文档库 最新最全的文档下载
当前位置:文档库 › 数字信号处理MATLAB实验

数字信号处理MATLAB实验

数字信号处理MATLAB实验
数字信号处理MATLAB实验

实验一熟悉MATLAB环境

一、实验目的

(1)熟悉MATLAB的主要操作命令。

(2)学会简单的矩阵输入与数据读写。

(3)掌握简单的绘图命令。

(4)用MATLAB编程并学会创建函数。

(5)观察离散系统的频率响应。

二、实验内容

认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。

上机实验内容:

(1)数组的加、减、乘、除与乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A、*B,F=A、/B,G=A、^B并用stem语句画出A、

B、C、D、E、F、G。

(2)用MATLAB实现以下序列。

a)x(n)=0、8n0≤n≤15

b)x(n)=e(0、2+3j)n0≤n≤15

c)x(n)=3cos(0、125πn+0、2π)+2sin(0、25πn+0、1π) 0≤n≤15

d)将c)中的x(n)扩展为以16为周期的函数x16(n)=x(n+16),绘出四个周期。

e)将c)中的x(n)扩展为以10为周期的函数x10(n)=x(n+10),绘出四个周期。

(3)x(n)=[1,-1,3,5],产生并绘出下列序列的样本。

a)x 1(n)=2x(n+2)-x(n-1)-2x(n)

b)∑=-=5

1k 2)k n (nx (n) x

(4)绘出下列时间函数的图形,对x 轴、y 轴以及图形上方均须加上适当的标注。

a) x(t)=sin(2πt) 0≤t ≤10s b) x(t)=cos(100πt)sin(πt) 0≤t ≤4s

(5)编写函数stepshift(n0,n1,n2)实现u(n-n0),n1

(6)给定一因果系统)0.9z 0.67z -1)/(1z 2(1H(z)-2-1-1+++=求出并绘制H(z)的幅频响应与相频响应。

(7)计算序列{8 -2 -1 2 3}与序列{2 3 -1 -3}的离散卷积,并作图表示卷积结果。

(8)求以下差分方程所描述系统的单位脉冲响应h(n), 0≤n<50

y(n)+0、1y(n-1)-0、06y(n-2)=x(n)-2x(n-1)

三、思考题

(1)对于有限长序列,如何用MATLAB 计算其DTFT ?

(2)对于由两个子系统级联或并联的系统,如何用MATLAB 计算它们的幅频响应与相频响应?

四、实验报告要求

(1)简述实验目的及原理。

(2)按实验步骤附上实验程序。

(3)按实验步骤附上有关离散系统的频率特性曲线。

(4)简要回答思考题。

五、与本实验有关的MATLAB 函数

x=sin(2*pi*f/fs*n);生成频率为f,采样频率为fs 的正弦信号,式

中,n=[0 1 2 … N]。

sum(X);对于向量X,计算X各元素的与。对于矩阵X,计算X各列元素之与组成的行向量。

plot(t,y);画出以向量t为坐标的向量y(行或列)的曲线。向量t与向量y具有相同的维数。命令plot(s1,t1,s2,t2,s3,t3);将在同一图上画出分别以t1,t2,t3为坐标的向量s1,s2,s3的曲线。

xlabel(‘samples’);在x轴上加上标注。

ylabel(‘amplitude’);在y轴上加上标注。

title(‘sinusoidal signal’);在图的上部加上标题。

y=conv(h,x);计算向量h与x的卷积,结果放在y中。

y=filter(b,a,x);以向量b与a为参数的滤波器对输入信号向量x进行滤波处理。

h=impz(b,a,N);计算b与a为参数的N点滤波器脉冲响应。

[H,f]=freqz(b,a,N,Fs);给定以Hz为单位的采样频率Fs,计算以(b,a)为参数的滤波器N点频率向量f与N点复频率向量H。该命令用于绘制滤波器的幅频与相频响应。如果省略左边的[H,f],该命令将直接绘出滤波器的对数幅频与相频响应。

实验二信号的采样与重建

一、实验目的

(1)在学习本章内容的基础上,通过实验加强本章内容的有关信号采样与重建的基本概念,熟悉相关MATLAB函数。

(2)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

(3)通过实验,了解数字信号采样率转换过程中的频谱特性。(4)对实际的音频文件做内插与提取操作,体会低通滤波器在内插与提取中的作用。

二、实验内容

认真阅读相关的MATLAB函数帮助文件。再熟悉MATLAB函数的基础上,完成以下试验。

上机实验内容:

(1)一信号就是三个正弦信号的与,正弦信号的频率分别为50、500、1000Hz,该信号以8kHz采样。用适当数量的样本画出

该信号。

(2)一信号就是三个正弦信号的与,正弦信号的频率分别为50、500、1000Hz,该信号以800Hz采样。用适当数量的样本画出

该信号,并讨论信号的混叠情况。

(3)令,其中f/fs=1/16,即每个周期内有16个点。试利用MATLAB编程实现:

○1作M=4倍的抽取,使每个周期变成4点。

○2作L=3倍的插值,使每个周期变成48点。

(4)输入信号x(n)为归一化频率分别为f1=0、04,f2=0、3的正弦信号相加而成,N=50,内插因子为5,抽取因子为3,给出按有理

因子5/3做采样率变换的输入输出波形。

(5)常见的音频文件采样率为44、1khz。请找一个wav格式、采样率为44、1khz的音频文件,用MATLAB编写程序,把它

转换为采样率为48、32、22、05、16与8khz的音频文件,

用播放器分别进行播放,比较音质的变化,并解释原因。

(6)请找一个wav格式、采样率为11、025khz的音频文件,用

数字信号处理基础实验指导书

《数字信号处理》实验指导书 光电工程学院二○○九年十月

实验一离散时间信号分析 一、实验目的 1.掌握各种常用的序列,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的相加、相乘、移位、反转等基本运算及计算机实现与作用。 4.掌握线性卷积软件实现的方法。 5.掌握计算机的使用方法和常用系统软件及应用软件的使用。 6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列来表示,其中代表序列的第n个数字,n代表时间的序列,n的取值范围为的整数,n取其它值没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号进行等间隔采样,采样间隔为T,得到一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反转、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将和的变量换成,变成和,再将以纵轴为对称轴反褶成。 (2)移位:将移位,得。当为正数时,右移位;当为负数时,左

移位。 (3)相乘:将和的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得。 三、主要实验仪器及材料 微型计算机、Matlab软件6.5或更高版本。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB或C语言编程产生和绘制下列有限长序列: (1)单位脉冲序列 (2)单位阶跃序列 (3)矩形序列 (4)正弦型序列 (5)任意序列 3.序列的运算 利用MATLAB编程完成上述两序列的移位、反转、加法、乘法等运算,并绘制运算后序列的波形。 4.卷积运算 利用MATLAB编制一个计算两个序列线性卷积的通用程序,计算上述两序列,并绘制卷积后序列的波形。 5.上机调试并打印或记录实验结果。 6.完成实验报告。 五、实验报告要求 1. 简述实验原理及目的。 2. 给出上述序列的实验结果。 3. 列出计算卷积的公式,画出程序框图,并列出实验程序清单 (可略)(包括必要的程序说明)。 4. 记录调试运行情况及所遇问题的解决方法。 5. 给出实验结果,并对结果做出分析。 6. 简要回答思考题。 1 如何产生方波信号序列和锯齿波信号序列? 2 实验中所产生的正弦序列的频率是多少?是否是周期序列?

数字信号处理Matlab实现实例(推荐给学生)

数字信号处理Matlab 实现实例 第1章离散时间信号与系统 例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解 MATLAB程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。 例1-2 用MATLAB计算差分方程 当输入序列为时的输出结果。 解 MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)];

k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 例1-3 用MATLAB 计算例1-2差分方程 所对应的系统函数的DTFT 。 解 例1-2差分方程所对应的系统函数为: 123 123 0.80.440.360.02()10.70.450.6z z z H z z z z -------++= +-- 其DTFT 为 23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωω ωωω--------++= +-- 用MATLAB 计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi');ylabel('幅度')

数字信号处理实验七小信号放大器特性分析与仿真

实验七小信号放大器特性分析与仿真1,实验目的 使用matlab分析各种小信号放大器的结构、参数及特性,加深对各种小信号放大器的理解和认识 二、实验原理 小信号放大器是电子线路的重要组成部分之一,由于他工作在晶体管的线性区域之内,因此又称为线性放大器。使用MATLAB可仿真小信号放大器的各种参数,如电压增益,输入阻抗,输出阻抗,频率响应等等。 1、晶体三极管的等效电路 常见的晶体三极管等效电路有:低频h参数,共基极T型高频等效电路,混合π型高频等效电路,他们通常用于分析各种小信号晶体管放大器的特性。 共发射极h参数的等效电路如图(a)所示,它适用于对低频放大器进行分析。另外,还存在着一种简化的h参数等效电路,其中忽略晶体管内部的电压反馈系数。共发射极的h参数与各电压电流的关系为。 共基极T型高频等效电路如图(b)所示,适用于共基极高频放大电路进行分析,工作频率可达100MHZ以上。 混合π型高频等效电路如图(c)所示,适用于分析共发射极的高频发达电路。在较宽的频率范围之内,等效电路的参数和工作频率无关。另外还存在着简化的混合π型高频等效电路,其中和处于开路状态。 2、共发射极放大电路 共发射极放大电路是一种使用的最为广泛的放大电路形式,其特点是电压增益和电流增益都比较高。自定义M函数amplifl..m用来仿真共发射极放大电路,使用它可以计算该放大器的的智力参数和交流参数。该

放大器的电路如下图。 MATLAB的特点之一就是适合进行线性代数运算,因此午在分析直流参数或分析交流参数时,都可以采用基尔霍夫定理,然后采用矩阵求逆的方式求出电压和电流的具体数值,进一步便可得到该放大器的各种参数。在分析共发射极放大的交流参数时,采用的晶体管模型是低频H 参数等效电路。一般来说,每个晶体管都可以用三个节点来表示,他们分别是基极集电极和发射极。在计算交流参数过程中,忽略各电容器的容抗。 3、直接耦合放大器 在两个或三个晶体管之间进行直接耦合的放大器称为直接耦合放大器,他多用作音响系统中的前置放大器,录音机内的磁头放大器。直接耦合放大器的主要特点是工作点稳定,电压增益高,下图是一个典型的直接耦合放大电路,它有三个晶体管构成,第一级为低噪声放大,第二级为高增益放大,第三极为射随器,整个放大器的电压增益由负反馈电路确定。由于采用了串联电压负反馈,同时又使用了射随器,因此该电路具有较高的输入阻抗和较低的输出阻抗。 4、差分放大器

数字信号处理MATLAB中FFT实现

MATLAB中FFT的使用方法 说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[43267890]; Xk=fft(xn) → Xk= 39.0000-10.7782+6.2929i0-5.0000i 4.7782-7.7071i 5.0000 4.7782+7.7071i0+5.0000i-10.7782-6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf; fs=100;N=128;%采样频率和数据点数 n=0:N-1;t=n/fs;%时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号 y=fft(x,N);%对信号进行快速Fourier变换 mag=abs(y);%求得Fourier变换后的振幅 f=n*fs/N;%频率序列 subplot(2,2,1),plot(f,mag);%绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号 y=fft(x,N);%对信号进行快速Fourier变换 mag=abs(y);%求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag);%绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; 运行结果:

数字信号处理实验

实验六: 用FFT对信号作频谱分析 一、实验目的 1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。 2.初步了解数字信号处理在是集中的使用方法和重要性。 3.掌握matlab的开发环境。 二、实验原理与方法 1、引言 双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表10.6.1所示。表中最后一列在电话中暂时未用。DTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

青岛理工大学临沂年数字信号处理及MATLAB试卷

A卷

一、[15分] 1、10 2、f>=2fh

3、()()()y n x n h n =* 4、1 -az -11a 或者-z z ,a 1 -z 或1-1-az -1z 5、对称性 、 可约性 、 周期性 6、191点,256 7、典范型、级联型、并联型 8、T ω = Ω,)2 tan(2ω T = Ω或)2arctan(2T Ω=ω。 二、[20分] 1、C 2、 A 3、 C 4、C 5、B 6、D 7、B 8、A 9、D 10、A (CACCB DBADA) 三、[15分] 1、(5分) 混叠失真:不满足抽样定理的要求。 改善方法:增加记录长度 频谱泄漏:对时域截短,使频谱变宽拖尾,称为泄漏 改善方法:1)增加w (n )长度 2)缓慢截短 栅栏效应:DFT 只计算离散点(基频F0的整数倍处)的频谱,而不是连续函数。 改善方法:增加频域抽样点数N (时域补零),使谱线更密 2、(5分) 3、 (5分) IIR 滤波器: 1)系统的单位抽样相应h (n )无限长 2)系统函数H (z )在有限z 平面( )上有极点存在 3)存在输出到输入的反馈,递归型结构 Fir 滤波器: ? 1)系统的单位冲激响应h (n )在有限个n 处不为零; ? 2)系统函数 在||0 z >处收敛,在 处只有零点,即有限z 平面只有零点,而全部极点都在z =0处; ? 3)机构上主要是非递归结构,没有输入到输出的反馈,但有些结构中也包含有反馈的递归部分。 四、计算题(40分) 1、(12分)解: 解: 对上式两边取Z 变换,得: ()H z ||0z >

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理指导书matlab版

实验1 时域离散信号的产生 一、实验目的 学会运用MATLAB 产生常用离散时间信号。 二、实验涉及的matlab 子函数 1、square 功能:产生矩形波 调用格式: x=square(t);类似于sin (t ),产生周期为2*pi ,幅值为+—1的方波。 x=square(t ,duty);产生制定周期的矩形波,其中duty 用于指定脉冲宽度与整个周期的比例。 2、rand 功能:产生rand 随机信号。 调用格式: x=rand (n ,m );用于产生一组具有n 行m 列的随机信号。 三、实验原理 在时间轴的离散点上取值的信号,称为离散时间信号。通常,离散时间信号用x (n )表示,其幅度可以在某一范围内连续取值。 由于信号处理所用的设备主要是计算机或专用的信号处理芯片,均以有限的位数来表示信号的幅度,因此,信号的幅度也必须“量化”,即取离散值。我们把时间和幅度上均取离散值的信号称为时域离散信号或数字信号。 在MATLAB 中,时域离散信号可以通过编写程序直接生成,也可以通过对连续信号的等间隔抽样获得。 下面介绍常用的时域离散信号及其程序。 1、单位抽样序列 ? ? ?≠==000 1)(k k k δ MATLAB 源程序为

1) function [x,n] = impuls (n0,n1,n2) % Generates x(n) = delta(n-n0); n=n0 处建立一个单位抽样序列% [x,n] = impuls (n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('arguments must satisfy n1 <= n0 <= n2') end n = [n1:n2]; x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))]; 将上述文件存为:impuls.m,在命令窗口输入 n0=0,n1=-10,n2=11; [x,n]=impuls (n0,n1,n2); stem(n,x,’filled’) 2)n1=-5;n2=5;n0=0; n=n1:n2; x=[n==n0]; stem(n,x,'filled','k'); axis([n1,n2,1.1*min(x),1.1*max(x)]); title('单位脉冲序列'); xlabel('时间(n)'); ylabel('幅度x(n)'); 3)n1=-5;n2=5;k=0; n=n1:n2; nt=length(n); %求n点的个数 nk=abs(k-n1)+1; %确定k在n序列中的位置 x=zeros(1,nt); %对所有样点置0 x(nk)=1; %对抽样点置1 stem(n,x,'filled','k'); axis([n1,n2,0,1.1*max(x)]); title('单位脉冲序列'); xlabel('时间(n)'); Ylabel('幅度x(n)');

数字信号处理实验

数字信号处理实验

实验一 自适应滤波器 一、实验目的 1、掌握功率谱估计方法 2、会用matlab 对功率谱进行仿真 二、实验原理 功率谱估计方法有很多种,一般分成两大类,一类是经典谱估计;另一类是现代谱估计。经典谱估计可以分成两种,一种是BT 法,另一种是周期法;BT 法是先估计自相关函数,然后将相关函数进行傅里叶变换得到功率谱函数。相应公式如下所示: ||1 *0 1 ?()()()(11) ??()(12) N m xx n jwn BT xx m r m x n x n m N P r m e --=∞ -=-∞ =+-=-∑ ∑ 周期图法是采用功率谱的另一种定义,但与BT 法是等价的,相应的功率谱估计如下所示: 21 1? ()()01 (13)N jw jwn xx n P e x n e n N N --== ≤≤--∑ 其计算框图如下所示: 观测数据x(n) FFT 取模的平方 1/N ) (jw xx e ∧ 图1.1周期图法计算用功率谱框图

由于观测数据有限,所以周期图法估计分辨率低,估计误差大。针对经典谱估计的缺点,一般有三种改进方法:平均周期图法、窗函数法和修正的周期图平均法。 三、实验要求 信号是正弦波加正态零均值白噪声,信噪比为10dB,信号频率为2kHZ,取样频率为100kHZ。 四、实验程序与实验结果 (1)用周期图法进行谱估计 A、实验程序: %用周期法进行谱估计 clear all; N1=128;%数据长度 N2=256; N3=512; N4=1024; f=2;%正弦波频率,单位为kHZ fs=100;%抽样频率,单位为kHZ n1=0:N1-1; n2=0:N2-1; n3=0:N3-1; n4=0:N4-1; a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度

数字信号处理的MATLAB实现

昆明理工大学信息工程与自动化学院学生实验报告 (2011—2012 学年第二学期) 课程名称:数字信号处理开课实验室:信自楼111 2012 年 5 月 31 日年级、专业、班生医学号姓 名 成绩 实验项目名称数字信号处理的matlab 实现指导教师 教 师 评语教师签名: 年月日 一.实验目的 熟练掌握matlab的基本操作。 了解数字信号处理的MATLAB实现。 二.实验设备 安装有matlab的PC机一台。 三.实验内容 .1.求信号x(n)=cos(6.3Пn/3)+cos(9.7Пn/30)+cos(15.3Пn/30),0≤n≤29的幅度频谱. 2. 用冲击响应不变法设计一个Butterworth低通数字滤波器,要求参数为: Wp=0.2Пαp=1dB Ws=0.3Пαs=15dB 3.用双线性变换法设计一个Chebyshev高通IIR滤波器,要求参数为: Wp=0.6Пαp=1dB Ws=0.4586Пαs=15dB 4.用窗函数法设计一个低通FIR滤波器,要求参数为: Wp=0.2Пαp=0.3dB Ws=0.25Пαs=50dB 5.用频率抽样法设计一个带通FIR滤波器,要求参数为: W1s=0.2П W1p=0.35П W2p=0.65П W2s=0.8П αs=60dB αp=1dB 6.根据 4 点矩形序列,( n ) = [1 1 1 1] 。做 DTFT 变换,再做 4 点 DFT 变换。然后分别补零做 8 点 DFT 及 16 点 DFT。 7.调用filter解差分方程,由系统对u(n)的响应判断稳定性 8编制程序求解下列系统的单位冲激响应和阶跃响应。 y[n]+ 0.75y[n -1]+ 0.125y[n -2] = x[n]- x[n -1] 四.实验源程序 1. n=[0:1:29]; x=cos(6.3*pi*n/30)+cos(9.7*pi*n/30)+cos(15.3*pi*n/30);

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

数字信号处理MATLAB实验1

实验一熟悉MATLAB环境 一、实验目的 (1)熟悉MATLAB的主要操作命令。 (2)学会简单的矩阵输入和数据读写。 (3)掌握简单的绘图命令。 (4)用MATLAB编程并学会创建函数。 (5)观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1234],B=[345 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出 A、B、C、D、E、F、G。 (2)用MATLAB实现以下序列。 a)x(n)=0.8n0≤n≤15 b)x(n)=e(0.2+3j)n0≤n≤15 c)x(n)=3cos(0.125πn+0.2π)+2sin(0.25πn+0.1π)0≤n≤15 (n)=x(n+16),绘出四个d)将c)中的x(n)扩展为以16为周期的函数x 16 周期。 (n)=x(n+10),绘出四个e)将c)中的x(n)扩展为以10为周期的函数x 10 周期。

(3)x(n)=[1,-1,3,5],产生并绘出下列序列的样本。 a)x 1(n)=2x(n+2)-x(n-1)-2x(n) b)∑=-=5 1k 2) k n (nx (n) x (4)绘出下列时间函数的图形,对x轴、y轴以及图形上方均须加上适当的标注。 a)x(t)=sin(2πt)0≤t≤10s b)x(t)=cos(100πt)sin(πt) 0≤t≤4s (5)编写函数stepshift(n0,n1,n2)实现u(n-n0),n1

数字信号处理基础实验报告 (2)

成都理工大学 《信号处理基础》实验 开设时间:2013—2014学年第2学期

题目1:信号的产生和显示 一、实验目的: 认识基本信号 通过使用MATLAB 设计简单程序, 掌握对MATLAB 的基本使用方法 二、实验原理: 找出下列表达式的信号与:正弦信号、最小相位信号、最大相位信号、零相位信号的对应关系。 1、sin60t 2、e-60t sin60t 3、(1- e-60t)sin60t 4、e60t sin60t 三、实验内容: 产生上述信号的信号并显示 (1)t=[-pi/30:0.001:pi/30]; f=sin(60*t); plot(t,f) 产生图形如下:

(2)t=[0:0.001:pi/30]; f=exp(-60*t).*sin(60*t); plot(t,f) 产生图形如下:

(3)t=[-5*pi/30:0.001:5*pi/30]; f=(1-exp(-60*t)).*sin(60*t); plot(t,f) 产生图形如下: (4) t=[-pi/30:0.001:pi/30]; f=exp(6*t).*sin(60*t); plot(t,f) 产生如下波形:

四、实验结果与讨论: 讨论上述信号的特点 从第一个波形图可以看出,它的波形与正弦函数sin(t)的相像,只是相位上有改变,是一个正弦信号。最大相位信号的能量集中在后面,最小相位能量集中在前面,所以第二个是一个最小相位,第四个是一个最大相位信号。第三个由于波形在t>0时没有,所以是一个零相位信号。 题目2:频谱分析与显示 一、实验目的 初步认识频谱分析

数字信号处理基本知识点Matlab实现

数字信号处理(第二版) 绪论 1.4 MATLAB 在信号处理中的应用简介 MATLAB 是美国Mathworks 公司于1984年推出的一套高性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理、系统仿真和图形显示于一体,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作。 MATLAB 软件包括五大通用功能:数值计算功能(Numeric ),符号运算功能(Symbolic );数据可视化功能(Graphic ),数据图形文字统一处理功能(Notebook )和建模仿真可视化功能(Simulink )。该软件有三大特点:一是功能强大;二是界面友善、语言自然;三是开放性强。目前,Mathworks 公司已推出30多个应用工具箱。MA TLAB 在线性代数、矩阵分析、数值及优化、数理统计和随机信号分析、电路与系统、系统动力学、信号和图像处理、控制理论分析和系统设计、过程控制、建模和仿真、通信系统、以及财政金融等众多领域的理论研究和工程设计中得到了广泛应用。 2.10 离散时间信号与系统的Matlab 表示 2.10.1 离散时间信号的表示和运算 1、基本序列的Matlab 表示 单位采样序列 在MA TLAB 中,单位采样序列可以通过编写以下的DTimpulse .m 文件来实现,即 function y=DTimpulse (n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 单位阶跃序列 在MA TLAB 中,单位阶跃序列可以通过编写DTu .m 文件来实现,即 function y=DTu (n) y=n>=0; %当参数为非负时输出1 调用该函数时n 必须为整数或整数向量。 矩形序列 用MA TLAB 表示矩形序列可根据公式()()()N R n u n u n N =--并利用DTu 函数生成,即 function y=DTR(n,N) y=DTu(n)-DTu(n-N); 调用该函数时n 必须为整数或整数向量,N 必须为整数。 实指数序列 用MA TLAB 表示实指数序列()(),n x n a u n n N a R =∈∈,即

数字信号处理综合设计实验报告

数字信号处理实验八 调制解调系统的实现 一、实验目的: (1)深刻理解滤波器的设计指标及根据指标进行数字滤波器设计的过程(2)了解滤波器在通信系统中的应用 二、实验步骤: 1.通过SYSTEMVIEW软件设计与仿真工具,设计一个FIR数字带通滤波器,预先给定截止频率和在截止频率上的幅度值,通过软件设计完后,确认滤波器的阶数和系统函数,画出该滤波器的频率响应曲线,进行技术指标的验证。 建立一个两载波幅度调制与解调的通信系统,将该滤波器作为两个载波分别解调的关键部件,验证其带通的频率特性的有效性。系统框图如下: 规划整个系统,确定系统的采样频率、观测时间、细化并设计整个系统,仿真调整并不断改进达到正确调制、正确滤波、正确解调的目的。(参考文件

zhan3.svu) (1)检查滤波器的波特图,看是否达到预定要求; (2)检查幅度调制的波形以及相加后的信号的波形与频谱是否正常; (3)检查解调后的的基带信号是否正常,分析波形变形的原因和解决措施;(4)实验中必须体现带通滤波器的物理意义和在实际中的应用价值。 2.熟悉matlab中的仿真系统; 3.将1.中设计的SYSTEMVIEW(如zhan3.svu)系统移植到matlab中的仿真环境中,使其达到相同的效果; 4.或者不用仿真环境,编写程序实现该系统,并验证调制解调前后的信号是否一致。 实验总共提供三个单元的时间(6节课)给学生,由学生自行学习和自行设计与移植 三、系统设计 本系统是基于matlab的simulink仿真软件设计的基带信号调制与解调的系统,利用matlab自带的数字信号仿真模块构成其原理框图并通过设置载波、带通滤波器以及低通滤波器等把基带信号经过载波调制后再经乘法器、带通滤波器和低通滤波器等电路系统能解调出基带信号。 1、实验原理框图

南京理工大学数字信号处理matlab上机完美版

1.已知3阶椭圆IIR数字低通滤波器的性能指标为:通带截止频率0.4π,通带波纹为0.6dB,最小阻带衰减为32dB。设计一个6阶全通滤波器对其通带的群延时进行均衡。绘制低通滤波器和级联滤波器的群延时。 %Q1_solution %ellip(N,Ap,Ast,Wp) %N--->The order of the filter %Ap-->ripple in the passband %Ast->a stopband Rs dB down from the peak value in the passband %Wp-->the passband width [be,ae]=ellip(3,0.6,32,0.4); hellip=dfilt.df2(be,ae); f=0:0.001:0.4; g=grpdelay(hellip,f,2); g1=max(g)-g; [b,a,tau]=iirgrpdelay(6,f,[0 0.4],g1); hallpass=dfilt.df2(b,a); hoverall=cascade(hallpass,hellip); hFVT=fvtool([hellip,hoverall]); set(hFVT,'Filter',[hellip,hoverall]); legend(hFVT,'Lowpass Elliptic filter','Compensated filter'); clear; [num1,den1]=ellip(3,0.6,32,0.4); [GdH,w]=grpdelay(num1,den1,512); plot(w/pi,GdH); grid xlabel('\omega/\pi'); ylabel('Group delay, samples'); F=0:0.001:0.4; g=grpdelay(num1,den1,F,2); % Equalize the passband Gd=max(g)-g; % Design the allpass delay equalizer [num2,den2]=iirgrpdelay(6,F,[0,0.4],Gd); [GdA,w] = grpdelay(num2,den2,512); hold on; plot(w/pi,GdH+GdA,'r');

数字信号处理上机实验答案完整版

数字信号处理上机实验 答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第十章上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用FFT对信号作频谱分析。 实验四 IIR数字滤波器设计及软件实现。 实验五 FIR数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 functiontstem(xn,yn) %时域序列绘图函数 %xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串) n=0:length(xn)-1; stem(n,xn,'.');boxon xlabel('n');ylabel(yn); axis([0,n(end),min(xn),*max(xn)]) 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可

基于MATLAB的数字信号处理

数字信号处理课程设计报告题目:语音数字信号处理与分析及 Matlab实现 系别通信工程 专业班级 学生姓名 学号 指导教师 提交日期

摘要 本次课程设计综合利用数字信号处理的理论知识进行语音信号的频谱分析,通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。本次课程设计要求利用MATLAB对语音信号进行分析和处理,要求学生采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。待处理语音信号是一个在20Hz~20kHz 频段的低频信号。采用了高效快捷的开发工具——MATLAB,实现了语音信号的采集,对语音信号加噪声及设计滤波器滤除噪声的一系列工作。利用采样原理设计了高通滤波器、低通滤波器、带通滤波器、带阻滤波器。同学通过查阅资料自己获得程序进行滤波器的设计,能过得到很好的锻炼。 关键词:MATLAB滤波器数字信号处理

目录 第一章绪论 (1) 1.1设计的目的及意义 (1) 1.2设计要求 (1) 1.3设计内容 (1) 第二章系统方案论证 (3) 2.1设计方案分析 (3) 2.2实验原理 (3) 第三章信号频谱分析 (6) 3.1原始信号及频谱分析 (6) 3.2加入干扰噪声后的信号及频谱分析 (7) 第四章数字滤波器的设计与实现 (11) 4.1高通滤波器的设计 (11) 4.2低通滤波器的设计 (12) 4.3带通滤波器的设计 (15) 4.4带阻滤波器的设计 (16) 第五章课程设计总结 (19) 参考文献 (20) 附录Ⅰ..................................................................................I 附录Ⅱ................................................................................II

相关文档
相关文档 最新文档