文档库 最新最全的文档下载
当前位置:文档库 › 有机小分子发光材料的研究

有机小分子发光材料的研究

有机小分子发光材料的研究
有机小分子发光材料的研究

Vol 135No 111

?4?化 工 新 型 材 料

N EW CH EMICAL MA TERIAL S 第35卷第11期2007年11月

基金项目:四川省应用基础研究基金资助项目(04J Y0292104)。

作者简介:杨定宇(1976-),男,博士研究生,讲师,主要从事薄膜材料与器件的研究。

有机小分子发光材料的研究

杨定宇 蒋孟衡 涂小强

(成都信息工程学院光电技术系,成都610225)

摘 要 系统介绍了红、绿、蓝三基色有机小分子电致发光材料的分类,分析了材料发光特性与分子结构的关系,并

介绍目前的最新研究进展。

关键词 有机发光材料,浓度淬灭,发光效率,色纯度

R esearch on molecular organic electroluminescent materials

Yang Dingyu Jiang Mengheng Tu Xiaoqiang

(Chengdu University of Information Technology ,Chengdu 610225)

Abstract The types of the molecular tricolor EL materials were introduced systematically ,then analyzed the con 2

nections between the EL performance and molecular structure.Moreover ,the latest progress was also presented.

K ey w ords

organic electroluminescent material ,concentration quenching ,luminous efficiency ,color purity 自1987年Tang 等[1]制备成功低压驱动的小分子发光器

件以来,有机发光技术已取得了巨大进展,并开始进入产业化进程。目前,有机发光技术仍需进一步提高器件的工作稳定性,改善发光性能,延长使用寿命。提升器件发光性能和寿命的诸多措施主要在以下方面展开:完善器件结构(包括有机层和电极);封装技术;研发新一代的发光材料等。研究表明,发光器件的性能很大程度上取决于发光材料的特性,研究新型的高质量发光材料是提高器件性能的必然要求。

根据分子量的大小,有机发光材料可分为小分子和高分子两大类。前者有纯小分子化合物和金属配合物两种分子类型,采用真空蒸发成膜;后者均为含有共轭结构的高聚物,采用旋涂或喷墨打印方法成膜。目前,小分子器件的荧光量子效率高,容易提纯,发光亮度和色纯度也优于高分子材料,已经开始实现商品化;高分子器件虽然具有加工性、热稳定性及成本上的优势,但目前在发光效率和彩色化方面进展缓慢。然而,即便是小分子器件,在技术上也未达到理想状态。比如,发光稳定性及效率仍有改进的空间,特别是三基色小分子发光材料的发光效率及寿命仍不一致,已严重制约了有机显示器件的产业化进程。

1 小分子发光材料及其进展

小分子发光材料容易发生“浓度淬灭”现象,所以单纯的

主体小分子发光材料很少,多是作为掺杂染料发光。根据分子结构的不同,小分子分为纯有机化合物和金属配合物两种。前者结构中多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭度,从而使化合物光电性质发生变化;后者介于有机物与无机物之间,同时具有有机物的高荧光量子效率和无机物的高稳定性等优点,被业界寄予厚望。有机金属配合物中常用的金

属离子有:周期表中第Ⅱ主族元素的Be 、Zn 和第Ⅲ主族元素的Al 、Ga 、In 以及稀土元素如铽(Tb )、铕(Eu )、钆(Gd )等。此外,近年来引起广泛关注的磷光染料也属于金属配合物,其中心金属均是过渡金属,如:锇(Os )、铱(Ir )、铂(Pt )、钌(Ru )等,配位基则是含氮的杂环化合物。磷光材料中存在较强的自旋2轨道耦合,能够突破三线态激子(占激子数的75%)的自旋禁阻限制,从而大幅度提高器件的发光效率。

1.1 红光小分子发光材料

在三基色有机发光材料中,红光材料的发光效率较低,色纯度和亮度也有待提高。这是因为:红光染料是能隙较小的化合物,易发生非辐射复合;红光染料与掺杂主体间的能级匹配较差,能量转移不完全(效率低),且主体材料的发光难以完全抑制(色纯度差);红光染料存在较强的π2π相互作用,在高掺杂浓度下分子之间易产生聚合,导致浓度淬灭;此外,红光染料多种跃迁机制的存在,使得发光谱往往有50~100nm 的半高宽,色纯度不够好。

红光染料的发射波长应大于610nm ,色度坐标在(x =

0165,y =0135)附近,发光效率大于4cd/A ,寿命超过1万h 。目前,只有DCM 的衍生物达到上述指标,如DCM 、DC J 、

DCJ T 、DCJ TB 、DCJ TI 等[224]

,多以Alq 3(八羟基喹啉铝)为掺杂主体,掺杂浓度控制在015%~2%之间。研究发现,随着掺杂浓度的提高,器件的发射光谱逐渐红移,发光峰可在570~

640nm 范围内调节。从化学结构上看,由DCM 到DC J TI ,分

子结构逐步得到改进,力图避免浓度淬灭,改善红光的色度。如DC J 具有比DCM 更接近上述红光色度坐标的电致发光,

DCJ T 则在分子C 21和C 26位置引入“位阻基团”甲基,减少染

料之间的相互作用,避免浓度淬灭。将DCJ T 呋喃环C 22位置上的甲基用叔丁基取代,得到容易提纯的DCJ TB ,后者具有立

第11期杨定宇等:有机小分子发光材料的研究

体位阻大的四甲基和叔丁基,有效降低浓度淬灭效应,使有效掺杂浓度由015%提高到2%。如用异丙基取代叔丁基则得到更容易合成的DC J TI ,其发光效率和色纯度均可同时得到提高,而无需牺牲某一方面的性能,是目前性能最好的纯小分子红光染料之一

研究表明,DCM 系列要达到真正的红色其掺杂浓度需达到10%以上,且亮度和效率较低。近年来,研究者提出了“辅助

掺杂”的概念,也叫“共客体”

(co 2guest )发光,即将发光染料(A )和辅助染料(B )同时掺杂进主体材料(C )中,能量的传递路线是C B A ,这样的“级联能量转移”效率很高,有效的抑制了主体材料的发光,提高了色纯度,同时也极大的提高了器件的发光效率。Hamada 等[5]将5%的红荧烯(rubrene )和2%的DC J TB 掺杂进Alq 3,获得了211cd/A 的发光电流效率,色度坐标为(0164,0135)的纯红色。值得指出,根据1948年提出的Forster 能量转移理论,客体与主体间的能量转移仅在掺杂体的吸收光谱与主体的荧光光谱有较高的交叠时产生。而且,在共掺杂发光系统中,除了能量转移,还有另一重要的发光机制—载流子俘获。其中,载流子的传递也是通过级联方式,即B 先俘获C 中的空穴和电子,然后传递给A 。一般情况下,这两种机制同时存在。三洋和柯达研究组[6](SK )将浓度为6%的N PB (常作为空穴传输材料)、2%的DCJ TB 、5%的rubrene 同时掺杂进Alq 3,获得发光波长为632nm ,色度坐标为(0165,0135)的纯红色,发光效率提高到218cd/A 。器件性能的提高得益于N PB 对载流子的强俘获能力。Ma 等[7]则将015%的C545T (绿光染料)和015%的DC J TB 掺杂进Alq 3,器件亮度高达23000cd/m 2,发光的电流效率和功率效率分别达到12cd/A 和10lm/W ,是目前已报道的红光效率最高记录。由于C545T 的吸收光谱与Alq 3的荧光光谱交叠很少,研究者将之归于C545T 强大的载流子俘获能力。可见,俘获机制有利于保持器件中载流子的平衡,极大的提高了器件的发光效率和色纯度。

金属配合物方面,红光材料有稀土金属铕(Eu )的配合物,如Eu (DBM )3(TPPO ),但发光效率和亮度均很低。性能较好的是磷光染料,如PtO EP [8]和Btp 2Ir (acac )[9],两者均以CBP 为掺杂主体材料。PtO EP 在高电流密度下容易发生三线态2三线态湮灭,而Btp 2Ir (acac )在100mA/cm 2电流下仍达到215%的外量子效率,发光波长616nm ,色度坐标(0168,0132)。Kawamura 等[10]在Btp 2Ir (acac )上的最新结果是内量子效率51%。最近,人们还尝试改变金属铱(Ir )的配体[11],以

期获得更好的发光性能

1.2 绿光小分子发光材料

绿光器件是目前唯一达到实用化要求的有机发光器件,其荧光效率几乎可达100%,寿命可达10万h 以上。性能较好的纯小分子化合物绿光材料主要是香豆素(Coumarin )系列的C 26、C 2545T 、C 2545TB 、C 2545M T 等。柯达公司最早将C 26

用于有机发光器件[2]

。实验发现,C 26的荧光量子效率几乎达到100%,但发光峰在500nm 附近,属于蓝绿色,纯度不够,且在高掺杂浓度下存在严重淬灭效应。接着,柯达开发出C 2545T 染料[12],这是目前发光性能最好的绿光材料。C 2545T 分子结构上的4个甲基起到了空间位阻的作用,能够减弱分子间的相互作用,降低浓度淬灭效应。然而,当C 2545T 的掺杂浓度大于1%之后,器件的荧光量子效率大幅度下降,这种较小掺杂浓度限制增大了工艺困难。之后,柯达研究组将C 2545T 苯并噻唑环上的H 原子用t 2丁基取代,得到C 2545TB [13]。结果发现,C 2545TB 很好的解决了浓度淬灭问题,并将材料的玻璃化温度由100℃提高到140℃,在1%掺杂浓度下器件的效率由1015cd/A 提高到1219cd/A 。C 2545M T 则是在C 2545T 的C 24位置引入另一个甲基而得到[14]。C 2545M T 分子C 24位置的甲基具有空间位阻效应,导致分子构型发生扭曲,有效阻止了分子之间的聚集,可扩展材料的掺杂浓度范围。实验显示,在很宽的掺杂浓度范围内(2%~12%),器件的效率基本维持在718cd/A 左右。此外,在最佳掺杂浓度(1%)时,器件的发光效率在很宽的驱动电流密度范围基本保持不变,这对于无源驱动(PM )的有机显示器件(OL ED )非常有利

这是因为:普通PM 2OL ED 器件的发光效率会随着驱动电流的增大而降低,为了达到一定的亮度,只有进一步增大驱动电流,这加剧了器件的功耗,严重缩短器件的寿命。

金属配合物绿光材料有八羟基喹啉铝Alq 3和磷光材料Ir (Ppy )3,如图3。Alq 3的发光峰位于540nm 附近,同时也是很好的电子传输材料和掺杂主体材料。为了改善Alq 3的色纯度(发射光谱半高宽约85nm ),Ng 等[15]用稀有金属铽(Tb )取代金属Al ,获得了545nm 的尖峰发射。Baldo 等[16]最先报道了Ir (Ppy )3的绿色磷光发射,掺杂主体是CBP ,获得了8%的

?

5?

化工新型材料第35卷

外量子效率,发光效率达到31lm/W,归因于主体材料与客体之间的有效激子转移。Tanaka等[17]采用新的主体材料,改进器件载流子传输层,将Ir(Ppy)3的外量子效率提高到29%,功率效率高达133lm/W,创造了迄今为止有机发光效率的最高记录。

1.3 蓝光小分子发光材料

蓝光材料是实现全彩显示的三基色材料之一,同时由于较宽的能隙,也是红光和绿光染料的掺杂主体材料。此外,蓝光通过色转换介质技术(CCM),还可以获得红光和绿光,实现全色显示。因此,研发高效的蓝光材料具有重要意义。

对于全色有机显示,蓝光器件的目标是:发光效率4~5cd/A,CIE色度坐标(0114~0116,0111~0115)。目前,蓝光材料无论是纯小分子、一般的金属配合物甚至是磷光染料,其色彩饱和度及寿命均低于绿光器件,特别是色纯度,仍未得到满意的发光,多是天蓝色或深蓝色。蓝光材料带隙较宽,阴极电子的注入比较困难,所以器件效率一般不高。此外,由于Alq3是最常用的电子传输材料,而其本身具有较强的绿光发射能力,影响了蓝光和红光器件的色纯度。解决的办法是在发光层和电子传输层间插入空穴阻挡层,常用的材料有BCP、TPBI、PBD等[18]。BCP由于具有较高的HOMO能级(614eV),有效阻挡空穴进入Alq3,成为最常用的空穴阻挡材料之一。

蓝光材料一般既可作为独立的发光层材料发光,也可作为掺杂染料以及掺杂主体使用。如DPVBi、DPV PA、ADN、TBP等。此外,一些空穴传输材料也可以作为蓝光材料,如N PB、CBP等。Tang等[19]将ADN掺杂在TBP中,获得发光效率为315cd/A,CIE坐标为(0115,0123)的光发射,器件半衰期为4000h。然而,ADN在高温下薄膜表面结构易发生形变,导致发光性能劣化,且颜色偏绿[20]。为了改善发光颜色,柯达公司改用ADN的衍生物TBADN掺杂TBP,发现器件发光的CIE坐标变为(0115,0119),蓝色深度增加,但效率下降[21]。如在ADN的C22位置用甲基取代,还可得到其另一衍生物MADN,它作为独立的发光层,获得了CIE坐标为(0115,0110),半衰期为7000h的蓝光发射,这是目前最“蓝”的发光材料之一。原因是甲基的引入打破了ADN紧密的分子包覆,增大了分子间距,有利于薄膜表面形貌的稳定。低温光致发光谱测试显示,MADN具有不同的电子振动能级,导致发光峰蓝移,器件颜色变为深蓝[22]。此外,MADN和TBADN 也是性能良好的掺杂主体材料。如可将TBP、IDE2102、DSA2 ph等蓝光染料掺杂在MADN中[19,23224],获得“天蓝色”(sky blue)的蓝光发射。

磷光材料方面,目前性能最好的还是铱(Ir)的配合物FIr2 pic[10]。虽然已经获得了10%以上的外量子效率,但发光颜色仍然偏绿(青色)。相对于荧光纳秒级的寿命,磷光寿命要长得多(达到微秒级)。长寿命带来的后果就是在高电流密度下容易发生三线态-三线态(T1→T1)湮灭,导致磷光淬灭。目前,新型的蓝光磷光染料和掺杂主体仍在研究之中。

2 结 语

总体来看,在三基色小分子发光材料中,

绿光器件已经达到实用化的要求,但红光和蓝光器件性能较差。红光材料需要解决发光效率和亮度问题,蓝光材料则须改善色彩饱和度和发光稳定性。目前看来,红光材料短期内突破希望很大,而蓝光材料短期内则难以完全解决。

参考文献

[1] Tang C W,VanSlyke S https://www.wendangku.net/doc/634989606.html,anic electroluminescent diodes

[J].Appl Phys Lett,1987,51(12):9132915.

[2] Tang C W,VanSlyke S A,Adn C H.Chen,Electrolumines2

cence of doped organic t hin film[J].J Appl Phys,1989,65

(9):361023616.

[3] Chen C H,Tang C W,J Shi,et al,Improved red dopant s for

organic electroluminescent devices[J].macrlmol Symp,1998,

125(1):49258.

[4] Chen C H,Tang C W,Shi J,et al,Recent development s in t he

synt hesis of red dopant s for Alq3hosted electroluminescence

[J].Thin Solid Films,2000,363:3272331.

[5] Hamada Y,Kanno H,Tsujioka T,et al,Red orangic light2e2

mitting diodes using an emitting assist dopant[J].Appl Phys

Lett,1999,75(12):168221684.

[6] Hatwar T K,Rajeswaran G,Shi J,Hamada Y,et al.in:Pro2

ceedings of t he10t h international workshop on inorg[M].

ADN Org.EL(EL’00),Hamamat su,J apan,4December

2000,31.

[7] Chen J S,Ma D.Improved color purity ADN efficiency by a

coguest emitter system in doped red light2emitting devices[J].

Journal of Luminescence,2007,1222123:6362638.

[8] Baldo M A,Brien D F,Y ou Y,et al.Highly efficient phos2

phorescent emission from organic electroluminescent devices

[J].Nature,1998,395:1512154.

[9] Adachi C,Baldo M A,Forrest S R,et al.High2efficiency red

electrophosphorescence devices[J].Appl Phys Lett,2001,78

(11):162221624.

[10] Kawamura Y,G oushi K,Brooks J,et al.100%phosphores2

cence quantum efficiency of Ir(Ⅲ)complexes in organic semi2

conductor films[J].Appl Phys Lett,2005,86(7):(071104)12

3.

[11] Xu M L,Li M T,Hong Z R,et al.Highly efficient red elec2

trophosphorescent device based on a new iridium complex wit h

trifluoromet hyl2substituted22benzo[b]t hiophen222yl2pyridine

ligADN[J].Opt Mater,2006,28:102521028.

[12] Fox J L,Chen C H.,Benzopyrano[6,7,82i,j]quinolizine2112

?

6

?

第11期杨定宇等:有机小分子发光材料的研究

one lasing dyes ADN intermediates for t heir preparation[P].U

S Patent No4736032,1988.

[13] Chen C H,Tang C W,Shi J,et al.Green organic electrolumi2

nescent devices[P].U S Patent No6020078,2000.

[14] Chen C H,Chien C H,Liu T H.in:Proceedings of t he inter2

national conference on mater.Adv Tech,(ICMA T2001),Sin2

gapore,2001,221.

[15] Ng A M C,Djuri ic A B,Cheung C H,et al.A green organic

light2emitting diode based on a rare2eart h terbium complex[C].

Proceedings of t he SPIE,2006,6192:61921P.

[16] Baldo M A,Lamansky S,Burrows P E,et al.Very high2effi2

ciency green organic on electrophosphore2scence[J].Appl Phys

Lett,1999,75(1):426.

[17] Tanaka D,Sasabe H,Li Y J.Ultra high efficiency green or2

ganic light2emitting devices[J].J Appl Phys,2007,46(1):

L102L12.

[18] K im Y,Im W B.Effect of hole2blocking layer doped wit h elec2

tron2transport molecules on t he performance of blue organic

light2emitting device[J].Phys Stat Sol,2004,201(9):21482 2153.[19] Shi J,Tang C W.Ant hracene derivatives for stable blue2emit2

tingorganic electroluminescence devices[J].Appl Phys Lett,

2002,80(17):320123203.

[20] Shen W J,Banumat hy B,Chen H H,et al.Sterically hindered

blue host emitters based on ant hracene[C].In Proc Int Display

Manufacturing Conf,Taipei,Taiwan,2003:7412743.

[21] Shi J.Met hod of using predoped materials for making an organ2

ic light2emitting device[P].EP156536,2001.

[22] Li K F,Cheah K W,Yeung K T,et al.Emission characteris2

tics of ADN derivatives[C].in Proc Int Display Manufacturing

Conf,Taipei,Taiwan,2005:1362138.

[23] Suzuki K,Seno A,Tanabe H,et al.New host materials for

blue emitters[J].Syn Met,2004,143:89296.

[24] Kauff man J M,Moyna G.Diarylamion groups as photostable

auxofluors in22benzoxazolyfluorene,2,52diphenyloxazoles,1,

3,52hexatrienes,1,42distyrybenzenes,ADN2,72distyrylflu2 orenes[J].J Org Chem,2003,68(3):8392853.

收稿日期:2007205208

修稿日期:2007206211

引领责任关怀 推动绿色创新

2007年11月16日在北京风景秀丽的怀柔乡景度假村,朗盛公司举行了以环保与责任关怀为主题的媒体交流会,共邀请在京20多家媒体参加。

随着全球对环境问题和自然资源保护问题的日益关注,化工企业正在为减少环境污染做出重要贡献。作为全球领先的化工企业-朗盛公司始终致力于保护环境的“责任关怀”,朗盛在中国的生产基地不仅遵循着全球一致的环保标准和安全要求,在环境、健康、安全方面的努力均得到中国各级政府的认可和褒奖。

交流会上,朗盛无机颜料业务部亚太区副总裁韩乐福博士和朗盛(无锡)化工有限公司总经理胡东祺博士就朗盛(上海)颜料的氧化铁颜料产品及朗盛(无锡)化工的皮革化学品的特性及应用、生产流程和处理方法等做了详细的介绍;特别介绍了朗盛公司与Severn Trent Services公司合作推出的BA YOXID E E33吸附剂产品,该产品主要作用是降低饮用水中重金属砷的含量,减少因饮用砷含量偏高的水而引起的各种疾病的发生,为解决这一全球性问题提供了有效途径;并就HSE在朗盛公司化学品生产过程中的具体应用、日常运营中的贯彻执行及朗盛公司在科技创新发展的同时倾力绿色环保、提倡责任与关怀的实践等独特的经营理念向到会媒体记者做了具体详细的介绍。

(本刊编辑 林莉) 

?7

?

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

光至发光材料的研究进展(精)

光至发光材料的研究进展 关键字光至发光材料荧光反光 Keyword photoluminescence material fluorescence listen 摘要;综述了光致发光材料的大致研究进展,阐述了光致发光材料的发光原理,常见的发光材料,并对未来光致发光材料发展趋势作了展望。 Abstract It is summarize the investigation of photoluminescence material. And tell us about the theory of photoluminescence material. And familiar photoluminescence material. Future development aspects of researches and applications about the material are proposed 前言 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。 光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。 1发展历史 光致发光材料的研究历史非常悠久。最早可追溯到1866 年法国人Sidot 制备的ZnS :Cu 上,它是第一个具有实际应用意义的长余辉蓄光材料。20 世纪初,Lenard 制备出了ZnS :M (M = Cu ,Ag ,Bi ,Mg 等) 发光材料,并研究了荧光衰减曲线,提出了“中心论”。但该类发光材料由于发光亮度不高,寿命短等缺点,人们往其中引入了放射性物质,虽然能解决以上问题,但又会危害人体安全、损害环境,因而人们将目光又投向了其他基质的发光材料领域。1934 年,Haberlandt 在研究天然CaF2 结构时发现,痕量Eu2+ 占据矿石中Ca2+ 的位置时,引起矿石发出蓝光。1964 年, Y2O3 : Eu , Y2O2S : Eu3+发光材料的研制发明,使彩色电视机得到迅速的推广。20 世纪80年代,石春山等对复合氟化物中的光谱特性进行研究,得出Eu2+ 的f - f 跃迁出现的若干判据,推进了我国发光材料的发展。20 世纪80 年代以后,一些制备发光材料的新工艺及一系列超长余辉发光材料的研究成功,为发光材料的应用开辟了广阔的领域。 2发光机理 2.1.反光与发光的区别 在生活中人眼睛能看看到的发光的材料分成两大类。1. 反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。所以反光材料和发光材料有很大的不同,发光机理不一样:光致发光材料是向外发光,而不是反射光。

稀土高分子光致发光材料的研究进展

稀土高分子光致发光材料的研究进展 张秀菊1,2,陈鸣才23,冯嘉春2,李抢满3,贾德民1 (1.华南理工大学,广东广州510640;2.中科院广州化学研究所,广东广州510650;3.中国科学技术大学,安徽合肥230026) 摘 要:综述了稀土高分子光致发光材料的研究基础,比较了不同方法合成的稀土高分子发光材料的结构与性能,介绍了当前该领域的研究进展。 关 键 词:稀土;高分子;配合物;荧光材料 中图分类号:TQ314.266 文献标识码:A 文章编号:1001Ο9278(2002) 05Ο0016Ο05 稀土金属离子作为一种有效的发光中心,在无机 和有机发光材料中已有广泛应用。然而稀土无机材料存在着难加工成型、价格高等问题;稀土有机小分子配合物则存在稳定性差等问题,这些因素限制了稀土发光材料更为广泛的应用。高分子材料本身具有稳定性好及来源广、成型加工容易等特点,如果将稀土元素引入到高分子基质中制成稀土高分子光致发光材料,其应用前景将十分广阔。 稀土高分子配合物发光材料的研究始于20世纪60年代初,Wolff和Pressley[1]以聚甲基丙烯酸甲酯为基质制得稀土荧光材料,发现铕与α噻吩甲酰三氟丙酮的配合物Eu(TTA)3(TTA2α噻吩甲酰三氟丙酮)在高分子基质中发生从配体TTA到Eu3+的能量转移,从而使Eu3+发强荧光。近年来,由于含发光稀土离子的高分子材料兼有稀土离子优异的发光性能和高分子化合物易加工的特点,引起了广泛关注。研究方法基本分为两种:(1)稀土小分子络合物直接与高分子混合得到掺杂的高分子荧光材料;(2)通过化学键合的方式先合成可发生聚合反应的稀土络合物单体,然后与其他有机单体聚合得到发光高分子共聚物,或者稀土离子与高分子链上配体基团如羧基、磺酸基反应得到稀土高分子络合物。以下就这两类稀土络合物作一简单介绍。 1 稀土有机配合物 1.1 稀土β2二酮配合物 三价稀土β2二酮配合物发光研究早在20世纪60年代,曾作为激光材料引起人们的关注。β2二酮与稀土离子配合物的通式表示为: 收稿日期:2002Ο03Ο07 3通讯联系人 R1C O Eu3+ C H H C R2 O 由于在这类配合物中存在着从具有高吸收系数的β2二酮配体到Eu3+、Tb3+等的高效能量传递,从而使得它们在所有稀土有机配合物中发光效率最高,它们与镧系离子形成稳定的六元环,直接吸收激发光并可有效地传递能量。 配合物中中心稀土离子发光过程大致为:配体先发生π3←π吸收,也就是先经过单重态—单重态(S0→S)电子跃迁,再经系间窜越到三重态T1,接着由最低三重态T1向稀土离子振动能级进行能量转移。关于稀土β2二酮配合物的研究综述很多,一般认为[2~5]: ①发光效率与配合物结构的关系相当密切,即配合物体系共轭平面、刚性结构程度越大,配合物中稀土发光效率就越高。 ②配体取代基对中心稀土离子发光效率有明显的影响。R1基团为强电子给体时发光效率明显提高,并有噻吩>萘>苯的影响次序,R2基团为—CF3是敏化效果最强,因为F的电负性高,使得金属2氧键成为离子键。 ③稀土发光效率取决于配体最低激发三重态能级位置与稀土离子振动能级的匹配情况。 ④协同试剂是影响稀土离子发光效率的另一重要因素。 1.2 稀土羧酸配合物 稀土羧酸配合物涉及很多有趣的发光现象,加之羧酸类配体成本远远低于β2二酮类,可望发展成为极具应用前景的发光材料[6,7]。目前羧酸类的配体一般为芳香羧酸,大量的研究发现稀土离子能与生物体内的羧酸及氨基酸分子形成稳定的配合物,这类配合物具有发光时间长、强度高且稳定的特性,对于模拟生命 第16卷 第5期中 国 塑 料Vol.16,No.5 2002年5月CHINA PLASTICS May.,2002

几种新型半导体发光材料的研究进展(精)

几种新型半导体发光材料的研究进展 摘要:概述了三种新型半导体发光材料氮化镓、碳化硅、氧化锌各自的特性,评述了它 们在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。 关键词:LED发光二极管;发光材料;ZnO, SiC,GaN 1引言 在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导 体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利 于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重 中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。 本文综述了近几年来对ZnQ SiC, GaN三种新型半导体发光材料的研究进展。 2几种新型半导体发光材料的特征及发展现状 在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位?但随着信息时代的来临,以砷化镓(GaAS 为代表的第二代化合物半导体材料显示了其巨大的优越性?而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对几种很有发展前景的新型发光材料做简要介绍? 2.1氮化傢(GaN) 2.1.1氮化镓的一般特征 GaN是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,川族氮化物半导体InN、GaN和A lN的能带都是直接跃迁型,在性质上相互接近,它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围?实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙? GaN!优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaNM有较高的电离度,在川-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS勺一半.GaN是极稳定的化合物,又是坚硬的高熔点材 :1

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

有机光伏材料 严涌

有机光伏材料综述 能源是人类社会发展的驱动力,是人类文明存在的基础。目前我们所能利用的能源主要是煤、石油和天然气等传统石化资源。自从18世纪工业革命以来,人类对能源的需求不断增长,由此导致的能源安全问题日益凸显。太阳直径为1.39*106km,质量为1.99*1030kg,距离地球1.5*108km。组成太阳的质量大多是些普通的气体,其中氢约占71.3%、氦约占27%,其它元素占2%。太阳从中心向外可分为核反应区、核辐射区和对流去区、太阳大气。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000k。太阳每分钟发出的总能量为2.27*1025kJ,尽管只有22亿分之一的能量辐射到地球上,但太阳每秒钟照射到地球上的能量就相当于500万吨煤燃烧所产生的能量。 1太阳能电池 1.1太阳能的利用 太阳能的利用包括很多种技术手段,例如太阳能热水器、光解水制氢气、太阳能热发电以及光伏发电。前二者的应用水平较低,要想大规模地提供能源,主要得靠后两种技术。 太阳能热发电目前主要有三种实现方式,即塔式、槽式和碟式。这三种技术的基本原理都是通过将太阳光聚焦,加热水或者其他工质(例如热熔盐和空气),通过热循环驱动发电机组来发电。 太阳能热发电技术以较为成熟的机械工艺为基础,在规模足够大之后可望实现经济运行。但是这样的热电站也兼具传统热电站的缺点,即建设成本高,机械损耗大,维护成本高,而且只能在专用地上建设,无法与已有城乡建筑物进行集成。在太阳能热发电领域,我国起步较晚,技术积累较少,目前尚不具备对外的竞争优势。 1.2光伏技术 “光伏”这个词译自“Photovoltaic”,即“光”和“伏特”的组合。这个词最早是用来描述一些材料在光照下形成电压的现象,后来人们认识到光电压的形成是由于材料中的电子被入射的光子激发而形成了电势差,从而形成对外的电流电压输出。采用光伏原理发电的设备,我们称之为“太阳能电池”。 最早的光伏效应是Edmund Bequerel 在1839 年发现的,一百多年后(1954年),随着硅半导体工业的发展,第一个能用于实际发电的太阳能电池才在贝尔实验室问世。这个太阳能电池以硅半导体的p-n 结为基础,光电转化效率为6%。 半导体p- n 结的结构及原理如图1所示。当p 型和n 型的半导体相互接触时,由于浓度差的存在,p 型半导体中的空穴会向n 型半导体扩散,n 型半导体中的电子也会向p 型半导体扩散,造成接触面双侧的电荷不平衡,从而形成由n 型区指向p 型区的空间电场。反映在能级图上,即p 型区和n 型区的费米能级一致化后,两个区域间形成了一个能级差,这个能级差即是内建电场(Ebi)。p 型区和n 型区之间的过渡区域,称为p-n 结的结区。在结区内,内建电场会驱使电荷进行定向传输。

光致发光高分子材料

光致发光高分子材料 摘要:稀土高分子发光材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而倍受瞩目。本文就稀土光致发光材料进行了分类,对其发光特性作了简要介绍,综述了其开发与应用的历史与现状,并介绍了其目前在各个领域的应用产品。 关键词:稀土;高分子;光致发光材料;长余辉材料 1前言 光致发光材料又称超余辉的蓄光材料。长余辉光致发光材料是吸收光能后进行蓄光而后发光的物质。它是一种性能优良,无需任何电源就能自行发光的材料。可利用其制成各种危险标识、警告牌;做成各种安全、逃生标志;在应付突发事件、事故中可发挥巨大的作用。在发生突发事故时,电源往往被切断,这使得许多依靠电源发光照明的安全标志失去了作用,而采用长余辉发光材料的安全标志此时将发挥其特殊的作用。因此长余辉光致发光材料的研究,具有重要的科学意义和实用性[1]。现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用非常大[2,3]根据激发源的不同,稀土发光材料可分为光致发光材料、阴极射线(CRT)发光材料、X射线发光材料以及电致发光材料[4]。本文主要介绍光致发光材料. 2光致发光材料的发光原理[5] 发光材料被外加能量(光能)照射激发后,能量可以直接被发光中心吸收(激活剂或杂质),也可被发光材料的基质吸收。在第一种情况下,吸收或伴有激活剂电子壳层内的电子向较高能级的跃迁或电子与激活剂完全脱离及激活剂跃迁到离化态(形成“空穴”)。在第二种情况下,基质吸收能量时,在基质中形成空穴和电子,空穴可能沿晶体移动,并被束缚在各个发光中心上,辐射是由于电子返回到较低(初始)能量级或电子和离子中心(空穴)再结合(复合)所致。即当外加能量(光能)的粒子与发光基质的原子发生碰撞而引起它们激发电离。电离出来的自由电子具有一定的能量,又可引起其他原子的激发电离,当激发态或电离态的原子重新回到稳定态时,就引起发光[6]。发光基质将所吸收的能量转换为光辐射,这

浅谈对高分子材料的认识

浅谈对高分子材料的认识 214——马欢欢

高分子材料,顾名思义,是指以高分子化合物为基本组成,加入适当助剂,经过一定的加工制成的材料。高分子材料与我们的生活息息相关。我们身边天然的高分子材料,例如棉花、毛、蚕丝和木材中的纤维素等,是我们生活中重要的一部分。随着社会的发展,开始出现了改性天然高分子材料和合成高分子材料,例如塑料、树脂等,极大地改善了我们的生活条件,推动了社会进步。下面我就简单谈一下我对于高分子材料的认识,主要是高分子材料的分类和应用。 高分子材料有很多种类。从来源来分,可以分为天然高分子材料、改性天然高分子材料和合成高分子材料。举例来说,蛋白质、天然橡胶、纤维素等属于天然高分子材料,改性淀粉、硝化纤维等为改性天然高分子材料,有机玻璃、涤纶、尼龙等为合成高分子材料。 如果根据使用性质来分,可以将高分子材料分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 塑料是用途最广泛的合成高分子。人们常用的塑料是以合成树脂为基础,再加入塑料辅助剂(如填料、增韧剂、稳定剂、交联剂等)制得的。通常,按塑料的受热行为和是否具备反复成型加工性,可以将塑料分为热塑性塑料和热固性塑料。热塑性塑料受热时熔融,可进行各种成型加工,冷却时硬化。再受热,又可熔融、加工,即具有多次重复加工性。如,PE,PET等。热固性塑料受热熔化成型的同时发生交联固化反应,形成立体网状结构,再受热不熔融,在溶剂中也不溶解,当温度超过分解温度时将被分解破坏,即不具备重复加工性。如果按照用途来分,可分为通用塑料、工程塑料和特种塑料。通用塑料一般指产量大、用途广、成型性好、价格便宜、力学性能一般,主要作为非结构材料使用的塑料,如PE、PP、PVC、PS等。工程塑料具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并且在此条件下能够长时间使用,且可作为结构材料。如PC、PPO、PPS等。特种塑料一般指具有特种功能,可用于航空航天等特殊应用领域的塑料,如氟塑料、有机硅等。 早期的橡胶是取自橡胶树、橡胶草等植物的胶乳,加工后制成的具有弹性、绝缘性、不透水和空气的材料,是一种高弹性的高分子化合物。橡胶按照来源可以分为天然橡胶和合成橡胶两大类。天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶是由人工合成方法而制得的,采用不同的原料(单体)可以合成出不同种类的橡胶。合成橡胶又分为通用合成橡胶和特种合成橡胶。通用合成橡胶是指部分或全部代替天然橡胶使用的胶种,如丁苯橡胶、顺丁橡胶、异戊橡胶等,主要用于制造轮胎和一般工业橡胶制品。通用橡胶的需求量大,是合成橡胶的主要品种。

有机半导体材料

有机半导体材料 1 有机半导体材料的分子特征 有机半导体材料与传统半导体材料的区别不言自明,即有机半导体材料都是由有机分子组成的。有机半导体材料的分子中必须含有 键结构。如图1所示,在碳-碳双键结构中,两个碳原子的pz 轨道组成一对 轨道( 和 ),其成键轨道( )与反键轨道( )的能级差远小于两个 轨道之间的能级差。按照前线轨道理论, 轨道是最高填充轨道(HOMO), 是最低未填充轨道(LUMO)。在有机半导体的研究中,这两个轨道可以与无机半导体材料中的价带和导带类比。当HOMO 能级上的电子被激发到LUMO 能级上时,就会形成一对束缚在一起的空穴-电子对。有机半导体材料的电学和电子学性能正是由这些激发态的空穴和电子决定的。

在有机半导体材料分子里, 键结构会扩展到相邻的许多个原子上。根据分子结构单元的重复性,有机半导体材料可分为小分子型和高分子型两大类。 小分子型有机半导体材料的分子中没有呈链状交替存在的结构片断,通常只由一个比较大的 共轭体系构成。常见的小分子型有机半导体材料有并五苯、三苯基胺、富勒烯、酞菁、苝衍生物和花菁等(如图2),常见的高分子型有机半导体材料则主要包括聚乙炔型、聚芳环型和共聚物型几大类,其中聚芳环型又包括聚苯、聚噻吩、聚苯胺、聚吡咯等类型(如图3)。 事实上,由于有机分子的无限可修饰性,有机半导体材料的结构类型可以说是无穷无尽的。 图2: 几种常见的小分子有机半导体材料:(1)并五苯型,(2)三苯基胺类,(3)富勒烯,(4)酞菁,(5)苝衍生物和(6)花菁类。

图3: 几种常见的高分子有机半导体材料:(1)聚乙炔型,(2)聚芳环型,(3)共聚物型。 2 有机半导体材料中的载流子 我们知道无机半导体材料中的载流子只有电子和空穴两种,自由的电子和空穴分别在材料的导带和价带中传输。相形之下,有机半导体材料中的载流子构成则要复杂得多。 首先,由于能稳定存在的有机半导体材料的能隙(即LUMO 与HOMO 的能级差)通常较大,且电子亲和势较低,大多数有机半导体材料是p 型的,也就是说多数材料只能传导正电荷。无机半导体材料中的正电荷(即空穴)是高度离域、可以自由移动的,而有机半导体材料中的正电荷所代表的则是有机分子失去一个电子(通常是HOMO 能级上的电子)后呈现的氧化状态。因此,在有机半导体材料中引入一个正电荷,必然导致有机分子构型的改变。

有机高分子荧光材料

有机高分子荧光材料 09级化学化工系化学工程与工艺(2)班徐世贵指导老师:靳文娟 摘要: 有机高分子材料广泛应用于通讯、卫星、雷达、显示、记录、光学计算机、生物分子探针等高科技领域。发光材料可分为无机发光材料和有机发光材料两大类。具体的,无极荧光材料,有机小分子发光材料,有机高分子发光材料金属配合物发光材料,共轭聚合物发光材料等。本文对比分析了各类型荧光材料的特点及应用范围,并对有机荧光高分子材料做了具体讨论,以及展望. 关键字:荧光材料高分子材料方向共聚物

organic polymer materials Abstract: organic polymer materials are widely used in communications,satellite,radar,display,records, optical computers,biological molecules probe and other high-tech areas.Luminescence materials can be divided into inorganic luminescence materials and organic light-emitting materials two kinds big. Specific,electrodeless fluorescent material,small organic molecules luminescence materials,organic polymer light-emitting materials metal complexes luminescence materials,polymer light-emitting materials conjugate etc.This paper analyzes the characteristics of various types of fluorescent material, and application scope of the organic fluorescence polymer materials made specific discussion,and prospected. Key word:fluorescent material copolymer macromolecule material direction

新型半导体发光材料分析及发展

西安工程大学产品造型材料与工艺 半 导 体 发 光 材 料 氮 化 镓 学校:西安工程大学 班级:13级工设01班 姓名:陈龙 学号:41302020103 日期:2015 05 10

新型半导体发光材料氮化镓(GaN)分析及发展 摘要:概述了新型半导体发光材料氮化镓的特性, 评述了它在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。 关键词:LED发光二极管;发光材料 GaN 1引言 在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。 本文综述了近几年来对GaN新型半导体发光材料的研究进展。 2新型半导体发光材料氮化镓(GaN)的特征及发展现状 在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位.但随着信息时代的来临,以砷化镓(GaAs)为代表的第二代化合物半导体材料显示了其巨大的优越性.而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对其中一种很有发展前景的新型发光材料做简要介绍. 2.1 氮化镓(GaN) 2.1.1 氮化镓的一般特征 GaN 是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,Ⅲ族氮化物半导体InN、GaN 和A lN 的能带都是直接跃迁型, 在性质上相互接近, 它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围.实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙. GaN是优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaN具有较高的电离度,在Ⅲ-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS的一半.GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700?C.文献[1]列出了纤锌矿GaN和闪锌矿GaN的特性

半导体材料有哪些

半导体材料有哪些 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 什么是半导体材料_常见半导体材料有哪些 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。 硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~ 99.9999999%)的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种

高分子电致发光材料研究近况--以共轭结构的高聚物材料为例

信息记录材料2019年5月第20卷第5期陋至?诊若 高分子电致发光材料研究近况 — —以共辄结构的高聚物材料为例 高远 (南昌大学材料科学与工程学院江西南昌330000) 【摘要】高分子发光材料的研究有很重要的理论和现实意义,本文则通过对一系列共觇结构的高聚物材料的原理和特点来了解电致发光高分子发光材料的应用和发展现状,并展望其发展前景. 【关键词】高分子;发光材料;应用;发展趋势 【中图分类号】TN6【文献标识码】A【文章编号】1009-5624(2019)05-0001-02 Recent Development of high polymer Electroluminescent Materials Gao Yuan. School of M aterials Science and Engineering,Nanchang University,Nanchang,Jiangxi330000,China [Abstract]The study of polymer luminescent materials is of great theoretical and practical significance.Based on the principle and characteristics of a series of conjugated polymer materials,the application and development of electroluminescent polymer materials are analyzed in this paper,and the development prospect of electroluminescent polymers is prospected. 【Key words]Luminescent material;Application;Development trend 1引言(3)聚嗟吩及其衍生物类电致发光材料。这类材料 随着信息时代的飞速发展,各种发光材料被广泛应用于通讯、卫星等高科技领域。而为了使各种新媒体满足显示的功能,使得各种发光材料被研究并开发应用而来。而有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到人们的关注和重视。尤其是近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚嗟吩、聚苯胺、聚毗咯、聚茹等。 而有机薄膜电致发光的发展较为迅速,但现在它却被新兴的有机电致发光材料所改变。比如聚对苯乙块(PPV),它本身是一种导电高分子材料,另外它的电致发光性能也同样良好。这样有机薄膜电致发光材料就从有机小分子拓展到了聚合物。而这一变化发展,这就意味着电致发光高分子材料不仅扩大了发光材料的选择范围,而且由于聚合物本身良好的易加工性、易成膜性、高稳定性等优势,使得其被更多的开发应用到发光器件的制备及应用当中。也正因如此,现已有各种体系的聚合物相继被人们研究用来制备发光材料C1]o 2共辘结构的高聚物发光材料简介 共轨结构的高聚物发光材料主要有以下几种类型: (1)聚对苯撑乙烯类电致发光材料。这种材料可以在苯环上改变取代基或在乙烯基上取代而设计合成岀结构、性能各异的衍生物,其还可通过共聚的方式来合成出各种不同的分子材料。 (2)聚对苯乙烘(PPE)-曝吩共轨结构的高聚物电致发光材料。这种材料的结构类似于PPV,其主链引入嗟吩基团,聚对苯乙块在溶液中显示很高的荧光效率,有望作为发光材料进行研究应用。这种高分子电致发光材料不仅改善了传统材料的溶解性,而且其分子量得以提升。具有良好的导电性能,并通过佟拉嘎[2]等在用其成功试 制发光元件后,证明其良好的稳定性。 (4)聚噁二哇[3]类电致发光材料,这类材料是具有性能良好的电子传输能力。其耐热性和较高的玻璃化温度被得到广泛认可。 3共辄结构的高聚物发光材料的优缺点及解决方案共轨结构的高聚物发光材料有自己独特的光电、化学性质,共辄的骨架和侧链结构决定了它们的电子结构、光电学性质,因此它们可以通过化学方法进行调控和修饰。 共轨结构的高聚物发光材料的优点是①具有良好的热稳定性和粘附性;②优异的成膜性,可大面积成膜;③具有优良的机械强度;④此类材料分子结构、发光颜色易于改变和修饰且合成路线多,发光效率高; 但是早期合成的共轨结构的高聚物会给器件的制备带来不便,因为材料合成较为复杂,提纯过程较困难,因此难以制成多层发光器件。而针对这些不足,也有很多的方法可以进行弥补和调整。 一种方法是使用单体直接聚合成型; 也可通过可溶性前聚物加工成型,然后加热转化为共轨聚合物[如Wessling⑷用前聚物法制备的PPV]; 更好的方法是引入可溶解的支链或链段。如MEH-PPV[5]{聚[2-甲氧基-5(2'-乙基己氧基)对苯乙烘]}, CN-PPV冏等。 在PPV主链的亚甲基上引入吸电子基团氧基,得到的CN-PPV聚合物不仅成膜性好,而且还可以改善高聚物和电子的亲和能力。 4高分子电致发光材料的应用 当前这些主流的电致发光材料被广泛用于激光染料、荧光集光器、有机太阳能电池、有机场效应晶体管、有机激光和化学与生物传感等领域的研究、开发和生产中,也 1

半导体发光材料

半导体发光材料具有优异的光电催化及光电转化活性等特性, 已应用于光学材料, 太阳能材料,压电晶体和激光材料等领域。近年来,由于纳米材料科学的兴起人们对半导体发光材料的制备方法,性能及其应用进行了大量的研究,取得了重要的成就。 ZnSe半导体发光材料的研究进展 美国贝尔实验室在所制备的CdSe纳米粉体中发现,随着CdSe颗粒尺寸的减小发光带的波长逐渐变小,通过控制CdSe纳米颗粒的大小,制得了可在红、绿、蓝光之间变化的可调谐发光管。 1991年,美国3M公司研制成功了世界上第一个ZnSe基电泵浦蓝绿色激光器,引 起了国际上学术界极大的轰动。 近年来,对ZnSe基蓝绿色半导体激光器的研究,取得了里程碑式的研究成果。用ZnSe材料制成的半导体蓝色激光器和发光二极管在水下通讯、通信、复印、高密度的信息储存、高分辨率的图像显示、信号指示以及医学、基础研究、环境检测、战地生 化检测等方面有着极为广阔的应用前景。蓝色激光器用于彩色高分辨率的图像传真,在海底等一些特殊环境下通信更为安全可靠以蓝色激光取代目前激光打印机上普遍采 用的红外激光或红色激光,由于其感应灵敏度的提高,可使打印速度提高一到二个量级。 在当前材料科学研究中ZnSe 半导体发光材料的制备技术倍受关注,追求获得成分纯正、结晶良好、光电性能稳定、低欧姆接触电阻、长寿命的ZnSe材料,成为21世 纪引人注目的焦点。经过40 多年的漫长探索,人们打破传统的“热平衡生长”材料制备方法,ZnSe材料的制备技术已取得了长足的进步。 尽管ZnSe基蓝绿色半导体激光器在四到五年内,连续工作时间由秒级提高到现 在的400h,工作电压也由最初的20v左右降低到目前的3.7v取得了长足的进步与发 展!但如何获得高净空浓度的p型掺杂,实现良好的低阻欧姆接触,延长器件使用寿命,使之达到实用化,仍然存在大量的课题,还需要不懈的努力与探索。 LED用半导体发光材料的产业现状 半导体技术在引发微电子革命之后,又在孕育一场新的产业革命——照明革命, 其标志就是用半导体光源逐步替代白炽灯和荧光灯。

高分子材料的分类

高分子材料的分类 高分子材料分类标准有:①按来源分类②按应用分类③按应用功能分类④高分子主链结构分类等等 高分子材料按来源分类:高分子材料按来源分为天然高分子材料和合成高分子材料。 高分子材料按应用分类:高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。 ②纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。 ③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。 ④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。 ⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。 ⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。高分子复合材料也称为高分子改性,改性分为分子改性和共混改性。 ⑦功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。 高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 高分子材料按应用功能分类:高分子材料分为通用高分子材料、特种高分子材料和功能高分子材料三大类。 按高分子主链结构分类:①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC ②杂链高聚物:分子主链由C、O、N、P等原子构成。如:聚酰胺、聚酯、硅油。③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。如:硅橡胶 其它分类:按高分子主链几何形状分类:线型高聚物,支链型高聚物,体型高聚物。 按高分子微观排列情况分类:结晶高聚物,半晶高聚物,非晶高聚物。

相关文档