文档库 最新最全的文档下载
当前位置:文档库 › 水泥窑余热发电系统水综合利用

水泥窑余热发电系统水综合利用

水泥窑余热发电系统水综合利用
水泥窑余热发电系统水综合利用

余热发电系统工艺流程

生产工艺流程: (19)余热发电系统 本方案拟采用单压纯低温余热发电技术,与双压系统和闪蒸系统相比,单压系统流程相对较简单,当设计选择的锅炉能完全吸收烟气放出的热量时,采用单压设计更为合理,系统内不同参数的工质较少,控制操作都更简单,窑头锅炉和汽轮机设备造价降低,系统管路减少,投资相对更省。 结合本工程的生产规模及投资环境,拟采用单压纯低温余热发电技术。该技术不使用燃料来补燃,因此不对环境产生附加污染,是典型的资源综合利用工程。主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑本工程2500t/d熟料新型干法水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下:系统主机包括一台PH余热锅炉、一台AQC余热锅炉和一套凝汽式汽轮发电机组。 据2500t/d水泥熟料生产线窑头冷却机废气排放温度的分布,在满足熟料冷却及工艺用热的前提下,采驭中部取气,从而提高进入窑头余热锅炉-AQC炉的废气温度,减少废气流量,在缩小 AQC炉体积的同时增大了换热量。并且提高了整个系统的循环热效率。 在窑头冷却机中部废气出口设置窑头余热锅炉 AQC炉,该锅炉分 2段设置,其中I段为蒸汽段,II段为热水段。AQC炉 II段生产的 150° C 热水提供给AQC炉 I段及PH锅炉°AQC炉I段生产的 1.6MPa- 3 2 0。C 的过热蒸汽作为主蒸汽与窑尾余热锅炉 P H炉生产的同参数过热蒸汽合并后,一并进入汽轮机作功。汽轮机的凝结水进入余热锅炉AQC炉I工段,加热后分别作为锅炉给水进入余热锅炉 SP炉、余热锅炉A QC炉的I

段。 ②PH余热锅炉:在窑尾预热器的废气出口管道上设置PH余热锅炉,该锅炉包括过热器和蒸发器,生产 1.6MPa-32 0C的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出 P H余热锅炉废气温度降到18 0 —200C,供生料粉磨烘干使用。P H锅炉热效率可达35%以上。 ③汽轮发电机组:上述二台余热锅炉生产的蒸汽共可发电 4100kW 因此配置4500kW凝汽式汽轮机组一套。 整个工艺流程是:40 C左右的给水经过除氧,由锅炉给水泵加压进入 AQC 锅炉省煤器后加热成135 C左右的热水,热水分成两部分,一部分送往AQC锅炉,另一部分送往SP锅炉;然后依次经过各自锅炉的蒸发器、过热器产生1.6MPa-320C和1.6MPa-320C的过热蒸汽,在蒸汽母管汇合后进入汽轮发电机组做功,做功后的乏汽进入凝汽器成为冷凝水,冷凝水和补充纯水经除氧器除氧再进行下一个热力循环。 PH锅炉出口废气温度180-200 C左右,用于烘干生料。 表2-6主要余热发电设备一览表

水泥余热发电

一、水泥窑纯低温余热发电背景 随着水泥熟料煅烧技术的发展,发达国家水泥工业节能技术水平发展很快,低温余热在水泥生产过程中被回收利用,水泥熟料热能利用率已有较大的提高。但我国由于节能技术、装备水平的限制和节能意识影响,在窑炉工业企业中仍有大量的中、低温废气余热资源未被充分利用,能源浪费现象仍然十分突出。新型干法水泥熟料生产企业中由窑头熟料冷却机和窑尾预热器排出的350℃左右废气,其热能大约为水泥熟料烧成系统热耗量的35%,低温余热发电技术的应用,可将排放到大气中占熟料烧成系统热耗35%的废气余热进行回收,使水泥企业能源利用率提高到95%以上。项目的经济效益十分可观。 我国是世界水泥生产和消费的大国,近年来新型干法水泥生产发展迅速,技术、设备、管理等方面日渐成熟。目前国内已建成运行了大量2000t/d以上熟料生产线,新型干法生产线与其他窑型相比在热耗方面有显著的降低,但新型干法水泥生产对电能的消耗和依赖依然强劲,因此,新型干法水泥总量的增长对水泥工业用电总量的增长起到了推动作用,一定程度上加剧了电能的供应紧张局面。而目前国内运行的新型干法水泥熟料生产线采用余热发电技术来节能降耗的企业极少,再者,国内由于经济潜力增长加剧了电力短缺的矛盾,刺激了煤电项目的增长,一方面煤电的发展会加速煤炭这种有限资源的开采、消耗,另一方面煤电生产产生大量的CO2等温室气体,加剧了对大气的环境污染。因此在水泥业发展余热发电项目是行业及国家经济发展的必然。此外,为了提高企业的市场竞争力,扩大产品的盈利空间,国内的许多水泥生产企业在建设熟料生产线的同时,也纷纷规划实施余热发电项目。 随着世界经济快速发展、新型节能技术的推广应用,充分利用有限的资源和发展水泥窑余热发电项目已经成为水泥业发展的一种趋势,也完全符合国家产业政策。 截至2009年,全国新型干法熟料生产线为934条,熟料产能7.6亿吨, 预计到2010年全国新型干法熟料生产线为1080条左右,熟料生产能力为8.6亿吨左右。虽然在水泥行业余热发电推广和普及迅速,除已建和在建外,到2010年全国还有50%的全国新型干法熟料生产线可以配置余热发电装置,如果以上新型干法熟料线全部配套余热发电,每年可实现节电270亿度,相当于节约煤炭消耗1000万吨(标煤),可减排CO2约24400万吨。 根据国家现行产业政策和“八部委”文件要求,截止2010 年国内新型干法水泥生产线配套建设纯低温余热电站的比例将达到40%,即到2010 年底以前还将有约400多座纯低温余热电站建成并投入运行。 二、新型干法水泥窑纯低温余热发电的兴起 1998年3月,日本政府赠送的中国首套水泥纯低温余热发电机组在海螺建成投运,十年来,该项目取得了良好的社会和经济效益,起到了很好的示范作用。海螺集团公司集成创新,在原有的基础上,针对水泥工艺特性改进设计,自行研发DCS系统,个性化设计,国产化装备。所开发的纯低温水泥窑余热发电技术余热回收效率高、发电过程中无需补充燃料,不产生任何污染,已处于国际领先地位。该技术是符合国家产业政策的绿色发电技术,是一种环保的、节能减排的、符合可持续发展要求的循环经济技术,经济效益也非常显著。

全面解析水泥窑协同处置污泥方案

全面解析水泥窑协同处置污泥方案 1.城市污泥处理的必要性和难度 随着城市人口的不断增加及生活污水处理率的提高,市政污水污泥的产出量也随之不断增加。市政污泥的环境污染已成为广大市民关注的焦点。市政污泥是一种由有机残片、细菌菌体、无极颗粒、胶体等组成的极其复杂的非均质体,含有大量病原菌、寄生虫(卵),铜、锌、铬、汞等重金属、盐类,以及多氯联苯、二恶英、放射性核素等难降解的有毒有害物。污泥还含有很高的附着水和结合水,尽管污水处理厂已采用真空过滤或离心脱水等机械脱水,污泥含水率仍达80%以上。由于污泥所具有的物理化学性质,污泥的彻底无害化处置 极其困难,已成为当今世界难题。目前所采用的填埋、农用、焚烧等处置方式均存在很高的环保风险.要真正达到彻底无害化处置需要付出极高的成本。 2.利用水泥窑处置污泥的可能性 广州市江苏绿森水泥有限公司(下称江苏绿森公司)从2007年就开始研究建设利用水泥窑无害化处置污泥项目。由于水泥窑处置污泥具有处理温度高、焚烧空间大、焚烧停留时间长、处理规模大、无二次渣排放问题等显着优点,来自污水处理厂的污泥含水率约80%,在水泥厂配套建设一个烘干预处理系统,利用出预热器废气余热(温度约280℃)将污泥烘干至含水率低30%。含水率低于30%污泥已成散状物料,经输送及喂料设

备送入分解炉焚烧。在分解炉喂料口处设有撒料板,将散状污泥充分分散在热气流中,由于分解炉的温度高、热熔大,使得污泥能快速、完全燃烧。污泥烧尽后的灰渣随物料一起进入窑内煅烧。 2007年12月22日~24日,江苏绿森公司进行了含水量30%的漂染污泥在6000t/d生产线上的工业试验工作。试验期间漂染污泥的空气干燥基热值平均为1445kCal/kg,入窑平均水分%,喂料量。试验结果表明,新型干法水泥窑系统完全可以处置具有较高硫含量的工业污泥。对水泥窑工艺过程的研究可知,利用水泥回转窑处理污泥具有以下特性: (1)有机物分解彻底 在回转窑中内温度一般在1350℃-1650℃之间,甚至更高,燃烧气体在此停留时间>8s,高于l100℃时停留时间>3s。燃烧气体的总停留时间为20s左右,且窑内物料呈高湍流化状态。因此窑内的污泥中有害有机物可充分燃烧,焚烧率可达%,即使是稳定的有机物如二恶英等也能被完全分解。 (2)抑制二恶英形成 由于干化污泥喂入点处在高于850℃的分解炉,分解炉内热容大且温度稳定,有效地抑制了二恶英前躯体的形成。从国内外水泥窑处置有毒有害废弃物的实践表明,废弃物焚烧后产生的二恶英排放浓度远低于排放限值。

余热发电设计方案

水泥有限公司 2000t/d水泥窑余热发电工程(5MW)项目技术方案

目录 1 项目申报基本概况 (1) 1.1项目名称 (1) 1.2项目地址 (1) 1.3项目建设规模及产品 (1) 1.4项目主要技术经济指标 (1) 2 拟建项目情况 (3) 2.1建设内容与范围 (3) 2.2建设条件 (3) 2.3装机方案 (4) 2.4电站循环冷却水 (11) 2.5化学水处理 (12) 2.6电气及自动化 (13) 2.7给水排水 (16) 2.8通风与空调 (16) 2.9建筑结构 (16) 2.10项目实施进度设想 (18) 2.11组织机构及劳动定员 (19) 3 资源利用与节约能源 (21) 3.1资源利用 (21) 3.2节约能源 (21)

附:原则性热力系统图

1 项目申报基本概况 1.1 项目名称 项目名称:水泥有限公司2000t/d水泥窑余热发电工程(5MW)1.2 项目地址 ,与现有水泥生产线建在同一厂区内。 1.3 项目建设规模及产品 根据2000t/d水泥窑的设计参数和实际运行情况,建设规模拟定为:在不影响水泥熟料生产、不增加水泥熟料烧成能耗的前提下,充分利用水泥生产过程中排出的废气余热建设一座装机容量为5MW纯低温余热电站。 产品为10.5kV电力。 1.4 项目主要技术经济指标 主要技术经济指标一览表

2 拟建项目情况 2.1 建设内容与范围 本项目根据2000t/d水泥生产线的实际运行情况、机构管理和辅助设施,建设一座5MW纯低温余热电站。本项目的建设内容与范围如下:电站总平面布置; 窑头冷却机废气余热锅炉(AQC炉); 窑尾预热器废气余热锅炉(SP炉); 窑头冷却机废气余热过热器(简称AQC-SH); 锅炉给水处理系统; 汽轮机及发电机系统; 电站循环冷却水系统; 站用电系统; 电站自动控制系统; 电站室外汽水系统; 电站室外给、排水管网及相关配套的土建、通讯、给排水、照明、环保、劳动安全与卫生、消防、节能等辅助系统。 2.2 建设条件 2.2.1 区域概况 2.2.2 余热条件 根据公司提供的水泥窑正常生产15天连续运行记录,废气余热条件如下。 (1)窑头冷却机可利用的废气余热量为: 废气量(标况):140000Nm3/h 废气温度: 310℃ 含尘量: 20g/Nm3 为了充分利用上述废气余热用于发电,通过调整废气取热方式,将废

水泥窑协同处置固废方案

水泥窑协同处置固废方案 城市生活垃圾处理是城市环境卫生治理的一大难点,而利用新型干法水泥窑协同处置生活垃圾技术在处置成本、污染控制上有明显的优势,是目前实现垃圾减量化、无害化、资源化、能源化的有效手段之一。本文介绍了水泥窑协同处置生活垃圾技术的几种方式和发展历程,并重点对几种协同处置方式进行了对比分析。 一、背景 改革开放以来,随着我国经济的快速发展,人民生活水平迅速提高,城镇化进程不断加快,城市生活垃圾产量一直在增加。近年来,我国的城市生活垃圾排放量以每年10%以上的速度增长[1],此外,国存量垃圾堆放量已超过80亿吨,既占用土地又污染环境。另外,由于我国垃圾分类收集重视不够,垃圾基本是混合收集,垃圾含水量高、热值低、有机成分高,垃圾成分随地区、季节等变化较大。 目前,我国城市生活垃圾无害化处理方式包括:卫生填埋、高温堆肥和焚烧,图1为2014年我国垃圾处理方式比例,显示我国仍然以填埋为主[2]。但焚烧凭借其减量效果最明显、无害化最彻底、且焚烧热量可以有效利用的特点,近年来比例上升很快,可以预见,焚烧正逐步成为处理城市垃圾的最主要方式。 与传统的垃圾焚烧相比,焚烧发电所需建设与运营的费用较高,且产生的灰渣需要二次处理。城市生活垃圾单独焚烧后产生的灰渣包

括底灰和飞灰,其主要化学成分与水泥原料相似,且具有一定的胶凝活性二、水泥窑协同处置生活垃圾的几种方案介绍及对比2.1 国外水泥窑协同处置生活垃圾的现状 国际上水泥窑协同处置废物技术开始于20世纪70年代,首次试验于1974年加拿大Lawrence水泥厂,随后美国的Peerless、德国Ruderdorf等十多家水泥厂先后进行了试验。截止到目前,在欧洲、北美、日本等发达国家已经有30多年的研究应用历史,在替代燃料研究和生态水泥生产方面积累了许多经验。据统计,2007年荷兰的燃料替代率已达85%以上,2013年日本、比利时、瑞士、奥地利等燃料替代率达50%以上,美国为30%左右。 我国水泥窑协同处置生活垃圾技术推广至今,仅有凯盛、海螺、中材、金隅、华新、华润、、中建材等几家领先的水泥企业集团和水泥装备集团开展了水泥窑协同处置生活垃圾工作,仅有等少数省份组织推动了水泥窑协同处置生活垃圾工作。目前,全国已建成投产水泥窑协同处置生活垃圾生产线30 多条,占水泥生产线的比重不足2%。 2.2 水泥窑协同处置生活垃圾的主要方案 水泥窑协同处置生活垃圾的核心是在水泥的生产过程中,充分利用城市生活垃圾中的可燃成分和灰渣材料,结合水泥窑的生产特点,应用适当的技术解决方案,使垃圾减量化、无害化、资源化、能源化。主要的处理方案可以大致进行如下分类:

水泥回转窑窑尾烟气净化除尘系统的技术改造(精)

水泥回转窑窑尾烟气净化除尘系统的技术改造 简介:由戈尔公司负责对山西水泥厂窑尾布袋收尘器进行技术改造,于一九九七年九月完成改造并运行至今已近两年,根据最近一次检修期间对滤袋强度所进行的测试分析表明:滤袋预期寿命可达五年以上. 关键字:除尘-收尘器 一、前言 根据山西水泥厂生产和技术部门提供的"山西水泥厂2000吨回转水泥窑窑尾烟气净化系统工艺流程以及有关除尘设备的设计要求和参数",由戈尔过滤产品(上海)有限公司会同本公司在美国、新加坡、韩国等水泥厂烟气治理技术专家,利用戈尔公司在国外水泥厂烟气净化除尘设备上广泛应用GORE-TEX?薄膜滤料取得的成功经验,并对山西水泥厂目前回转水泥窑窑尾反吹风袋式除尘器的使用问题进行初步分析和研究的基础上由戈尔公司负责对山西水泥厂窑尾布袋收尘器进行技术改造,于一九九七年九月完成改造并运行至今已近两年,根据最近一次检修期间对滤袋强度所进行的测试分析表明:滤袋预期寿命可达五年以上。 二、选用GORE-TEX?薄膜滤袋对回转水泥窑窑尾反吹风大布袋除尘器的改造依据 2、1 主要技术参数 2、1、1 山西水泥厂回转水泥窑窑尾除尘器烟气净化技术要求及工况条件 1、烟气净化的处理风量: 423,000Am3/hr. 2、滤袋尺寸:Φ300×9300mm 3、原设计滤袋数量: 2208只 4、除尘器过滤分室: 16 室 5、原设计除尘器过滤速度: 0.36m/min(全运行) 0.39m/min (一室清灰时) 6、粉尘入口浓度:≤80g/Nm3 7、烟气温度:<250C 8、排放指标要求:≤100mg/Nm3

2、1、2 水泥厂回转水泥窑窑尾烟尘的主要特点: 一般来说,水泥厂回转水泥窑窑尾烟尘的主要特点有:粒径细(平均粉尘粒径1-30μ);湿度大;烟气温度高且波动大;以及粉尘入口浓度高等特点。 2、2 水泥厂回转水泥窑窑尾烟气净化和薄膜滤料袋式除尘器的应用 熟料煅烧是水泥生产中的重要工艺环节,其主要污染物为高温高浓度含尘烟气。其粉尘排放量可约占整个水泥厂粉尘总排放量的70%左右。目前,国内水泥厂大部分选用静电除尘器除尘,其特点是:运行阻力低;超负荷运行能力强,操作管理相对省事。但是静电除尘器必须对烟气进行调质处理以提高其除尘效率,如果粉尘排放控制要求严格(即达到小于50mg/m3的水平),即使静电除尘器的设备投资和运行费用大幅度增加,也难以达到粉尘的排放要求。因此,近年来北美、韩国等不少大型水泥厂都纷纷将静电除尘器改造为布袋除尘器。另外,对现有水泥生产厂家来说,不但要求能控制粉尘排放,而且希望能不断地增加产量,降低生产能耗,减少生产成本。许多应用实例表明,在水泥厂回转水泥窑窑尾烟气净化除尘器选用GORE-TEX?薄膜滤袋后,无论技术、环保还是经济效益都十分显著。 2.3系统改造前存在的主要问题 山西水泥厂2000吨新型干法超短窑(直径3.962米,长度42.672米)与LM32.40莱歇磨(每小时产量160吨)共用一台BFRS型反吹风袋收尘器。从1995年11月正式投产至1996年10月,虽然系统产量只有每小时50吨,但原设计选用的国产玻纤滤袋已经开始出现大量破损,排放浓度严重超标。随着窑系统产量的提高及系统风量的增加,在生料磨与窑同时运行的工况下, 收尘器的压差上升至1800Pa;而当磨停机窑单独运行时,收尘器的压差很快达到极限报警值(2750Pa),窑系统出现正压,严重影响了窑的正常生产,至1997年4月滤袋全部破损,收尘器已经失去其除尘的作用。因此于1997年9月由戈尔公司负责对收尘器进行了改造,选用了具有“表面过滤”功能的GORE-TEX?薄膜滤袋 三、选用GORE-Tex?薄膜滤袋之后,水泥回转窑除尘器的主要技术指标 作为滤袋洪应商的戈尔过滤产品(上海)有限公司可以向山西水泥厂提供使用GORE-TEX?薄膜滤袋除尘器设备的运行技术保证。即在双方共同认可的总体、技术和测试条件下应用,在寿命保证期内可以达到下列主要技术性能指标: 1、风量测定不低于原设计值,即达到: 423,000Am3/hr.@250℃ 2、滤袋足寸:ф300x 9300mm 3、滤袋数量: 1152只

水泥窑余热发电锅炉双压技术

2 双压系统技术介绍 2.1 为什么采用双压系统 水泥窑产生余热废气量很大,温度在350℃以下,为了充分利用这些低温热源,就要求发电系统更为合理。根据朗肯循环和数学微积分原理可知,蒸汽分段进入汽轮机做功发电是最合理的。 双压系统可使相对高温热源(210~350℃烟气)产生较高参数的蒸汽,使相对低温热源(100~210℃烟气)产生较低参数的蒸汽,使能量分布优化,系统充分吸收低参数热量,发出更多的电能。对于火力发电,为了提高热力循环系统效率,一般应尽量提高主蒸汽参数,对于水泥窑纯低温余热发电,主蒸汽参数的选取取决于水泥窑排放废气的温度,应尽可能接近废气温度,考虑传热温差和受热面的经济性,一般有10~15℃的温差。而主蒸汽压力的选取则要多方面斟酌,例如某项目选取l.7MPa,330℃,对于l.7MPa的主蒸汽,其饱和温度为204℃,因换热温差的存在,烟气产生主蒸汽后,余热锅炉排出烟气温度在210℃以上,主蒸汽压力选择得越高,产生主蒸汽后的烟气排出温度越高。这样主蒸汽压力的选取,对210℃以下烟气余热利用有重大影响。这对于窑尾预热器(SP)是合适的,因为210℃左右以下的烟气热量还要用于原料烘干。但对于窑头篦冷机(AQC)来说,是不经济的,因为210℃以下热量排放掉,不仅造成能源浪费,还对环境产生了热污染。根据我国的实际情况及技术水平,AQC的排气温度在90~100℃是合适的,这样造成100~200℃之间热量的利用成为问题,根据分析这部分热量占总废热量的17~20%。为了有效地利用这部分热量,我们采用双压系统,高压主蒸汽(参数为1.7MPa,330℃)吸收210℃以上的烟气热量,低压系统蒸汽(参数为0.45MPa,165℃)可以吸收l00~210℃之间的烟气热量。 当然,为尽可能利用余热,提高余热利用率,也可以再设置一级或多级压力,通过定量分析计算,对上述余热,使用三压后,只比双压多发几十千瓦电,而系统造价却要增加一百多万元,技术经济性较差,系统会更复杂。同理,多压的技术经济性更差。因此,对水泥厂中低温余热来说,双压技术是比较合适的。 2.2双压系统的技术关键点 双压锅炉 双压锅炉能使排气温度降到95℃左右,比单压锅炉吸收余热量大,系统热量利用率高。杭州锅炉厂已经有非常成熟的双压锅炉技术。 补汽式汽轮机 补汽式汽轮机的设计和制造技术已经很成熟。我公司通过和西安交通大学联合,对补汽式汽轮机持续开发研究和科技创新攻关,确定了合适的补汽点,设计了蜗壳式补汽缸,解决了补汽难的问题。

余热发电的工艺流程、主要设备和工作原理简单介绍

纯低温余热发电工艺流程、主机设备和工作原理简介 直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。 工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到炉汽包炉汽包和.1闪蒸器内。进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。 主机设备性能特点: 一、余热锅炉: 炉和炉 锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。锅炉前设置一预除尘器(沉

降室),降低入炉粉尘。废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。 过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。 蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。 省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。 沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘收集,避免粉尘对锅炉受热面的冲刷、磨损。 锅炉的设计特点如下: 锅炉型式为卧式,锅炉由蒸发器、过热器、汽包及热力管道构成,废气流动方向为水平流动,换热管采用蛇形光管,以防止积灰。因生料具有粘附性,故锅炉设置振打装置进行除灰,工质循环为采用循环泵进行强制循环方式。 二、汽轮机 汽轮机是用具有一定温度和压力的蒸汽来做功的回转式原动机。依其做功原理的不同,可分为冲动式汽轮机和反动式汽轮

水泥工厂余热发电设计规范标准

1 总则 1.0.1 为在水泥工厂余热发电工程设计中,贯彻国家能源综合利用基本方针政策,做到安全可靠、技术先进、降低能耗、节约投资,制定本规。 1.0.2 本规适用于新建、扩建、改建新型干法水泥生产线余热发电的工程设计。 1.0.3 新建、扩建水泥工厂的余热发电工程或既有水泥生产线改造增设余热发电系统,设计基本原则应符合国家产业政策和现行国家标准《水泥工厂设计规》GB50295和《水泥工厂节能设计规》GB50443。 1.0.4 当余热发电工程设计容含有热电联供或设有补燃锅炉时,相关部分应符合现行国家标准《小型火力发电厂设计规》GB50049的有关规定。 1.0.5 水泥工厂余热发电工程环境保护和劳动安全设计,必须贯彻执行国家有关法律、法规和标准。 1.0.6 水泥工厂余热发电工程设计,除应符合本规外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 余热发电工程设计文件、图纸使用术语应符合本规规定。本规未纳入与水泥工厂余热发电工程相关的术语应符合现行国家标准《工业余热术语、分类、等级及余热资源量计算办法》GB/T1028、《电力工程基本术语标准》GB50297及国家有关术语标准的规定。 2.0.2 余热利用Waste Heat Recovery 以环境温度为基准,对生产过程中排出的热载体可回收热能的利用。 2.0.3 窑头余热锅炉 Air Quenching Cooler Boiler 利用窑头熟料冷却机排出的废气余热生产热水或蒸汽等工质的换热装置,简称AQC炉。 2.0.4 窑尾余热锅炉Suspension Preheater Boiler 利用窑尾预热器排出的废气余热生产热水或蒸汽等工质的换热装置,简称SP 或PH锅炉。 2.0.5 余热发电Waste Heat Power Generation 仅利用工业生产过程中排放的余热进行发电,也称纯余热发电。 2.0.6 热电联供 Cogeneration 余热发电在生产电能的同时,还可生产热水或蒸汽供热。 2.0.7主厂房 Main Power Building 设有汽轮发电机组及附属设备、设施的厂房。 2.0.8闪蒸器 Flasher 具有一定温度和压力的不饱和水进入压力较低的容器中时,由于压力的突然降低使不饱和水变成容器压力下的饱和蒸汽和饱和水的容器。 2.0.9 双压锅炉 Dual-pressure Boiler 具有两种蒸汽工作压力参数的锅炉。

水泥窑协同处置

1/ 7水泥窑协同处置 01 什么是水泥窑协同处置? 水泥窑协同处置是水泥工业提出的一种新的废弃物处置手段,是指将满足或经过预处理后满足入窑要求的固体废物投入水泥窑,在进行水泥熟料生产的同时实现对固体废物的无害化处置过程。 曲阜中联日处理污泥100吨水泥窑无害化协同处置项目

02 水泥窑协同处置有哪些优势?水泥窑协同处置固废优势突出: 利用现有工业设施,不增加土地,环境扰动小,建设投资相对较少。 水泥窑具有高温煅烧和强碱性气氛,能够有效抑制二噁英等二次污染物的产生,只要控制得当就不会有二次污染的隐患。 不仅能够实现固废危废减量和资源化,还能促使水泥行业向绿色环保产业发展。 山东德州《新闻联播》播出德州中联大坝水泥窑协同处置废弃物项目 03 水泥窑可以协同处置哪些固体废物?水泥窑可以处理的废物包括生活垃圾,各种污泥(下水道污泥、造纸厂污泥、河道污泥、污水处理厂污泥),工业危险废物,各种有机废物(废轮胎、废橡胶、废塑料、废油等),动植物加工废物,受污染土壤、应急事件废物等固体废物。 但是,放射性废物、爆炸物及反应性废物、未经拆解的废电池、废家用电器和电子产品、含汞的温度计、血压计、荧光灯管和开关、2/ 7

铬渣、未知特性和未经鉴定的废物禁止入窑进行协同处置。 中材萍乡水泥窑协同处置中心采用新型干法回转窑焚烧污泥技术,年处置污泥2.64万吨 04 固体废物在水泥生产过程中有哪些用途?根据成分与性质,不同的废物在水泥生产过程中的用途不同,主要包括: 替代燃料:主要为高热值有机废物 替代原料:主要为低热值可作为水泥生产原料的无机矿物材料废物混合材料:改善水泥的某种性能,调节水泥的强度等级,提高水泥产量,降低水泥生产成本,适宜在水泥粉磨阶段添加的成分单一的 废物 3/ 7

利用水泥厂处理危险废物

徐州工业职业技术学院毕业专题(设计) 课题名称:关于水泥厂利用废弃物 年级专业:安全大专051 学生姓名:陈敏慧学号:040300383 指导老师:张晓东职称:高级 导师单位:徐州工业职业技术学院

目录 摘要 (1) 引言 (1) 第一章文献综述 §1.1利用可燃工业废气物的历史 (1) §1.2我国目前的形势 (4) §1. 3艰苦的摸索和试验工作的进步 (5) §1.4关于利用水泥回转窑和利用废弃物技术的建议 (7) 第二章研究内容 §2.1水泥工业利用废弃物的主要途径和问题 (9) §2.2欧盟新公布的法规 (10) §2.3德国水泥回转窑利用废弃物的有关规定 (12) 第三章德国的一些研究成果 3.1微量元素在水泥回转窑系统中的挥发性 (13) 3.2水泥回转窑排放的微量元素量 (14) 3.3微量元素浸出试验 (15) 致谢参考文献 (17)

我国启动可燃废物生产水泥 作者:陈敏慧安全管理051班学号040300383 摘要 随着世界环境问题的日益突出和可持续发展战略的要求,人们越来越关注各类废弃物的处理和利用。目前对于废弃物的处置通常的方法是用焚烧炉进行焚烧或者填埋,采用填埋的方法将占用大片土地并会产生二次污染。相比之下,利用水泥回转窑比专业焚烧炉在经济性、防止二次污染、无害化处理的彻底性方面更具优势。 关键字:水泥废弃物水泥回转窑 引言 现代水泥工业是近代科学技术的产物,也是社会物质文明和经济增长的支撑之一。根据现今科技发展成果及其应用趋势来判断,水泥在今后相当长的时间内仍是一种难以被替代的经济实用的大宗建筑材料。水泥工业作为现代工业生态系统和经济生态系统中的一员,因为其生产工艺的固有特点,使其在发展全社会的循环经济中具有较显著的"链接"作用。由于现代水泥工业科技成果的研发和应用,近年来已取得较大进展。水泥企业在循环经济系统的自身"小循环"中已颇显效益。同时在与其他工业行业"链接",实现多个产业之间的互补、互用、互利等"中循环"方面也成效卓越。而且还可以在全社会的大系统中,为实现"大循环"作出相应的贡献。 世界和中国水泥工业的前途和魅力就在这里。将来的水泥厂不再仅仅是烧制水泥,它应该成为处理社会垃圾的一座庞大的焚烧炉。那时候的水泥工业与社会和谐发展,将成为名副其实、真正意义上的环境友好型行业。 这绝不是异想天开。在实现零污染零排放,在余热发电乃至其他方面,不论是中国的水泥制造业还是外国的水泥公司,都已经有了不小的进步,只是作为一种成熟的理论升华、并把其概括为"四零一负"提出来 随着世界环境问题的日益突出和可持续发展战略的要求,人们越来越关注各类废弃物的处理和利用。目前对于废弃物的处置通常的方法是用焚烧炉进行焚烧或者填埋,采用填埋的方法将占用大片土地并会产生二次污染。相比之下,利用水泥回转窑比专业焚烧炉在经济性、防止二次污染、无害化处理的彻底性方面更具优势。 第一章文献综述 1.1利用可燃工业废弃物的历史 世界发达国家对利用水泥回转窑来处置和利用可燃工业废弃物的工业实践已有近30年的历史,技术上成熟,并形成了一套完整的体系。我国水泥生产在原料中使用电厂粉煤灰、高炉矿渣、硫铁渣、铜渣、烟气脱硫石膏、电石渣、赤泥等工业废弃物也已多年。据初步统计,全国水泥生产中所需原料约有20%以上来自上述工业废弃物。但与国外相比,我国在政策支持、技术水平和规模等方面还存在很大差距。

水泥厂余热发电

水泥厂余热发电 水泥厂余热发电 宁国水泥厂水泥窑余热发电项目总结报告 安徽宁国水泥厂 一、前言 一九九五年八月,日本国新能源产业技术综合开发机构(NEDO)与中国国家计委、国家建材局签订了水泥余热发电设备示范事业基本协定书,由日方无偿提供一套先进且成熟可靠的低温余热发电技术和设备用于中国现有水泥厂,通过科学论证和国内外专家的实地考察,日方提供的这套设备安装在宁国水泥厂4000t/d 水泥生产线上,发电机装机容量为6480kw,设计年发电量为4087x10000kwh,吨熟料发电能力为3307kwh/t。 二、余热发电项目的主要技术特点 水泥厂余热资源的特点是:流量大,品位低。以宁国水泥厂4O00t/d生产线为例,PH(预热器)和、AQC(冷却机)出口废气流量和温度分别为258550Nm3/h、340℃和306600Nm3/h、238℃,其中部分废气用来烘干燃煤和原料。 针对上述余热资源的特点,在热力系统的设计上采取以下技术措施: 1、采用减速式两点混汽式汽轮机,利用参数较低的主蒸汽和来自闪蒸器的饱和蒸汽发电; 2、设置具有专利技术的余热锅炉,能够充分利用余热资源; 3、应用热水闪蒸技术,设置一台高压用蒸器和一台低压闪蒸器,闪蒸出的饱和蒸汽混入汽轮机做功;

4、由于PH出口废气还要用于原料烘干,所以PH锅炉无省煤器,只设蒸发器和过热器,从而使出炉烟温达250℃,仍可用于原料烘干; 5、AQC锅炉设计为立式自然循环锅炉,带汽包,烟气自上而下通过锅炉。锅炉自上而下布置过热器、蒸发器和省煤器,由于废气粉尘为熟料颗粒,粘附性不强,除尘方式采用自然沉降;另外为增大换热面积,强化换热效果,AQC锅炉的传热管设计为螺旋翅片管。PH锅炉采用卧式强制循环锅炉,带汽包,设蒸发器和过热器,烟气在管外水平流动,受热面为蛇彩光管,设置机械振打装置来解决废气的粉尘附着问题。 再者,整个余热发电系统采用先进的DCS集散控制系统,系统的操作简便可靠,并设有完善的报警和保护程序,使整个发电工艺系统能够长期稳定运行。 上述关键技术的解决,为保证系统设计的可靠性、合理性起到重要作用。较好地解决了制约我国纯低温水泥余热发电技术水平提高的瓶颈问题,以上技术在宁国水泥厂余热发电系统成功应用,在国内处于领先水平,并且达到国际先进水平。 三、项目的建成和运转实绩 项目于一九九六年十月十八日破土动工,一九九八年一月十四日实现两台锅炉通汽煮炉,随后顺利完成了蒸汽吹管,汽轮机冲动和升速,汽轮机保护动作实验等一系列工作,同年二月八日发电机组并网发电一次成功。 自一九九八年三月开始实质性运转至二OO一年底,从统计数据表明,平均吨熟料发电量已达35.35kwh/t,累积发电量已达18677万千瓦时,实现了系统安全、稳定、高效运行,实现投产当年达产达标的可喜成绩。在项目的生产管理上,充分吸收海螺集团多年来生产管理的先进经验,组织技术管理人员及时编写了一系列规章制度和安全操作规程,使余热发电系统的生产管理迅速走向科学

水泥窑余热发电概述

水泥窑余热发电概述 水泥窑余热发电概述 水泥窑余热发电技术是直接对水泥窑在熟料煅烧过程中窑头窑尾排放的余热废气进行回收,通过余热锅炉产生蒸汽带动汽轮发电机发电。 一条日产5000

相关文档 最新文档