文档库 最新最全的文档下载
当前位置:文档库 › 氧化时间对7A55铝合金微弧氧化膜的影响

氧化时间对7A55铝合金微弧氧化膜的影响

氧化时间对7A55铝合金微弧氧化膜的影响
氧化时间对7A55铝合金微弧氧化膜的影响

第29卷 第3期

2009年6月

航 空 材 料 学 报

J OURNAL OF A ERONAUT ICAL MAT ER I A LS

V o l 129,N o 13 June 2009

氧化时间对7A55铝合金微弧氧化膜的影响

李忠盛1,2

, 吴护林1

, 潘复生2

, 张隆平1

, 何庆兵

1

(1.中国兵器工业第五九研究所,重庆400039;2.重庆大学材料科学与工程学院,重庆400030)

摘要:采用恒流微弧氧化法在碱性硅酸盐-磷酸盐体系电解液中对7A 55铝合金进行了微弧氧化处理,研究了氧化时间对微弧氧化膜表面形貌、厚度和相组成的影响。研究结果表明,在恒定的电参数(电流密度为6A /d m 2,占空比均为30%,频率为1000H z)条件下,随着氧化时间的延长,阳极电压逐渐增大,氧化膜表面微孔孔径逐渐增大,微孔数量逐渐减少,膜层厚度随氧化时间近似呈线性增加;膜层主要由C -A l 2O 3相组成。关键词:微弧氧化;7A55铝合金;氧化时间;组织结构

中图分类号:TG174145 文献标识码:A 文章编号:1005-5053(2009)03-0023-04

收稿日期:2008-07-04;修订日期:2008-08-20

作者简介:李忠盛(1980)),博士研究生,主要从事铝合金、镁合金等轻合金材料及表面改性技术研究,(E -m a il)zhong s h l@i 163.co m 。

超高强度铝合金是广泛应用于航空航天、交通

运输和其它工业部门的重要结构材料之一,具有强度高、密度小以及优良的综合性能。7A55铝合金是针对航空抗压结构用材开发的新型超高强铝合金[1,2],经T77处理后[3],具有非常高的强度、良好的塑性及较高的韧性等优点,是目前综合性能最好的超高强铝合金

[4]

随着航空航天工业和其它高技术产业的发展,对该材料的耐磨、耐蚀、绝缘等性能提出了更高的要求。采用微弧氧化技术能获得硬度高且与基体冶金结合的陶瓷层,可以大大提高耐磨、耐蚀等性能[5,6]

。微弧氧化时间是影响膜层性能的重要工艺参数之一,氧化时间过短则膜层太薄,不能对铝合金表面起到保护作用,而延长氧化时间将导致膜层的缺陷增多。目前,人们对变形铝合金微弧氧化的研究一般仅限于以Cu ,M g 为主要合金元素的硬铝系列合金和合金元素含量相对较低的锻铝系列。因此,本研究着重研究氧化时间对7A55铝合金微弧氧化膜层结构的影响,以期为高合金元素超高强度铝合金表面获得优良的陶瓷膜提供依据。

1 试验材料及方法

试验材料为7A55铝合金,化学成分(质量分数/%)为:Zn 810~815,M g 210~214,Cu 210~

214,Zr 0115,Cr 0110,M n 0110,余量为A l 。微弧氧

化试样规格为<30mm @2mm,电解液为碱性硅酸盐-磷酸盐体系,试验在MAO I -50型直流脉冲微弧氧

化设备上进行,电流密度恒定为6A /dm 2

,占空比为30%,频率为1000H z ,电解液温度控制在35e 以下,氧化时间分别为60m in ,90m in ,120m i n ,150m i n 。 采用带I N CA OXFORD 能谱仪的QUANTA 200型环境扫描电子显微镜观察陶瓷膜表面形貌及截面显微结构,并分析了膜中元素分布;用M I N I TEST 3100型涡流测厚仪测量陶瓷膜层厚度;用DX-2500全自动X 射线衍射仪(参数:Cu 靶,电流25mA,电压40kV,步进扫描0102b /s)研究陶瓷膜层的相组成。

2 试验结果及讨论

211 电压随微弧氧化时间的变化关系

电压对陶瓷膜的生成具有决定性的作用,只有施加电压高于陶瓷膜的击穿电压时,才能生成更加致密且较厚的膜层。微弧氧化按电压-时间曲线可

以分为无火花阶段、火花阶段、微弧阶段和弧阶段[7]

。图1所示为在恒定电流密度条件下阳极电压随氧化时间的变化关系。由图1可见,在无火花阶段,阳极电压随氧化时间的延长而迅速增大,达到约400V 后表面出现火花放电,随后电压增加速度变缓,略有波动,最后基本维持定值,最高达到635V 。212 氧化时间对微弧氧化膜表面形貌的影响 图2所示为不同氧化时间微弧陶瓷膜表面的微观形貌。由图可见,氧化时间为60m in 时,陶瓷膜表面为有明显的烧结熔融痕迹的直径约为10~20L m

航空材料学报第29

图1阳极电压随时间的变化关系F ig11R elati onship bet w een anodic

vo ltage and ox i dati on ti m e 的环形堆积状颗粒,分布均匀,其中心有直径约为1 ~3L m的圆形微孔,这些孔洞是微弧氧化过程中等离子体火花放电后残留的没有封闭的通道,即/喷射孔0。随着氧化时间的延长,表面的等离子体火花放电通道,大部分呈封闭状态,只有少量没有封闭。当氧化时间的延长至150m in时,陶瓷膜表面粗糙度明显提高,空洞数量更少(图2d),等离子体火花放电后残留的通道周围有明显熔化痕迹,类似火山喷发口形状,直径在30L m左右,且是经过多次重复放电而相互叠加在一起的。同时,在试样处理过程中发现此时试样表面有较大的弧光放电现象,该弧光放电对陶瓷膜具有破坏作用。

图2不同氧化时间微弧陶瓷膜表面的微观形貌

F ig12Surface m icropho l og i es ofM AO coati ngs a t different ox i dati on ti m e

(a)60m i n;(b)90m i n;(c)120m i n;(d)150m i n

陶瓷膜的表面形貌与微弧氧化不同阶段的特性有关。在进行恒流微弧氧化处理时,起初出现分布均匀、密集且快速游动于整个样品表面的微小弧光,随着氧化时间的延长,阳极电压逐渐增大,弧光分布逐渐变得不均匀、稀疏且固定于样品表面,成为较大的弧光,即随着氧化时间的延长,样品表面弧光数量逐渐减少,弧光面积逐渐增大。由于在反应过程中,弧光数量和弧光面积对陶瓷层表面熔融微孔的数量和孔径起决定性作用,因而随着氧化时间的延长,陶瓷层表面微孔数量逐渐减少,而微孔孔径逐渐增大。213微弧氧化膜的截面形貌与元素分布

选取微弧氧化120m in的试样,分析膜层的截面形貌及元素线分布,结果如图3所示。可见,陶瓷膜中没有通孔,这说明/喷射孔0内部是封闭的;膜层不存在明显的致密层与疏松层分界线,与基体之间呈微区范围内的锯齿状冶金结合。沿着膜层横截面位置线扫描(图3b)可知,A,l O元素是陶瓷膜的主要元素,而且未发生分层。

分析认为,氧化一开始,铝合金表面自然氧化膜被击穿,露出的新鲜表面与溶液中的氧发生反应,形成陶瓷膜;氧化电压的升高再次击穿该陶瓷膜,并在击穿孔内重新发生上述反应,生成新的陶瓷相填充击穿孔,而先前生成陶瓷相则在熔融后继续填充击穿孔余下的空隙,多余的则溢出击穿孔,堆积在孔的周围,并分别凝固。整个微弧氧化过程就是击穿、熔融、反应、凝固等不断反复的过程。在本试验条件

24

第3期氧化时间对7A55铝合金微弧氧化膜的影响下,溢出的熔融陶瓷相遇到电解液后,迅速均匀/摊开0并凝固。因此,生成的陶瓷膜比较致密,未出现

分层现象。

图3 微弧氧化陶瓷膜截面形貌及元素线分布图F i g 13 M icropho l og i es and ele m ent li near distr i buti ons

f o r Cross -section o fMAO coati ng

214 微弧氧化膜的生长速率

图4所示为微弧氧化陶瓷膜的厚度随氧化时间

的变化曲线。由此可见,陶瓷膜厚度随着氧化时间的延长而增加,近似呈线性增长。此外,由于微弧氧化150m i n 制备的陶瓷膜表面粗糙度较大,测量的厚度偏大。从电压-时间曲线上可以看出,大约在

20m i n 以后进入稳定氧化阶段,此时膜层以恒定的速率生长。经最小二乘法拟合可得以下方程,其中斜率即膜层生长速率:

d =0132t +1314 (t \20m i n )式中:d 为厚度,L m;t 为时间,m in

图4 微弧氧化陶瓷膜厚度随氧化时间的变化曲线

F i g 14 Change curves o f th i ckness for M AO

coati ng w ith ox idation ti m e

215 微弧氧化膜的相组成

选取微弧氧化120m in 的试样,分析膜层的相组

成,结果如图5所示。由图可知,7A55铝合金的微弧氧化陶瓷膜主要由C -A l 2O 3组成。M cPherson

[8]

在研究热喷涂A l 2O 3亚稳相时发现,当液滴温度T 小于1700e 时,A -A l 2O 3相临界成核自由能大于C -A l 2O 3相临界成核自由能。根据均匀形核的形核率公式:I =A exp(-$G */kT )(式中,A 为常数,$G *为临界成核自由能,k 为波尔茨曼常数,T 为温度),在较大冷却速率情况下,C 相成核率大于A 相成核率。在微弧氧化过程中,微弧放电区域的温度极高,但每个微弧(火花)存在的时间很短(约10~20L s)

[9]

,因此,在每个火花熄灭瞬间,熔融A l 2O 3

同电解液接触面的冷却速率很大,其导致液滴凝固时易形成C 相。在1000~2000e 时,C -A l 2O 3相会转变为热力学稳定的A -A l 2O 3相,但是合金元素的存在将减慢其转变速度,特别是大量的Zn 元素更是

抑制了由C -A l 2O 3相向A -A l 2O 3相的转变,从而只生成C -A l 2O 3相

[10]

图5 微弧氧化120m i n 制备的陶瓷膜相组成F ig 15 Phase compositi on ofM AO cera m i c coatings

after 120m i n ox i da ti on

3 结论

(1)采用直流脉冲氧化法在7A 55超高强度铝合金表面形成了致密、均匀的微弧氧化陶瓷膜。在恒定的电参数(电流密度为6A /dm 2

,占空比均为

30%,频率为1000H z)下,随氧化时间的延长,阳极电压逐渐增大,其变化反应了膜层的生长特性。

(2)随着氧化时间的延长,微弧氧化膜表面微

孔孔径逐渐增大,但微孔数量逐渐减少;进入稳定微弧氧化阶段(t \20m in)后,膜层厚度随氧化时间近似呈线性变化,经最小二乘法拟合得生长速率为0132L m /m in 。

(3)在碱性硅酸盐-磷酸盐体系电解液中,7A55超高强度铝合金表面经微弧氧化120m in 制备的陶瓷膜主要由C -A l 2O 3相组成。

25

航空材料学报第29卷

参考文献:

[1]SR I VAT S AN T S,SR I RAM S.M icrostructure,tensile de-

for m ation and fracture behav i or o f a l u m i num all oy7055 [J].Journa l o fM ate rial Sc i ence,1997,32:2883-2894.

[2]LUKASAK DA,HART RM.A l u m i num a lloy deve l op m ent

efforts f o r co m pressi on do m i nated structure o f a ircra ft[J].

L ight M eta lA ge,1991,49(9~10):11-15.

[3]L I N J,KER S KER M M.H eat T reat m ent o f P rec i p itati on

H ardeni ng A lloys[P].U n ited Sta tes Pa tent,5108520

A pr.28,1992.

[4]KA I BY S HEV R,SAKA I T,M U SI N F,et al.Supe rplasti c

behav i o r o f a7055a l u m i nu m all oy[J].Scri pta M a terialia,

2001,45:1373-1380.

[5]VOEVOD IN A A,YEROKH I N A L,LYU BI NOV V V,

et al.Charac tera ti on o f w ear rotec ti ve A-l S-i O co ati ng s for m ed on A l based all oys by m icro-arc d i scharge treat m ent

[J].Surface and Coati ngs T echnology,1996,(86~87): 516-621.

[6]薛文斌,邓志威,来永春,等.有色金属表面微弧氧化

技术评述[J].金属热处理,2000,25(1):123-128. [7]姜兆华,辛世刚,王福平,等.铝合金在水玻璃KOH-

N a A l O

2

体系中的微等离子体氧化[J].中国有色金属学报,2000,10(4):519-524.

[8]M CP H ERSON R.T he entha l py of fo r ma ti on o f al um ini um

titanate[J].Journal ofM ate rial Sc ience,1973,8:851-858.

[9]GNEDENKOV S V,KHR IS ANFOVA O A,ZAV I DNAYA

A G.Co m position and adhesion of pro tecti ve coati ngs on a-

l u m i nu m[J].Surface and Coati ngs T echno logy,2001, 145:146-151.

[10]吴振东,姜兆华,姚忠平,等.纯铝及其合金的微等离

子体氧化成膜特征[J].中国有色金属学报,2005,15

(6):946-951.

Effect ofOxidation T i m e onM icro-arc Oxi dation Cera m ic Coati ngs

For m ed on7A55A l u m i ni u m A ll oy

LI Zhong-sheng1,2,WU H u-li n1,PAN Fu-sheng2,Z HANG Long-p i n g1,HE q i n g-b i n g1

(1.N o.59Instit u te of Ch i na O rdnance Industry,Chongqi ng400039,Ch i na;2.M ater i a l s Sc i ence and Eng i neer i ng College,Chongq i ng U n i versity,Chongq i ng400030,Ch i na)

Abstrac t:Cera m ic ox ide coati ngs w ere f o r m ed on7A55al um ini um a lloy surface by m icro-arc ox i dati on(MAO)at the constant current

density o f6A/d m2i n N a

2S i O

3

-N a OH-(N aPO

3

)

6

so l u ti on.T he e ffects o f ox ida tion ti m e on surface m i cropholog i es,thickness and phase

compositi on of the m i cro-arc ox ida ti on coa ti ngs were i nvestigated.T he results i nd ica te tha tw ith i ncreasi ng ox ida tion ti m e,anodic vo l-t age i ncreases g radua ll y and the nu m ber of m icropo res o f t he MAO coati ng s decreases whil e the s i ze o f t he m i cropores i ncreases w ith constant electr i ca l para m ete rs(i=6A/dm2,D=30%and f=1000H z).T he th i ckness o f t he coa ti ngs i ncreases linea lly w it h ox i da ti on

ti m e i ncreasing.The M AO coati ng s is m ai n l y com posed of C-A l

2O

3 .

K ey word s:M icro-arc ox i dation;7A55alu m i niu m all oy;ox i dati on ti m e;m i crostructure 26

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术 1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微 弧氧化;后处理三部分。其工艺流程如下:铝基工件7化学除油7清洗7微弧氧化7清洗7后处理7成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 砂10g/L, Na2O2 4?6g/L, NaF 0.5? 1g/L, CH3COONa 23g/L, Na3VO3 1 ?3g/L;溶液pH 为11 ?13;温度为20?50 C;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5?10S,然后将阳极氧化电压上升至450V,电解5?10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O?nSiO2 (钾水玻璃)水溶液中以1A/dm2的阳极电流氧化5min; 第二步:将经第一步微弧氧化后的铝基工件水洗后在 70g/L的 Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢 板;溶液温度为20?50 C o (3)影响因素 ①合金材料 及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、 高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经微弧氧化处理后表面得

到修复变得更均匀平整;而对于粗糙度较低的工件, 经微弧氧化后,表面粗糙度有所提高。 ②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH 范围一般在9?13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之, 成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制 对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200?600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时, 通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流逐渐减小,最后小于

铝合金表面微弧氧化技术的应用及发展

龙源期刊网 https://www.wendangku.net/doc/6c5582106.html, 铝合金表面微弧氧化技术的应用及发展 作者:张彦涛 来源:《环球市场信息导报》2013年第06期 微弧氧化是一种在金属表面原位生长陶瓷膜的表面处理技术,可大幅提高铝合金表面耐磨性及耐蚀性。本文阐述了铝合金微弧氧化技术的特点及应用概况,以及微弧氧化技术的发展趋势。 微弧氧化技术又称微等离子体氧化、火花放电阳极氧化。它是将铝,镁,钛等有色金属及其合金,在适当的电参数条件下使其与电解液中的溶质发生反应,最终在金属表面生成了具有一定厚度的陶瓷膜。利用该技术在铝及其合金上生长一层Al2O3陶瓷膜,该陶瓷膜具有良好 的耐磨、耐蚀性,而且可通过改变电参数和电解液等得到不同性能、不同颜色的陶瓷膜。 铝合金微弧氧化过程 微弧氧化过程中具有等离子体放电通道的高温高压及电解液温度低的特点,在此极限条件下的反应过程可赋予陶瓷膜层其它技术难以获得的优异的耐磨、耐腐蚀等性能,同时使铝合金基体的保持原有性能。液相中参与反应并形成陶瓷膜的粒子在电场力的作用下传输到基体附近的空间参与成膜,陶瓷膜层的厚度、组成、结构可以通过电源电参数和改变电解液组成进行控制,从而实现陶瓷膜层的设计与构造。微弧氧化过程一般可以分为以下四个阶段: 普通阳极氧化阶段:在氧化初期,样品表面颜色变暗,形成一层较在电流密度恒定的条件下,电压迅速升高。该阶段形成的阻挡层是后续阶段产生火花放电的必要条件。 微弧氧化阶段:随着电压的不断升高,在氧化膜层的相对薄弱的地方将会被击穿,在样品表面能够观察到火花放电现象。这些火花较小,但密度很大(约为105个/cm2),它在样品表面形成了大量的等离子微区。这些熔融物与电解液发生反应,并被溶液冷却形成Al2O3,从而使这一区域的膜相应地增厚。 微弧氧化和弧放电共存阶段:该阶段样品表面开始出现较大的红色放电弧斑,它是由某些部位经过多次放电后,使得原来较小的放电通道彼此相连而形成较大的放电气孔。在这一阶段可以观察到电压缓慢下降。 弧放电阶段至反应结束随着薄膜的增厚,红色放电弧斑逐渐减少,电压迅速上升。最终在样品表面形成具有内部致密层和外部疏松层的双层结构。 铝合金微弧氧化技术特点 微弧氧化是在传统阳极氧化基础上发展而来的,但与阳极氧化相比较,具有其优越的特点:

铝及铝合金阳极氧化性能介绍

为什么有些铝材可以阳极氧化着色有些铝材不可以阳极氧化着色? 一、阳极氧化的原理 阳极氧化处理是利用电化学的方法,在适当的电解液中,以合金零件为阳极,不锈钢、铬、或导电性电解液本身为阴极,在一定电压电流等条件下,使阳极发生氧化,从而使工件表面获得阳极氧化膜的过程。按其电解液的种类及膜层性质可分为硫酸(可以着色)、铬酸、(不需着色)、混酸、硬质(不能着色)和瓷质阳极氧化;根据各种阳极氧化膜的染色性能,只有硫酸阳极氧化获得的氧化膜最适宜染色;其他如草酸、瓷质阳极氧化膜(微弧氧化)虽能上色,但干扰色严重;铬酸阳极氧化膜或硬质氧化膜均不能上色;综合所述,要达到阳极氧化上色的目的,仅有硫酸阳极氧化可行。 二、硫酸阳极氧化对铝合金材质的限制 1 、合金元素的存在会使氧化膜质量下降,同样条件下,在纯铝上获得的氧化膜最厚,硬度最高,抗蚀性最佳,均匀度最好。铝合金材料,要想获得好的氧化效果,要确保铝的含量,通常情况下,以不低于95%为佳。 2、在合金中,铜会使氧化膜泛红色,破坏电解液质量,增加氧化缺陷;硅会使氧化膜变灰,特别是当含量超过4.5%时, 影响更明显;铁因本身特点,在阳极氧化后会以黑色斑点的形式存在。 三、铝合金基础知识工业中使用的铝合金有两大类,即变形铝合金和铸造铝合金。 1、变形铝合金不同牌号的变形铝合金具有不同的成分、热处理工艺和相应的加工形态,因此它们分别具有不同的阳极氧化特性。按照铝合金系,从强度最低1xxx 系纯铝到强度最高7xxx 系铝锌镁合金。 1xxx 系铝合金又称“纯铝” , 一般不用于硬质阳极氧化。但在光亮阳极氧化和保护性阳极氧化具有很好的特性。 2xxx 系铝合金又称“铝铜镁合金”,由于合金中的Al-Cu 金属间化合物在阳极氧化时易溶解,因此难以生成致密的阳极氧化膜,在保护性阳极氧化时,其耐腐蚀性更差,因此此系列的铝合金不易阳极氧化。 3xxx 系铝合金又称“铝锰合金”,不会使阳极氧化膜的耐腐蚀性下降,但是由于Al-M n 金属间化合物质点,会使阳极氧化膜呈现灰色或灰褐色。 4xxx 系铝合金又称“铝硅合金”,由于此合金含有硅成分,会使阳极氧化膜呈灰色,硅含量越高,颜色越深。因此也不易阳极氧化。 5xxx 系铝合金又称“铝美合金”,是一种用途较广的铝合金系,耐蚀性也好,可焊性也好。此系列铝合金可以阳极氧化,如果镁含量偏高时,其光亮度不够。典型的铝合金牌号:5052。 6xxx 系铝合金又称“铝镁硅合金”,在工程应用尤为重要,主要用于挤压型材,此系列合金可以做阳极氧化,典型的牌号:6063,6463(主要适用于光亮阳极氧化)。强度高的

铝材如何氧化处理

铝材阳极氧化工艺技术特点、方法及发展现状分析 将金属或合金的制件作为阳极,采用电解的方法使其表面形成氧化物薄膜。金属氧化物薄膜改变了表面状态和性能,如表面着色,提高耐腐蚀性、增强耐磨性及硬度,保护金属表面等。例如铝阳极氧化,将铝及其合金置于相应电解液(如硫酸、铬酸、草酸等)中作为阳极,在特定条件和外加电流作用下,进行电解。阳极的铝或其合金氧化,表面上形成氧化铝薄层,其厚度为5~20微米,硬质阳极氧化膜可达60~200微米。阳极氧化后的铝或其合金,提高了其硬度和耐磨性,可达250~500千克/平方毫米,良好的耐热性,硬质阳极氧化膜熔点高达2 在现实工艺中,针对铝合金的阳极氧化,比较多,可以应用在日常生活中,以为这种工艺的特性,使铝件表面产生坚硬的保护层,可用于生产厨具等日用品。但铸造铝的阳极氧化效果不好,表面不光良,还只能是黑色。铝合金型材就要好一点。 近十年来,我国的铝氧化着色工艺技术发展较快,很多工厂已采用了新的工艺技术,并且在实际生产中积累了丰富的经验。已经成熟和正在发展的铝及其合金阳极氧化工艺方法很多,可以根据实际生产需要,从中选取合适的工艺。 在选取氧化工艺之前,应对铝或铝合金材质情况有所了解,因为,材料质量的优劣、所含成份的不同,是会直接影响到铝制品阳极氧化后的质量的。关于这一点,洪九德、范济同志已有专门论述(参看《电镀与涂饰》1982年第2期P.27)。比如,铝材表面如有气泡、划痕、起皮、粗糙等缺陷,经阳极氧化后,所有疵病依然会显露出来。而合金成份,对阳极氧化后的表面外观,也产生直接的影响。比如,含1~2%锰的铝合金,氧化后呈棕蓝色,随铝材中含锰量的增加,氧化后的表面色泽从棕蓝色到深棕色转化。含硅0.6~1.5%的铝合金,氧化后呈灰色,含硅3~6%时,呈白灰色。含锌的呈乳浊色,含铬的呈金黄至灰色的不均匀色调,含镍的呈淡黄色。一般而言,只有含镁和含钛量大于5%的铝含金,经氧化后可以得到无色透明且光亮、光洁的外观。

分析微弧氧化表面处理对铝合金拉伸性能的影响

分析微弧氧化表面处理对铝合金拉伸性能的影响 摘要:弧氧化技术又称微等离子体氧化、火花放电阳极氧化。它是将铝,镁, 钛等有色金属及其合金,在适当的电参数条件下使其与电解液中的溶质发生反应,最终在金属表面生成了具有一定厚度的陶瓷膜。利用该技术在铝及其合金上生长 一层Al2O3陶瓷膜,该陶瓷膜具有良好的耐磨、耐蚀性,而且可通过改变电参数 和电解液等得到不同性能、不同颜色的陶瓷膜。 关键词:微弧氧化;表面处理;铝合金拉伸;性能 铝合金本身存在一定的缺点,比如其硬度低、耐磨性差,所以要进行一定的 处理。微弧氧化技术的诞生,使得它克服了传统阳极氧化的不足,该技术可以控 制工艺过程,能够生成具有优异的耐磨和耐蚀性能的陶瓷薄膜,与其他技术相比 较有较高的硬度和绝缘电阻,并且大大提高了膜层的综合性能;此技术具有很多 的优点,比如工艺简单,操作简易,效率高、环保;开创了一个新的技术。但此 技术的应用会对铝合金表面的拉伸性能产生一定的影响,笔者在本文进行了探讨。 1.微弧氧化技术 1.1微弧氧化的基本原理 微弧氧化工艺的基础,是在阳极氧化工艺上慢慢摸索出来的。阳极需要进行 氧化,其在法拉第区进行,升高金属阳极的电位,这样会升高金属阳极的电流, 连续的升压,当升到一定的强度时,会进入电火花放电区,此时,会属阳极会出 现一些特殊的现象,比如铝合金表面会出现电晕、辉光及电火花放电现象,发生 微区放电现象。笔者本文通过对铝阳极为例,铝的阳极氧化膜的成份是A12O3、 Y-AI2O3和AIOOH。由于铝的氧化物在高温会出现一定的转化,如下:所以一般在进行微区高温高压等离子体放电的阶段,铝阳极氧化膜的转变过 程会出现晶化转变,比如Y—A1203和a—A1203,形成微弧陶瓷氧化膜,具有高 硬度及良好耐腐蚀性,一般情况下陶瓷氧化膜的显微硬度可以达到2000HV以上。继续升高电压,这时会进入弧光放电区,此时会出现阳极表面电流密度增大,并 伴有强烈的弧光放电现象。由于弧光放电时会产生强大的冲击力,所以微弧氧化 应避免弧光放电区。 1.2微弧氧化的特点 微弧氧化技术是近几十年发展起来的铝合金表面处理的新技术,目前微弧氧 化技术不是很成熟,还处于研究阶段,对其描述的资料较少。但铝合金微弧氧化 技术有其独特的优点: 1.2.1耐磨性能高 一般情况下,Al、Mg、Ti 合金,在进行微弧氧化后会产生Al2O3、MgO、 TiO2。陶瓷相的产物是具有很强的硬度,所以经微弧氧化的铝合金具有很高的硬度,最硬的硬度可达2500 HV,因此铝合金表面具有优越的耐磨强度,其耐磨性 大大高于传统工艺的膜层.其优良的耐磨性还与一些特殊的因素有关,比如润滑油 的自润滑特性有关。 1.2.2耐腐蚀性能高 一般在经微弧氧化后的陶瓷层会存在大量的喷射口,但是这些喷射口一般为 盲孔;与此同时陶瓷层具可分为三层结构,疏松层、致密层以及过渡层,这样的 分层结构能够为金属内部起到良好的保护作用,所以能够提高耐腐蚀性能。 1.2.3工序简单、生产效率高 微弧氧化技术一般处理工序简单,且生产速度快,一般情况下,要完成一个

铝合金铸造常见缺陷与对策

铝铸件常见缺陷及整改办法 铝铸件常见缺陷及整改办法 1、欠铸(浇不足、轮廓不清、边角残缺): 形成原因: (1)铝液流动性不强,液中含气量高,氧化皮较多。 (2)浇铸系统不良原因。内浇口截面太小。 (3)排气条件不良原因。排气不畅,涂料过多,模温过高导致型腔内气压高使气体不易排出。 防止办法: (1)提高铝液流动性,尤其是精炼和扒渣。适当提高浇温和模温。提高浇铸速度。改进铸件结构,调整厚度余量,设辅助筋通道等。 (2)增大内浇口截面积。 (3)改善排气条件,增设液流槽和排气线,深凹型腔处开设排气塞。使涂料薄而均匀,并待干燥后再合模。 2、裂纹: 特征:毛坯被破坏或断开,形成细长裂缝,呈不规则线状,有穿透和不穿透二种,在外力作用下呈发展趋势。冷、热裂的区别:冷裂缝处金属未被氧化,热裂缝处被氧化。 形成原因: (1)铸件结构欠合理,收缩受阻铸造圆角太小。 (2)顶出装置发生偏斜,受力不匀。

(3)模温过低或过高,严重拉伤而开裂。 (4)合金中有害元素超标,伸长率下降。 防止方法: (1)改进铸件结构,减小壁厚差,增大圆角和圆弧R,设置工艺筋使截面变化平缓。 (2)修正模具。 (3)调整模温到工作温度,去除倒斜度和不平整现象,避免拉裂。 (4)控制好铝涂成份,成其是有害元素成份。 3、冷隔: 特征:液流对接或搭接处有痕迹,其交接边缘圆滑,在外力作用下有继续发展趋势。 形成原因: (1)液流流动性差。 (2)液流分股填充融合不良或流程太长。 (3)填充温充太低或排气不良。 (4)充型压力不足。 防止方法: (1)适当提高铝液温度和模具温度,检查调整合金成份。(2)使充填充分,合理布置溢流槽。 (3)提高浇铸速度,改善排气。 (4)增大充型压力。

铝与铝合金的氧化处理

铝与铝合金的氧化处理 铝及铝合金在大气中虽能自然形成一层氧化膜,但膜薄(40- 50A)而疏松多孔,为非晶态的、不均匀也不连续的膜层,不能作为可靠的防护一装饰性膜层.随着铝制品加工工业的不断发展,在工业上越来越广泛地采用阳极氧化或化学氧化的方法,在铝及铝合金制件表面生成一层氧化膜,以达到防护一装饰的目的. 经过化学或电化学抛光后的铝及铝合金制件,进行阳极氧化处理后,可得到光洁、光亮、透明度较高的氧化膜层,再经染色,可得到各种色彩鲜艳夺目的表面.如在某种特定的技术条件下加以氧化处理,在其表面还可形成仿釉膜层,从而使铝制品表面获得特殊的装饰效果.据不完全统计,我国目前铝和铝合金的装饰性氧化技术已发展到几十种之多,使我国铝制品加工工业的发展日新月异. 所以:铝合金氧化的作用是防护和装饰性. 一、\x09化学氧化: 经化学氧化处理获得的氧化膜,厚度一般为0.4um,质软、耐磨和抗蚀性能均低于阳极氧化膜.所以,除有特殊用途外,很少单独使用.但它有较好的吸附能力,在其表面再涂漆,可有效地提高铝制品的耐蚀性和装饰性. 铝及铝合金的化学氧化处理,按其溶液的性质,可分为碱性和酸性溶液氧化处理两类,按其膜层的性质则可分为氧化物膜层、磷酸盐膜层、铬酸盐膜以及铬酸~磷酸盐膜等. 二、阳极氧化: 经阳极氧化处理获得的氧化膜,厚度一般在5-20v m,硬质阳极氧化膜厚度可达60- 2500m.其膜层还具有似下特性: (1)硬度较高.纯铝氧化膜的硬度比铝合金氧化膜的硬度高.通常,它的硬度大小与铝的合金成份、阳极氧化时电解液的技术条件有关.阳极氧化膜不仅硬度较高,而且有较好的耐磨性.尤其是表面层多孔的氧化膜具有吸附润滑剂的能力,还可进一步改善表面的耐磨性能. (2)有较高的耐蚀性.这是由于阳极氧化膜有较高的化学稳定性.经测试,纯铝的阳极氧化膜比铝合金的阳极氧化膜耐蚀性好.这是由于合金成分夹杂或形成金属化合物不能被氧化或被溶解,而使氧化膜不连续或产生空隙,从而使氧化膜的耐蚀性大为降低.所以,一般经阳极氧化后所得的膜必须进行封闭处理,才能提高其耐蚀性能. (3)有较强的吸附能力.铝及铝合金的阳极氧化膜为多孔结构,具有很强的吸附能力,所以给孔内填充各种颜料、润滑剂、树脂等可进一步提高铝制品的防护、绝缘、耐磨和装饰性能. (4)有很好的绝缘性能.铝及铝合金的阳极氧化膜,已不具备金属的导电性质,而成为良好的绝缘材料. (5)绝热抗热性能强.这是因为阳极氧化膜的导热系数大大低于纯铝?阳极氧化膜可耐温1500℃左右,而纯铝只能耐660℃.好综上所述,铝和铝合金经化学氧化处理,特别是阳极氧化处理后,在其表面形成的氧化膜具有良好的防护一装饰等特性.因此,被广泛应用于航空、电气、电子、机械制造和轻工工业等方面.

铝合金微弧氧化(MAO)

铝合金微弧氧化(MAO) 1.微弧氧化概述 微弧氧化也称微等离子体表面陶瓷化技术,是指在普通阳极氧化的基础上,利用弧光放电增强并激活在阳极上发生的反应,从而在以铝、钛、镁金属及其合金为材料的工件表面形成优质的强化陶瓷膜的方法,是通过用专用的微弧氧化电源在工件上施加电压,使工件表面的金属与电解质溶液相互作用,在工件表面形成微弧放电,在高温、电场等因素的作用下,金属表面形成陶瓷膜,达到工件表面强化的目的。 2.微弧氧化现象及其特点 在阳极氧化过程中,当铝合金上施加的电压超过一定范围时,铝合金表面的氧化膜就会被击穿。随着电压的继续不断升高,氧化膜的表面会出现辉光放电、微弧和火花放电等现象。表面辉光放电的温度比较低,对氧化膜的结构影响不大;火花放电温度,甚至可能使铝合金表面熔化,同时发射出大量的电子及离子,使火花放电区出现凹坑及麻点,这对材料表面是一种破坏作用;只有微弧去的温度适中,即可使氧化膜的结构发生变化,有不造成铝合金材料表面的破坏,微弧氧化就是利用这个温度区对材料表面进行改造处理的。 铝合金说施加的电压变化所产生的辉光、微弧和火花放电区域 在微弧氧化的过程下,原来生成的氧化膜不会脱落,只有表面一部分氧化膜可能会被粉化而沉淀在溶液中。铝合金表面可以继续氧化,随着外加电压的升高,或时间的延长,微弧氧化膜厚度不会继续增加,直至达到外加电压对应的最终厚度。在工艺过程中,随着微弧氧化膜厚度的增加,微弧的亮度会逐渐暗淡下去,直至最后消失。但是微弧消失后,只要微弧消失后,只要外加电压继续存在,氧化膜还好继续生长,从实际中发现,微弧氧化膜的最大厚度可以达到200~300μm。

微弧氧化与普通阳极氧化一样,也存在着表面氧化和氧离子渗透到基体内与铝离子氧化结合,俗称渗透氧化的过程。。实际发现有大约70%的氧化层存在于铝合金的基体中,因此样品表面的几何尺寸变动不大。由于渗透氧化,氧化层与基体之间存在着相当厚的过渡层,使氧化膜和基体呈闹牢固的冶金结合,不易脱落,这也是微弧氧化优于电镀和喷涂的地方。图9-5是微弧氧化的剖面结构图,由图9-5可以看出,微弧氧化膜有三层组成,靠近铝基体中氧化膜于基体结合的过渡层交界面为凹凸不平,互相咬合,说明氧化膜于基体结合牢固,不易脱落,氧化膜的表面是一层疏松的白色陶瓷粉末,很容易用砂纸磨去,氧化时间越长,这层疏松层会变厚,当除去这层疏松层以后,剩下的是硬度很高、质地致密的陶瓷氧化膜。图9-6表示铝合金的微弧氧化膜截面的显微硬度和孔隙率的剖面,其纵坐标(左)表示显微硬度(HV),纵坐标(右)表示孔隙率。图9-6中明确地表明显微硬度和孔隙率与氧化膜的深度密切关系。

压铸常见缺陷原因和改善方法

压铸常见缺陷原因及其改善方法 1).冷紋: 原因:熔汤前端的温度太低,相叠时有痕迹. 改善方法: 1.检查壁厚是否太薄(設計或制造) ,较薄的区域应直接充填. 2.检查形狀是否不易充填;距离太远、封閉区域(如鳍片(fin) 、凸起) 、被阻挡区域、圆角太小等均不易充填.並注意是否有肋点或冷点. 3.缩短充填时间.缩短充填时间的方法:… 4.改变充填模式. 5.提高模温的方法:… 6.提高熔汤温度. 7.检查合金成分. 8.加大逃气道可能有用. 9.加真空裝置可能有用. 2).裂痕: 原因:1.收缩应力. 2.頂出或整缘时受力裂开. 改善方式: 1.加大圆角. 2.检查是否有热点. 3.增压时间改变(冷室机). 4.增加或缩短合模时间. 5.增加拔模角. 6.增加頂出銷. 7.检查模具是否有錯位、变形. 8.检查合金成分. 3).气孔: 原因:1.空气夾杂在熔汤中. 2.气体的来源:熔解时、在料管中、在模具中、离型剂. 改善方法: 1.适当的慢速. 2.检查流道转弯是否圆滑,截面积是否渐減. 3.检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方.

4.检查离型剂是否噴太多,模温是否太低. 5.使用真空. 4).空蚀: 原因:因压力突然減小,使熔汤中的气体忽然膨胀,冲击模具,造成模具損伤.改善方法: 流道截面积勿急遽变化. 5).缩孔: 原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处. 改善方法: 1.增加压力. 2.改变模具温度.局部冷却、噴离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔. 6).脫皮: 原因:1.充填模式不良,造成熔汤重叠. 2.模具变形,造成熔汤重叠. 3.夾杂氧化层. 改善方法: 1.提早切換为高速. 2.缩短充填时间. 3.改变充填模式,浇口位置,浇口速度. 4.检查模具強度是否足夠. 5.检查銷模裝置是否良好. 6.检查是否夾杂氧化层. 7).波紋: 原因:第一层熔汤在表面急遽冷却,第二层熔汤流過未能将第一层熔解,却又有足夠的融合,造成組织不同. 改善方法: 1.改善充填模式. 2.缩短充填时间.

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术 1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微弧氧化;后处理三部分。其工艺流程如下:铝基工件→化学除油→清洗→微弧氧化→清洗→后处理→成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 5~10g/L,Na2O2 4~6g/L,NaF 0.5~1g/L,CH3COONa 2~3g/L,Na3VO3 1~3g/L;溶液pH为11~13;温度为20~50℃;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5~10s,然后将阳极氧化电压上升至450V,电解5~10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O·nSiO2(钾水玻璃)水溶液中以1A/dm2的阳极电流氧化5min;第二步:将经第一步微弧氧化后的铝基工件水洗后在70g/L的Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢板;溶液温度为20~50℃。 (3)影响因素 ①合金材料及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经微弧氧化处理后表面得到修复变得更均匀平整;而对于粗糙度较低的工

件,经微弧氧化后,表面粗糙度有所提高。 ②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH范围一般在9~13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之,成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200~600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时,通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流逐渐减小,最后小于1A/dm2。氧化电压的波形对膜层性能有一定影响,可采用直流、锯齿

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

铝及铝合金的微弧氧化技术 1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微弧氧化;后处理三部分。其工艺流程如下:铝基工件→化学除油→清洗→微弧氧化→清洗→后处理→成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 5~10g/L,Na2O2 4~6g/L,NaF 0.5~ 1g/L,CH3COONa 2~3g/L,Na3VO3 1~3g/L;溶液pH为11~13;温度为20~50℃;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5~10s,然后将阳极氧化电压上升至450V,电解5~10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O·nSiO2(钾水玻璃)水溶液中以1A/dm2的阳极电流氧化 5min;第二步:将经第一步微弧氧化后的铝基工件水洗后在70g/L 的Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢板;溶液温度为20~50℃。 (3)影响因素 ①合金材料及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经

微弧氧化处理后表面得到修复变得更均匀平整;而对于粗糙度较低的工件,经微弧氧化后,表面粗糙度有所提高。 ②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH范围一般在9~13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之,成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200~600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时,通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流

铝合金重力铸造常见的缺陷和防止办法

铝合金重力铸造常见的缺陷和防止办法 一、缩孔:这种缺陷常发生在铸件的肥厚部分,或者厚薄交接处。有时铸件表面发白,实际上就是缩松。 产生的原因:1、结晶过程中铸件补缩不够;2、引入合金液的位置不对;3、金属型各部位的温度不恰当,不符合顺序凝固的原则;4、涂料不当或涂料脱落;5、浇注温度过高;6、浇注速度太快;7、铸件冷却太慢;8、铸件毛边太大。 防止办法:1、在铸件厚大部位设置冒口,冒口的大小、高度要适宜,达到最后凝固,提高冒口的补缩作用;2、沿铸件四周均匀分布内浇道,或从冒口根部开设补充浇道进行补充浇注;3、调整金属型各部分的温度规范,便于铸件顺序凝固;4、按铸件工作部分和浇冒口部位不同要求选用不同的涂料成分及涂料厚度,脱料要均匀补上;5、适当降低浇注温度;6、减慢浇注速度;7、在容易产生缩松的部位,嵌上铜冷铁或通气塞,以加速冷却。 二、冷隔:这种缺陷一般产生在较大的水平表面的薄壁铸件上,以及合金最后汇流处。铸件出型后经过震砂,进行外观检查即可发现。 产生的原因:1、模具温度过低;2、铝液温度过低;3、模具排气不良; 4、浇注系统设计不良,内浇口数量少、截面过小; 5、浇注速度太慢或浇注中断; 6、铸件设计壁厚太薄或缺少适当的圆角。 防止办法:1、适当提高模具温度;2、适当提高铝液浇注温度; 3、气体不易排出的部位上设置通气槽或排气塞,保持排气良好; 4、适当增加内浇口数量和内浇口的截面; 5、适当提高浇注速度,避免铝液浇注中断; 6、按铸件设计工艺性要求设计合理的最小壁厚和铸造圆角。 三、气孔:气孔往往产生在铸件的上部且经常发生在铸件凸出部分的表面。铸件内部隐蔽的气孔,必须通过X光透视,以及在铸件进行加工时发现。 产生的原因:1、浇注速度太快,卷入空气;2、模具排气气不良;3、铝液流动过快;4、熔化温度过高;5、合金除气不良;6、浇注温度过高;7、砂芯不干、排气不良或发气量太大。 防止办法:1、平稳地浇注金属液;2、于金属型气体不易排除的部位增设排气槽或排气塞,并经常清理;3、浇注时浇包尽量靠近浇口杯;4、严格控制铝液温度防止超温; 5、铝液正确地进行除气; 6、泥芯应烘干,排气孔应畅通,泥芯返潮后应补烘,特大的泥芯中间应挖空; 7、金属型涂料后应等涂料干燥后才能浇注。 裂纹:裂纹多数出现在铸件的内夹角处,厚薄断面过渡的部位;合金液引入铸件的部位和发生铸造应力最大的部位可用着色检查、气密性试验、、X光检查发现。铝铸件上冷裂纹,在清理砂芯后进行外观检查便可发现 产生的原因:1、铸件上有尖角,厚薄相差悬殊;2、模具局部过热或浇注温度过高;3、冷铁安放不正确;4、铸件补缩不良; 防止办法:1、改进设计,清除铸件尖角,尽量使铸件壁厚均匀过渡并倒圆角;2、正确地选择浇口,浇道的位置,控制浇注温度、涂料厚度,正确放置冷铁,增大冒口补缩能力; 3、在模具冒口部位上涂石棉保温涂料。

铝合金表面处理

铝材表面处理工艺介绍 对铝材来说,阳极氧化所能做到的色彩的确比较局限,通常就是银白、古铜、钛金、K金色或者黑色。至于有时看到有很多他色彩是通过另外的工艺方法加工出来的: 1 、电泳涂层 在阳极氧化的基础上,通过电泳的作用,在氧化膜上均匀覆盖上一层水溶性丙烯酸漆膜,使型材表面形成阳极氧化膜和丙烯酸漆膜复合膜。手感光滑细腻,外观鲜艳亮丽,除能生产原氧化着色的颜色的基础上,能做出更多如白色及绿色等鲜艳色彩。 2、彩色粉末喷涂 共200多种颜色选择,给设计师一个广阔空间,性能稳定,漆膜附着力强,不易剥落、耐酸、耐盐雾、耐灰浆、耐候性、耐老化等性能优异。涂层在空气中不挥发、不氧化、无污染毒害,环保性能好。表面污物水洗后焕然一新。 3、彩色氟碳喷涂 通过静电作用在铝合金基体表面喷上聚偏二氟乙烯漆涂层。氟碳涂料为偏聚二氟乙烯,氟碳涂料。所以能具有持久保色度、抗老化、抗腐蚀、抗大气污染,其氟碳键是最强的分子键之一优越于其聚合休的分子结构。氟碳喷涂作为高档表面涂装工艺手段。160多种丰富色彩足以为建筑师和设计师提供无穷无尽的设计空间。它具有颜色均匀一致,且抗褪色和沾污的能力优越的优点。 另外,铝或者铝合金很适合做拉丝处理 拉丝与表面氧化的确是无关的,拉丝要在氧化之前做才行;另外氧化是肯定不能用自然氧化的方法,自然氧化得到的表面应该叫质量缺陷,它的氧化膜与专门处理的氧化膜成份、外观都是截然不同的。 另外还有一点,着色并非是氧化的后处理,是在氧化的同时进行的,常用的有下面几种氧化着色处理方法: 着色阳极氧化膜 铝的阳极氧化膜,靠吸附染料而着色。 自发色阳极氧化膜 这种阳极氧化膜是某种特定铝材在某种合适的电解液(通常以有机酸为基)中在电解作用下,由合金本身自发地生成一种带色的阳极氧化膜。 电解着色 阳极氧化膜的着色,通过氧化膜的空隙被金属或金属氧化物电沉积而着色。 着色确实是与氧化同时进行的,但也确实称其为该工艺的后处理,其意思是之其附加在该工艺中进行的(不进行也可以)。

微弧氧化铝合金实验.

微弧氧化铝合金实验 一、实验目的:1.大概了解微弧氧化工艺的原理、操作步骤以及其对材料的强化方式。 2.通过实验与“材料性能学”的理论知识相结合。 二、实验原理: 微弧氧化又叫等离子阳极氧化,微弧氧化是从传统的阳极氧化过程中衍化来的,是在阳极氧化的过程中,对阳极施加高强度的电压,造成电流击穿阳极的过程,突破了传统的阳极氧化对电压,电流的限制。在击穿的过程中,会在金属形成的阳极氧化薄膜上发生弧光放电现象,从而形成放电通道,在微弧放电的过程中,会形成高温高压的条件,从而使金属表面生成优与原来的普通阳极氧化形成的氧化膜。微弧氧化就是将原来的普通阳极氧化的法拉第区引入到高压放电区域,克服原来普通阳极氧化对于难以快速生成的,低效率的缺陷,极大提高了膜层的综合性能。提高了基体与氧化层的结合力,结构致密,力学性能好,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性。并且该工艺操作简单,不繁琐,不会产生对环境有污染的副产品,具有广阔的应用前景。 三、实验设备及材料: 试样及实验药品:30mm*25mm*2mm的LY12板材若干、微弧氧化溶液3份 实验设备:JHMAO-220/10A型便携式微弧氧化电源(图1)、超声波清洗机(图2)、TT260覆层测厚仪(图3)、HXD-1000TMC/LCD型显微硬度计、热镶嵌仪(图4)、MSD倒置金相显微镜及图像分析系统、烟雾腐蚀测量仪

图1JHMAO-220/10A型便携式微弧氧化电源图2超声波清洗机 图3TT260覆层测厚仪及其探头 图4热镶嵌仪 四、实验步骤: 1、工件前处理:除油除锈主要除去工件表面的各种油脂,这些油污包括植物油、动物油和矿物油。只有将这些油污彻底清除,才能达到工件的表面全部被水所润湿的目的。 2、抛光:使工件表面更加平整,微弧氧化膜层更加均匀。 3、超声波清洗机漂洗。 4、微弧氧化:(1)根据试验方案及实验条件,称取所需的电解质,在1000ml烧杯中用去 离子水溶解。

铝及铝合金的微弧氧化技术

铝及铝合金的微弧氧化技术1.技术内容及技术关键 (1)微弧氧化技术的内容和工艺流程 铝及铝合金材料的微弧氧化技术内容主要包括铝基材料的前处理;微弧氧化;后处理三部分。其工艺流程如下:铝基工件→化学除油→清洗→微弧氧化→清洗→后处理→成品检验。 (2)微弧氧化电解液组成及工艺条件 例1.电解液组成:K2SiO3 5~10g/L,Na2O2 4~6g/L,NaF 0.5~1g/L,CH3COONa 2~3g/L,Na3VO3 1~3g/L;溶液pH为11~13;温度为20~50℃;阴极材料为不锈钢板;电解方式为先将电压迅速上升至300V,并保持5~10s,然后将阳极氧化电压上升至450V,电解5~10min。例2两步电解法,第一步:将铝基工件在200g/L的K2O·nSiO2(钾水玻璃)水溶液中以1A/dm2的阳极电流氧化5min;第二步:将经第一步微弧氧化后的铝基工件水洗后在70g/L的Na3P2O7水溶液中以1A/dm2的阳极电流氧化15min。阴极材料为:不锈钢板;溶液温度为20~50℃。 (3)影响因素 ①合金材料及表面状态的影响:微弧氧化技术对铝基工件的合金成分要求不高,对一些普通阳极氧化难以处理的铝合金材料,如含铜、高硅铸铝合金的均可进行微弧氧化处理。对工件表面状态也要求不高,一般不需进行表面抛光处理。对于粗糙度较高的工件,经微弧氧化处理后表面得到修复变得更均匀平整;而对于粗糙度较低的工件,

经微弧氧化后,表面粗糙度有所提高。

②电解质溶液及其组分的影响:微弧氧化电解液是获到合格膜层的技术关键。不同的电解液成分及氧化工艺参数,所得膜层的性质也不同。微弧氧化电解液多采用含有一定金属或非金属氧化物碱性盐溶液(如硅酸盐、磷酸盐、硼酸盐等),其在溶液中的存在形式最好是胶体状态。溶液的pH范围一般在9~13之间。根据膜层性质的需要,可添加一些有机或无机盐类作为辅助添加剂。在相同的微弧电解电压下,电解质浓度越大,成膜速度就越快,溶液温度上升越慢,反之,成膜速度较慢,溶液温度上升较快。 ③氧化电压及电流密度的影响:微弧氧化电压和电流密度的控制对获取合格膜层同样至关重要。不同的铝基材料和不同的氧化电解液,具有不同的微弧放电击穿电压(击穿电压:工件表面刚刚产生微弧放电的电解电压),微弧氧化电压一般控制在大于击穿电压几十至上百伏的条件进行。氧化电压不同,所形成的陶瓷膜性能、表面状态和膜厚不同,根据对膜层性能的要求和不同的工艺条件,微弧氧化电压可在200~600V范围内变化。微弧氧化可采用控制电压法或控制电流法进行,控制电压进行微弧氧化时,电压值一般分段控制,即先在一定的阳极电压下使铝基表面形成一定厚度的绝缘氧化膜层;然后增加电压至一定值进行微弧氧化。当微弧氧化电压刚刚达到控制值时,通过的氧化电流一般都较大,可达10A/dm2左右,随着氧化时间的延长,陶瓷氧化膜不断形成与完善,氧化电流逐渐减小,最后小于1A/dm2。氧化电压的波形对膜层性能有一定影响,可采用直流、锯齿或方波等电压波形。采用控制电流法较控制电压法工艺操作上更为

铝合金表面处理

铝合金表面氧化处理、着色,铝合金表面硬质氧化处理,铝合金表面不粘氧化处理,铝合金表面光亮、亚光氧化处理,铝合金表面导电、绝缘氧化处理,铸铝氧化,铝合金表面无铬化学钝化处理,化学砂面、电镀、刻蚀。 金属表面在各种热处理、机械加工、运输及保管过程中,不可避免地会被氧化,产生一层厚薄不均的氧化层。同时,也容易受到各种油类污染和吸附一些其他的杂质。油污及某些吸附物,较薄的氧化层可先后用溶剂清洗、化学处理和机械处理,或直接用化学处理。 对于严重氧化的金属表面,氧化层较厚,就不能直接用溶剂清洗和化学处理,而最好先进行机械处理。通常经过处理后的金属表面具有高度活性,更容易再度受到灰尘、湿气等的污染。为此,处理后的金属表面应尽可能快地进行胶接。经不同处理后的金属保管期如下: (1)湿法喷砂处理的铝合金,72h ; (2)铬酸-硫酸处理的铝合金,6h ; (3)阳极化处理的铝合金,30天; (4)硫酸处理的不锈钢,20天; (5)喷砂处理的钢,4h ; (6)湿法喷砂处理的黄铜,8h 。 一、铝及铝合金表面处理方法 [方法1] 脱脂处理。用脱脂棉沾湿溶剂进行擦拭,除去油污后,再以清洁的棉布擦拭几次即可。常用溶剂为:三氯乙烯、醋酸乙酯、丙酮、丁酮和汽油等。 [方法2] 脱脂后于下述溶液中化学处理:浓硫酸 27.3重铬酸钾 7.5水65.2在60-65°C 浸渍10-30min 后取出用水冲洗,晾干或在80°C 以下烘干;或者在下述溶液中洗后再晾干:磷酸 10正丁醇 3水 20 此方法适用于酚醛-尼龙胶等,效果良好。 [方法3] 脱脂后于下述溶液中化学处理:氟化氢铵 3-3.5氧化铬 20-26磷酸钠 2-2.5 浓硫酸 50-60硼酸 0.4-0.6水 1000 在25-40°C 浸渍4.5-6min ,即进行水洗、干燥。本方法胶接强度较高,处理后4h 内胶接,适用于环氧胶和环氧-丁腈胶胶接。 [方法4] 脱脂后于下述溶液中化学处理:磷酸7.5氧化铬 7.5酒精 5.0 甲醛(36-38%) 80 在15-30°C 浸渍10-15min,然后在60-80°C 下水洗、干燥。 [方法5] 脱脂后于下述溶液中进行阳极化处理:浓硫酸 22g/l 在1-1.5A/dm2 的直流强度下浸渍10-15min ,再在饱和重铬酸钾溶液中,于95-100°C下浸渍5-20min,然后水洗,干燥。 [方法6] 脱脂后于下述溶液中化学处理:重铬酸钾 66硫酸(96%) 666水1000 在70°C 下浸渍10min ,然后水洗,干燥。 [方法7] 脱脂后于下述溶液中化学处理:硝酸(d=1.41 )3 氢氟酸(42%) 1 在20°C 下浸渍3s ,即用冷水冲冼,再在65°C 下用热水洗涤,蒸馏水冲洗,干燥。此法适宜于含铜

铝合金模板施工管理.doc

铝合金模板施工管理 1、施工前期准备工作 项目策划:在总包招标时,应在招标文件中要求总包单位在28 层以上高层使用铝合金模板(展示区和首期货量的使用不作强制要求)。招标完成后按集团要求和项目开发顺序对铝合 金模板的使用进行前期策划。 厂家确定 区域按集团要求组织考察确定厂家,总包自行选定的须经甲方考察同意。 合同需对下列专用条款进行解释说明: 1承包范围; 2工期; 3明确铝合金型号、铝合金模板进入施工现场日期及产品质量; 4明确图纸会审交付时间、深化设计及生产周期; 5明确报价书中支撑、加固体系; 6提供脱模油及对拉螺杆套管数量; 7承诺重复使用次数;提供厂家专业指导及工人交底、培训; 8发生变更铝模板修改费用;铝合金模板使用完后回收部分材料堆放; 9阶段性资金付款比例; 10建筑成品验收; 11铝合金模板保修的范围和期限等。 施工图设计 铝合金模板厂家确定后,由厂家根据原设计图提出设计意见与设计院进行沟通,结 构有较大调整时由设计院进行满足免抹灰铝合金模板施工工艺的施工图设计。 需进行抹灰、外墙贴砖或总包单位自愿选择使用时,不另进行铝合金模板工艺的施工图设计。 施工图确定后不能随意变更。 深化设计:由铝合金模板厂家根据施工图和铝合金模板的施工工艺特点对细部节点进行深 化设计并进行铝合金模板排产图设计和编制施工方案。模板生产及试拼装: 铝合金模板厂家根据模板排产图组织生产。铝合金模板在厂家生产过程中,总包需派专业管理人 员进行驻厂监造,及时将其生产质量、进度及试拼装效果反馈项目部。 模板生产完毕,组织技术工人进行试拼装和对拼装完成的每一块模板进行编码, 同时铝合金模板厂家技术人员对技术工人进行培训和交底。 运输、验收和首层标准层施工: 铝合金模板在运至施工现场前,组织施工方相关人员对试拼装的铝模板体系进行验收, 然后根据现场施工总平面及施工蓝图、安装顺序等,分类分户进行打包、标识后方可装车。 铝合金模板运输进场,经过现场验收后及时吊装到首层标准层进行现场第一次安装, 铝合金模板厂家技术人员通过第一层的安装再次对技术工人进行培训和交底。 2、施工管理: 铝合金模板实施进度: 准备阶段:从施工总包招标、厂家选定、施工图设计 30~45 个工作日,厂家收到正式施工图开 58 始设计优化( 10 天)、组织生产 (30 天 )、试拼装及验收( 15 天)、出厂运输( 3 天共约个工作日。准备阶段考虑预留至少 3 个月的准备时间。

相关文档