文档库 最新最全的文档下载
当前位置:文档库 › 大学物理 光的量子理论和玻尔理论

大学物理 光的量子理论和玻尔理论

大学物理

第21章

光的量子理论和

玻尔理论

?21.1 Planck量子理论与爱因斯坦光电方程

?21.2 康普顿效应与光的波粒二象性

212

213氢光谱

?21.3 氢原子光谱Balmer公式

?21.4 玻尔的原子量子论氢原子

214

211

?21.1 Planck量子理论与光电效应

自然世界是矛盾的世界,矛盾的双方决定事物本质。

当人们对光的本质的探索取得重大进展时

当人们对光的本质的探索取得重大进展时,意外的实验事实出现,使人们产生困惑。

黑体辐射实验、光电效应实验….

()

νh n E =

s

J 10

63.634

?×=?h Planck 常数:

光电效应实验

一、光电效应实验:

光照

K A

G

I

R E

K阴极,A阳极,G检流计

1 实验的基本现象:

U U U ?=Δ实验的基本现象K

A

增大而增大9光电流随增大而增大。K A U U U ?=Δ9饱和光电流存在。9饱和光电流与光强有关。

饱和光电流与光强有关

2 实验的基本规律:

:?饱和电流I

m

n是单位时间内

从K极释放的电子数,光强大,饱和电流

光强大饱和电流

截止电压直接反映光电子初动能值。实验中:

o

c U k U ?=ν其中:是光波的频率;k 是与光电材料无关的常数。U 是与光电材料有关的常数。

ν0U c

N a

C a

ν

νU 0表明光电子初动能值与入射光频率有关

U k U ?=ν2

1mv

eU =o c 12

2

c ()0

2

0≥=?∴mv U k e ν()

?光电效应的瞬时性:

光波照射K 极时,只要频率超过红限,光电效应立即发生;频率不超过红限,光电效应永远不会应立即发生频率不超过红限光电效应永远不会发生,而不论光强有多大。

二、光的波动理论的困难:

光电子的动能不应该与入射光波的频率有关,而

应与入射光的强度有关

应与入射光的强度有关。

不应该有红限。

光电效应的发生应该与光照时间有关。弱的入射

光发生光电效应的时间要慢

光,发生光电效应的时间要慢。

()1

)

λ

εhc =

00λεhc =hc

hc 0

0

εεε??

?

???Δ?=Δ?=Δλλελλε02hc

λλλλcos 1cos 1?=?=?=Δ0ε=

()()??00k c

m 0

λ又由于:

?

?Δ?Δ?λhc

???

???==Δ0020λελλε

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

大学物理复习题

量子力学练习题 一、选择题(每题3分) 1. 氢原子从能量为-0.85eV 的状态跃迁到激发能(从基态到激发态所需的能量)为10.19eV 的状态时,所发射的光子的能量为( ) (A )2.56eV (B )3.41eV (C )4.25eV (D )9.95eV 2、已知单色光,照射在钠表面上,测得光电子的最大动能是1.2eV ,而钠的红线波长为540nm , 则入射光的波长应为:( ) (A )535 nm (B )500 nm (C )435 nm (D )355 nm 3、粒子在一维无限深方势阱中运动,如图所示为粒子处于某一能态上的波函数)x (ψ的曲 线。粒子出现概率最大的位置为( ) (A )2a (B )5,66a a (C )5,,626a a a (D )20,,,33a a a 4、一个光子和一个电子具有相同的波长,则( ) (A )光子具有较大的动量 (B )电子具有较大的动量 (C )电子与光子的动量相等 (D )电子和光子的动量不确定 5、用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为( ) (A ) 2 E K . (B ) 2h ν - E K (C ) h ν - E K (D ) h ν + E K 6.以一定频率的单色光照射在某金属上,测出其光电流曲线如图实线所示,然后在光强度不变的条件下增大照射光的频率,测出光电流的曲线如图中虚线所示。则满足题意的图是 ( ). (A ) (B ) (C ) (D ) 7、卢瑟辐a 粒子实验证实了( );康普顿效应证实了( );戴维逊-革末证实了( ) (A )光的量子性 (B )玻尔的能级量子化假设 (C )X 射线的存在 (D )电子的波动性(E )原子的有核模型

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

大学物理(第四版)课后习题与答案量子物理

第十七 章量子物理 题17.1:天狼星的温度大约是11000℃。试由维思位移定律计算其辐射峰值的波长。 题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长 nm 257m 1057.27m =?== -T b λ 属紫外区域,所以天狼星呈紫色 题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为 293 K 。若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少? 题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为 4.484 =??? ? ??=地 金地 金T T M M 题17.3:太阳可看作是半径为7.0 ? 108 m 的球形黑体,试计算太阳的温度。设太阳射到地 球表面上的辐射能量为1.4 ? 103 W ?m -2 ,地球与太阳间的距离为1.5 ? 1011 m 。 题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的 某一位置上。太阳在单位时间对外辐射的总能量将均匀地通过该球面,因此有 2 244)(R E d T M ππ= (1) 4)(T T M σ= (2) 由式(1)、(2)可得 K 58004 122=? ?? ? ??=σR E d T 题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。哪 一种金属可以用作可见光围的光电管阴极材料? 题17.4解:钨的截止频率 Hz 1009.1151 01?== h W ν 钡的截止频率 Hz 1063.0152 02?== h W ν 对照可见光的频率围可知,钡的截止频率02ν正好处于该围,而钨的截止频率01ν大于可 见光的最大频率,因而钡可以用于可见光围的光电管材料。 题17.5:钾的截止频率为4.62 ? 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

大学物理 量子物理基础知识点总结

大学物理 量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中 2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 122 13.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2 x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ* =? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++= ∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ??? =-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。

清华大学《大学物理》习题库试题及答案__10_量子力学习题

一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红 限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射, 发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作 半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0 λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子 能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各 谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为 -0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时 氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨 道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?=ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图? [ ]

大学物理 上册(第五版)重点总结归纳及试题详解第十六章 从经典物理到量子物理

第十六章 从经典物理到量子物理 一、基本要求 1. 了解描述热辐射的几个物理量及绝对黑体辐射的两条实验规律。 2. 理解普朗克的“能量子”假设的内容,了解普朗克公式。 3. 理解光电效应和康普顿效应的实验规律,以及爱因斯坦的光子理论对 这两个效应的解释。 4. 理解爱因斯坦光电效应方程;红限概念和康普顿散射公式。 5. 理解光的波粒二象性以及光子的能量,质量和动量的计算。 6. 掌握氢原子光谱的实验规律,理解玻尔氢原子理论的三条基本假设的内容;并由三条假设出发,推导出氢原子的光谱规律。 二、基本内容 1. 黑体辐射 (1)绝对黑体 在任何温度下都能全部吸收照射在其上的任何波长的电磁波的物体,称为绝对黑体。绝对黑体是一种理想模型,其在任何温度下对任何波长入射辐射能的吸收比均为1。 (2)黑体辐射的实验规律 斯特藩-玻尔兹曼定律 40)(T T M σ= 式中)(0T M 为绝对黑体在一定温度下的辐射出射度,σ=5.67×10-8W ·m -2·K -1为斯特藩常量。 维恩位移定律 b T m =λ 式中m λ为相应于)(0T M λ曲线极大值的波长,31089.2-?=b m ·K (3)普朗克的能量子假说 辐射黑体是由原子分子组成的。这些原子和分子的振动可看作线性谐振子,这些谐振子的能量只能是某一最小能量ε的整数倍,即ε,2ε,3ε...,n ε,

物体发射或吸收的能量必须是这个最小单元的整数倍。ε称为能量子,n 为正整数,叫量子数。在黑体辐射理论中,能量子ε=hv ,其中h 是普朗克常量,v 是特定波长的辐射所对应的频率。 (4)普朗克黑体辐射公式 )(0T M λ= 1 1 25 2 -?T k hc e hc λλ π 式中h 为普朗克常量,k 为玻尔兹曼常量,c 为真空中光速。由此公式可推导出斯特藩-玻尔兹曼定律和维恩位移定律,而且在低频和高频情况下可分别化为瑞利-金斯公式和维恩公式。 2. 光电效应 金属及其化合物在电磁辐射下发射电子的现象称为光电效应。 (1)光电效应的实验规律 ① 单位时间内逸出金属表面的光电子数与入射光强成正比。 ② 光电子的最大初动能随入射光的频率上升而线性增大,与入射光强无关。 ③ 如果入射光的频率低于该金属的红限,则无论入射光的光强多大,都不会使这种金属产生光电效应。 ④ 光电效应是瞬时的。只要入射光的频率大于该金属的红限,当光照射到这种金属表面时,几乎立即产生光电子,而与入射光强无关。 对光电效应经典理论遇到困难,主要表现在三个方面:①光电子最大初动 能问题;②光电效应的红限问题;③发生光电效应的时间问题。 (2)爱因斯坦的光子理论 爱因斯坦认为光束是以光速c 运动的粒子流 ,其中每一个粒子携带的能量为hv ,这些粒子称为光量子。光子具有波粒二象性。 光子的能量 hv ε= 光子的动量 λ h p = 其中ε,p 表示光子的粒子性;v ,λ表示光子的波动性。 光子的质量 2 2hv h m c c c ε λ = = = 光子的静止质量 00m =

大学物理 量子物理基础知识点总结

大学物理量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是: h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21 M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2 mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 12213.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ*=? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++=∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ???=-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1 ,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。 ②在多电子原子中,决定电子所处状态的准则是泡利不相容原理和能量最低原理。 9.X 射线的发射和发射谱 (1)X 射线谱是由两部分构成的,即连续谱和线状谱(也称标识谱)。 (2)连续谱是由高速电子受到靶的制动产生的韧致辐射;线状谱是由高速电子的轰击而使靶原子内层出现空位、外层电子向该空位跃迁所产生的辐射。

大学物理量子物理习题

量子物理 1. 当照射光的波长从400nm 变到300nm 时,对同一金属,在光电效应实验中测得的遏止电压将 (A) 减小0.56V ; (B) 增大0.165V ; (C) 减小0.34V ;(D) 增大1.035V 2.用频率为1ν的单色光照射某一种金属时,测得光电子的最大动能为E k1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大动能为E k2。如果E k1 >E k2,那么 (A) 1ν一定大于2ν ; (B) 1ν一定小于2ν ; (C) 1ν一定等于2ν ; (D) 1ν可能大于也可能小于2ν. 3.普朗克能量子假设是为了解释 (A)光电效应实验规律而提出的 (B)X 射线散射的实验规律而提出的 (C)黑体辐射的实验规律而提出的 (D)原子光谱的规律性而提出的。 4.在康普顿散射实验中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的 ( ) (A) 2倍 ;(B) 1.5倍 (C) 0.5倍 (D) 0.25倍 5.温度为室温(20°C)的黑体,其单色辐出度的峰值所对应的波长和辐出度是( ) (A) nm 9890,22W/m 1017.4? ;(B) nm 989,2W/m 7.41 (C) nm 14490,23W/m 109-? ;(D) nm 1449,23W/m 109-? 6. 开有小孔的空腔,可近似地看作黑体的是( ) A .空腔 B .小孔 C .空腔壁 D .空腔及腔壁 7.用强度为I ,波长为λ的X 射线(伦琴射线)分别照射锂(Z =3)和铁(Z =26),若在同一散射角下测得康普顿散射的X 射线波长分别为1L λ和),(1λλλλ Fe L Fe ,它们对应的强度分别为1L I 和Fe I ,则( )

大学物理量子物理作业答案

No.6 量子物理 (运输) 一 选择题 1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足 (A )λ≤ 0eU hc (B )λ≥0 eU hc (C )λ≤hc eU 0 (D )λ≥hc eU 0 [ A ] 2. 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的动能为 0.1 MeV ,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A ) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ B ] 3.氢原子从能量为-0.85eV 的状态跃迁到激发能(从基态到激发态所需的能量)为-10.19eV 的状态时,所发射的光子的能量为 (A )2.56 eV (B )3.41 eV (C )4.26 eV (D )9.34 eV [ A ] 4. 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h . (B) )/(eRB h . (C) )2/(1eRBh . (D) )/(1eRBh . [ A ] 5. 关于不确定关系 ≥??x p x ()2/(π=h ),有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: (A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1). [ C ] 6.描述氢原子中处于2p 状态的电子的量子态的四个量子数(n ,l ,m l ,m s )可能取值为 (A )(3,2,1,-21) (B )(2,0,0,21 ) (C )(2,1,-1,-21) (D )(1,0,0,2 1 )

大学物理复习提纲汇总

第一章:量子力学基础 一、微观粒子的运动特征 1. 黑体辐射和能量量子化 能量子:ε0=h ν0 2、光电效应和光的波粒二象性 光的能量是量子化的,最小能量单位是νεh =0,称为光子。 光子有动量:P = mc = λ h 3、实物微粒的波粒二象性 任何运动着的实物微观粒子都具有波粒二象性。与实物微观粒子联系着的这种波叫德布罗意波。 h p λ= ,E h ν= 德布罗意波的实验验证:电子具有波动性的实验,中子、质子、氢原子和氦原子等微粒流具有波动性。 德布罗意波的统计解释 在波强度大的地方,粒子出现的概率大;在波强度小的地方,粒子出现的概率就小;在波强度为零的地方,粒子出现的概率为零(没有出现)。 P ∝ Ψ2 德布罗意波长的计算 例1:已知一块石头的质量为0.1kg ,飞行速度为1m/s ,该石头的德布罗意波的波长为多少? 解:m s m kg s J mv h p h 33 1 3410626.611.010626.6---?=????===λ 例2:已知一个电子的质量kg m 3110110.9-?=,如果电子在电势差为100V 的加速电场中运动,则其德布罗意波的波长为多少? 解: mqu h mE h p h 22= == λ

pm m V c kg s J 6.12210226.110010602.110110.9210626.610193134=?=???????= ---- 4、不确定度关系 不确定度关系又称为测不准原理。它可以用数学关系表达为: π 4h p x ≥ ??? h p x ≥??? 文字表述:具有波动性的微观粒子,不能同时有确定的坐标和动量。当它的某个坐标被测量得越精确,则其相应的动量就越不精确。 例3:质量为0.01kg 的子弹,运动速度为1000 m/s ,若其速度的不确定度是其运动速度的1%,则其位置的不确定度为多少? 解: m s m kg s J v m h x 33 1 3410626.61000%101.010626.6---?=?????=?=? 对于象子弹这样的宏观物体,其位置的不确定度数量级为10-33m ,与自身的运动空间做比较,显然位置的不确定度值是完全可以忽略的。 二、量子力学基本假设 1、波函数 假设1:对于一个微观体系(原子、分子体系),它的状态和有关情况可以用波函数Ψ(x ,y ,z ,t )来表示。 在原子、分子等微观粒子体系中,我们把Ψ称为原子轨道,或者分子轨道。而2ψ由于与粒子在空间某处出现的概率成正比,所以称之为概率密度,2ψ也是我们在化学中常说的电子云。 2、物理量和算符

最新大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案

习题 22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式, 22224 0E c p m c =+ 可得 p = = = h p λ= = 834 -= 131.210m -=? (2)对于质子,利用德布罗意波的计算公式即可得出: 3415h 9.110m p λ--====? 22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式: m meU h mE h 123 193134108.71025106.1101.921063.622p h ----?=???????====λ(2)用相对论公式: 4 20222c m c p +=E eU E E k ==-20c m

m eU eU c m h mE h 122 20107.722p h -?=+= == ) (λ 22-3.一中子束通过晶体发生衍射。已知晶面间距nm 1032.72-?=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角. 解:先利用德布罗意波的计算公式即可得出波长: 34 11 h 1.410p m λ--====? 再利用晶体衍射的公式,可得出:2sin d k ?λ= 0,1,2k =… 1111 1.410sin 0.095227.3210k d λ?--?===?? , 5.48?= 22-4.以速度m/s 1063?=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长 A 1=λ,电子在此场中应该飞行多长的距离? 解:34 10 h 110p m λ--====? 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。 22-5.设电子的位置不确定度为 A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。 解:由测不准关系: 34 2410 1.0510 5.2510220.110h p x ---??===???? 由波长关系式:E c h =λ 可推出: E E c h ?=?λ 2 151.2410E E E J hc pc λ-??===?? 22-6.氢原子的吸收谱线 A 5.4340=λ的谱线宽度为 A 102 -,计算原子处在被激发态上的平均寿命。 解:能量hc E h νλ == ,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两 者之间的关系为:2 hc E λ λ?=? 由测不准关系,/2,E t ??≥平均寿命τ=Δt ,则

大学物理量子物理

15. 量子物理 班级 学号 姓名 成绩 一、选择题 1.黑体辐射、光电效应及康普顿效应皆突出表明了光的 (A)波动性; (B)粒子性; (C)单色性; (D)偏振性。 ( B ) 解:黑体辐射、光电效应及康普顿效应皆突出表明了光的粒子性。 2.已知某金属中电子逸出功为eV 0,当用一种单色光照射该金属表面时,可产生光电效应。则该光的波长应满足: (A))/(0eV hc λ≤; (B) )/(0eV hc λ≥; (C))/(0hc eV λ≤; (D) )/(0hc eV λ≥。( A ) 解:某金属中电子逸出功 0000000 eV c ch W h eV h eV ννλλ==?==?= 产生光电效应的条件是 000 ch eV ννλλ≥?≤= 3.康普顿效应说明在光和微观粒子的相互作用过程中,以下定律严格适用 (A)动量守恒、动能守恒; (B)牛顿定律、动能定律; (C)动能守恒、机械能守恒; (D)动量守恒、能量守恒。 ( D ) 解:康普顿效应说明在光和微观粒子的相互作用过程中,动量守恒、能量守恒严格适用。 4.某可见光波长为550.0nm ,若电子的德布罗依波长为该值时,其非相对论动能为: (A)5.00×10-6eV; (B)7.98×10-25eV; (C)1.28×10-4eV; (D)6.63×10-5eV 。 ( A ) 解:根据h p h p λλ=?=,c <

大学物理量子物理试题及答案

电气系\计算机系\詹班 《大学物理》(量子物理基础)作业 6 一 选择题 1. 以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示,满足题意的图是 [ B ] 2. 用X 射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中 (A)只包含有与入射光波长相同的成分。 (B) 既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关。 (C) 既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关。 (D)只包含着波长变长的成分,其波长的变化只与散射物质有关,与散射方向无关。 [ B ] 3. 关于不确定关系η≥??x p x ()2/(π=h η),有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: (A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1). [ C ] 二 填空题 1.当波长为300 nm (1 nm=10-9m )的光照射在某金属表面时,产生的光电子动能范围为0 ~ ×10-19 J 。此金属的遏止电压为|U a |= V ;红限频率ν0= ×1014 Hz 。 【解】由于光电子的最大初动能为J m 192m 100.4v 2 1-?=, 由光电效应方程A m h +=2 m v 2 1ν,所以红限频率 2.在康普顿散射实验中,当出射光子与入射光子方向成夹角θ= π 时,光子的频率减小得最多;当θ= 0 时,光子的频率保持不变。 解:2020.024sin 2θ λλλ?=-=? 3.氢原子的部分能级跃迁示意如图,在这些能级跃迁中, (1)从n= 4 的能级跃迁到n= 1 的能级时所发射的光子的波长最短; (2)从n= 4 的能级跃迁到n= 3 的能级时所发射的光子的频率最小。 n=4 n=3 n=2 n=1

大学物理下必考15量子物理知识点总结

§15.1 量子物理学的诞生—普朗克量子假设 一、黑体辐射 物体由其温度所决定的电磁辐射称为热辐射。物体辐射的本领越大,吸收的本领也越大,反之亦然。能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。 二、普朗克的量子假设: 1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。 2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2 hν, …分立值, 其中n = 1,2,3…,h = 6.626×10 –。 3. 当谐振子从一个能量状态变化到另一个状态时, 辐射和吸收的能量是hν的整数倍。 §15.2 光电效应 爱因斯坦光量子理论 一、光电效应的实验规律 金属及其化合物在光照射下发射电子的现象称为光电效应。逸出的电子为光电子,所测电流为光电流。 截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。 遏制电压:当外加电压为零时, 光电流不为零。 因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。 21 2 m m eU =v 二、爱因斯坦光子假说和光电效应方程 1. 光子假说 一束光是一束以光速运动的粒子流,这些粒子称为光子; 频率为v 的每一个光子所具有的能量为h εν=, 它不能再分割,只能整个地被吸收或产生出来。 2. 光电效应方程 根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv ,如果hv 大于该金属的电子逸出功A ,这个电子就能从金属中逸出,并且有 上式为爱因斯坦光电效应方程,式中2m 1 2 m v 为光电子的最大初动能。当h A ν< 时,电子无法获得足够能量脱离金属表面,因此存在 三、光(电磁辐射)的波粒二象性 光子能量2E mc h ν==

大学物理-量子力学基础习题思考题及答案

习题 22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式, 222240E c p m c =+ 可得 p = = = h p λ= = 834 -= 131.210m -=? (2)对于质子,利用德布罗意波的计算公式即可得出: 3415h 9.110m p λ--= ===? 22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为 kV 0.25,(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式: m meU h mE h 123 193134108.71025106.1101.921063.622p h ----?=???????====λ(2)用相对论公式: 4 20222c m c p +=E eU E E k ==-20c m m eU eU c m h mE h 122 20107.722p h -?=+= == ) (λ 22-3.一中子束通过晶体发生衍射。已知晶面间距nm 1032.72 -?=d ,中子的动能 eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角. 解:先利用德布罗意波的计算公式即可得出波长: 34 11h 1.410p m λ--====?

再利用晶体衍射的公式,可得出:2sin d k ?λ= 0,1,2k =… 11 11 1.410sin 0.095227.3210k d λ?--?===?? , 5.48 ?= 22-4.以速度m/s 1063 ?=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长 A 1=λ,电子在此场中应该飞行多长的距离? 解:34 10 h 110p m λ--====? 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。 22-5.设电子的位置不确定度为 A 1.0,计算它的动量的不确定度;若电子的能量约为 keV 1,计算电子能量的不确定度。 解:由测不准关系: 34 2410 1.0510 5.2510220.110 h p x ---??===???? 由波长关系式:E c h =λ 可推出: E E c h ?=?λ 2 151.2410E E E J hc pc λ-??= ==?? 22-6.氢原子的吸收谱线 A 5.4340=λ的谱线宽度为 A 102 -,计算原子处在被激发态上的平均寿命。 解:能量hc E h νλ == ,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两 者之间的关系为:2 hc E λ λ?=? 由测不准关系,/2,E t ??≥平均寿命τ=Δt ,则 22224t E hc c λλτλπλ=?===???102112108 (4340.510)510s 4 3.141010310 ----?= =?????? 22-7.若红宝石发出中心波长m 103.67 -?=λ的短脉冲信号,时距为)s 10(ns 19 -,计 算该信号的波长宽度λ?。 解:光波列长度与原子发光寿命有如下关系: x c t ?=? 22 24x x p λλπλλ?==≈??? 72 2389 (6.310) 1.32310nm 31010 c t λλ---??===???? 22-8.设粒子作圆周运动,试证其不确定性关系可以表示为h L ≥??θ,式中L ?为粒

相关文档
相关文档 最新文档