夹角。 力矩大小也可以表示为 ; 其中,是作用力对于的垂直分量。 任何与粒子的位置矢量平行的作用力不会产生力矩。 从叉积的性质,可以推论,力矩垂直于位置矢量和作用力。力矩的 方向与旋转轴平行,由右手定则决定。 使1牛顿米的力矩,作用1 ,需要恰巧焦耳的能量: 。 其中,是能量,是移动的角度,单位是。 力矩有大小方向是矢量,与动量等道理一样,只是一个力学名称。

角动量在中是与物体到原点的和相关的,在中表示为到原点的和的,通常写做。角动量是。 其中,表示质点到原点的位移,表示角动量。表示动量。而又可写为:其中表示杆状系统的,ω是角速度矢量。 在不受非零合外力矩作用时,角动量是守恒的。需要注意的是,由于成立的 条件不同,角动量是否守恒与是否守恒没有直接的联系。 角动量在中与角度是一对。 若物体(或系统)所受外力矩和为零,则物体(系统)的角动量守恒. 例如静电力或万有 引力均是径向力. 因此不会产生力矩. 行星运动的相互作用力源自于万有引力.故行星运动满足角动量守恒. 所对应的就是开普勒行星运动定律中的第二定律. 需要特别说明的是:动量, 也就是说动量的方向和速度的方向一致. 角动量守恒定律是指系统所受合外为零时系统的保持不变。当右边为零时,可知不随时间变化。 角动量守恒定律是普遍存在的之一,角动量的守恒实质上对应着空间旋转。例如,当考虑到中的受到的万有引力这一时,由于对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒,这也说明了行星绕太阳单位时间内与太阳连线扫过的面积大小总是恒定值的原因。另外,角动量守恒定律也是的原因。 需要注意的是,由于成立的条件不同,角动量是否守恒与是否守恒没有直接的联系。需要搞懂有心力也就是向心力的作用不能产生力矩。

相关文档