文档库 最新最全的文档下载
当前位置:文档库 › 材料科学基础课后习题答案5

材料科学基础课后习题答案5

材料科学基础课后习题答案5
材料科学基础课后习题答案5

Problems - Chapter 5

1. FIND: Calculate the stress on a tensioned fiber.

GIVEN: The fiber diameter is 25 micrometers. The elongational load is 25 g. ASSUMPTIONS: The engineering stress is requested.

DATA: Acceleration due to gravity is 9.8 m/sec 2. A Newton is a kg-m/sec 2. A Pascal is a N/m 2. A MPa is 106 Pa.

SOLUTION: Stress is force per unit area. The cross-sectional area is πR 2 = 1963.5 square micrometers. The force is 25 g (kg/1000g)(9.8 m/sec 2) = 0.245 N. Thus, the stress is

σ = F/A = MPa m um um N 125.010*******.02

62=???

? ???

COMMENTS: You must learn to do these sorts of problems, including the conversions.

2. GIVEN: FCC Cu with a o = 0.362nm

REQUIRED: A) Lowest energy Burgers vector, B) Length in terms of radius of Cu atom, C) Family of planes

SOLUTION: We note that the Burgers vector is the shortest vector that connects

crystallographically equivalent positions. A diagram of the structure is shown below:

FCC structure with (111) shown

We note that atoms lying along face diagonals touch and are crystallographically

equivalent. Therefore, the shortest vector connecting equivalent positions is ? face diagonal. For example, one such vector is 10]1[ 2

a o as shown in (111). A. The length of this vector is 0.256nm = 2

0.362 = 2a = 4a + 4a o 2

o 2o B. By inspection, the size of the vector is 2 Cu atom radii.

C. Slip occurs in the most densely packed plane which is of the type {111}. These are the smoothest planes and contain the smallest Burgers vector. This means that the

dislocations move easily and the energy is low.

3.

GIVEN: ∣b ∣ = 0.288nm in Ag REQUIRED: Find lattice parameter

SOLUTION: Recall the Ag is FCC. For FCC structures the Burgers vector is ? a face

diagonal as shown. We see that

4. A. FCC structure

The (111) plane is shown in a unit cell with all atoms shown. Atoms touch along face diagonals. The (111) plane is the most closely packed, and the vectors shown connect equivalent atomic position. Thus 10]1[ 21 = b etc. Then in general >110< 2

a =

b B. For NaC1 We see that the shortest vector connecting equivalent positions is 10]1[ 2

a as shown. This direction lies in both the {100} and {110} planes and both are possible slip planes. However {110} are the planes most frequently observed as the slip planes. This is

because repulsive interionic forces are minimized on these planes during dislocation

motion. Thus we expect 1/2<110> Burgers vectors and {110} slip planes.

5.

GIVEN: Mo crystal

0.272nm

= b a o = 0.314nm REQUIRED: Determine the crystal structure. If Mo were FCC, then 0.222nm = 2

0.314 = b __but |b| = 0.272 Mo is not FCC.

Assuming Mo is BCC, then 0.272nm. = 0.314 X 23

= b __Thus the Burgers vector is consistent with Mo being BCC.

6. FIND: Is the fracture surface in ionic solids rough or smooth?

SOLUTION: Cleavages surfaces of ionic materials are generally smooth. Once a crack is started, it easily propagates in a straight line in a specific crystallographic direction on a specific crystallographic plane. Ceramic fracture surfaces are rough when failure proceeds through the noncrystalline boundaries between small crystals.

7. GIVEN: BCC Cr with |b| = 0.25nm

REQUIRED: Find lattice parameter a

ASSUME: >111< 2

a =

b for BCC structure SOLUTION:2

a 3 = 4a + 4a + 4a =

b 222__from the formula for the magnitude of a vector:

8. GIVEN: Normal stress of 123 MPa applied to BCC Fe in [110] direction

REQUIRED: Resolved shear in [101] on (010)

SOLUTION: Recall that the resolved shear stress is given by:

τ = σ cos θ cos φ (1)

where θ = angle between slip direction and tensile axis; φ = angle between normal to slip plane and tensile axis

Thus MPa 43.5 = 21 21 123 = ??

? ????? ??τ 9. GIVEN: Stress in [123] direction of BCC crystal

REQUIRED: Find the stress needed to promote slip if τcR = 800 psi. The slip plane is (11_0) and slip direction is [111].

SOLUTION: Recall τ = σ cos θ cos φ (1)

θ = [123] [111]

[123] ? [111] = ∣[123]∣ ∣[111]∣cos θ

φ = [123] [11_0] [123] ? [11_0] = ∣[123]∣ ∣[11_0]∣cos φ

10. Burgers vectors lie in the closest packed directions since the distance between equivalent

crystallographic positions is shortest in the close-packed directions. This means that the energy associated with the dislocation will be minimum for such dislocations since the energy is proportional to the square of the Burgers vector.

11. Close packed planes are slip planes since these are the smoothest planes (on an atomic level) and would then be expected to have the lowest critical resolved shear stress.

12. GIVEN: Dislocation lies on (11_1) parallel to intersection of (11_1) and (111) with

Burgers vector parallel to [1_1_0]. Structure is FCC.

REQUIRED: A) Burgers vector of dislocation and, B) Character of dislocation.

SOLUTION: A) Since the structure is FCC, the Burgers vector is parallel to <110> and has magnitude . 2

a For a Burgers vector parallel to [1_1_0] the scalar multiplier must be a/2. Thus

b _ = a/2 [1_1_0]. B) We must determine the line direction of the dislocation. From the diagram we see that the BV and line direction are at 60o which means the

dislocation is mixed.

13. GIVEN: Dislocation reaction below:

REQUIRED: Show it is vectorially correct and energetically proper.

SOLUTION: [100] a =] 111[ 2

a +[111] 2a The sum of the x, y & z components on the LHS must be equal to the corresponding component on the right hand side.

x component (LHS) = x component (RHS)

y component (LHS) = y component (RHS)

z component (LHS) = z component (RHS) Energy: The reaction is energetically favorable if | b 1 | 2 + | b 2 | 2 > | b 3| 3

Thus the reaction is favorable since a > a 4

3 + a 43222 14.

GIVEN: Dislocation in FCC

Parallel to [1_01] i.e. t_ = [1_01]

REQUIRED: Character and slip plane

SOLUTION: Character is found by angle between b_ and t_. Note b_ t_? = -1 + 0 + 1 = 0. Thus b__t_. Since b__t_the dislocation is pure edge.

To find the slip plane we note that the cross produce of t_ & b_gives a vector that is normal to the plane in which t_ & b_lie. This vector so formed has the same indices as the plane since we have a fundamentally cubic structure.

We see from the diagram that these vectors lie on (010).

Thus, we have the plane (01_0) which is the same as the (010) plane. This does not move by glide since planes of the kind {100} are not slip planes for the FCC structure.

15. FCC metals are more ductile than BCC or HCP because: 1) there is no easy mechanism for nucleation of microcracks in FCC as there is for BCC and HCP; 2) the stresses for plastic deformation are lower in FCC due to the (generally) smoother planes. This means that the microcracks that form in BCC & HCP will have high stresses tending to make them propagate.

16. For a simple cubic system, the lowest energy Burgers vectors are of the type <001> since this is the shortest distance connecting equivalent atomic positions. This means that the energy is lowest since the strain energy is proportional to the square of the Burgers vector. 17. GIVEN: At. wt. 0 = 16

At. wt. Mg = 24.32 Same structure as NaCl

ρ = 3.65 g/cm 3

REQUIRED: Find length of Burgers Vector in MgO

SOLUTION: The structure of MgO is shown schematically below along with the shortest Burgers vector. To solve the problem we first note that we require the lattice parameter a o . We can take a sub-section of the unit cell (cross-hatched cube) whose edge is 2

a o units long.

We can calculate the total mass of this cube and the volume and calculate the density. Since the mass is known and the density is known, the volume may be calculated from which a o may be extracted.

O= and ? Mg++ ions in our cube.

Thus

10

x

3.35

x

8

8

/

a

10

x

2.02)

+

(1.33

=

3.65

-23

3

o

-23

18. GIVEN: Critical resolved shear stress (0.34MPa), slip system (111)[1_10], and tensile

axis [101]

REQUIRED: Applied stress at which crystal begins to deform and crystal structure.

SOLUTION: (A)The situation is shown below

τcrss = σ cosθ? cosφ

θ = angle between tensile axis and slip direction

θ = angle between tensile axis and normal to slip plane

φ = [111] [101] θ = [101] [1_01]

[111] ? [101] = ∣[111]∣∣[101]∣cosφ [101] ? [110] = ∣[101]∣∣[110]∣cosθ

(B): To have a {111}<110> slip system, the material must have an FCC structure.

19. GIVEN:τcrss = 55.2 MPa, (111)[1_01] slip system, [112] tensile axis

REQUIRED: Find the highest normal stress that can be applied before dislocation

motion in the [10 1_] direction.

SOLUTION: The situation is shown below. Essentially the problem reduces to finding the value of the tensile stress when the critical resolved shear is reached.

τcrss = σ cosθ? cosφ

B. Would have exactly the same stress for a BCC metal (φ & θ would be interchanged).

20. GIVEN: σ at yield = 3.5 MPa; (111) [11_0] slip system [11_1] tensile axis

REQUIRED: Compute τcrss

SOLUTION: τcrss = σcos θcos φ

θ = [11_1] [11_0] φ = [11_1] [111] 21. Item Edge Screw Linear defect?

Yes Yes Elastic Distortion?

Yes Yes Glide?

Yes Yes Climb?

Yes No Cross-slip?

No Yes Burgers Vector (BV)

⊥ to line // to line Unique slip plane?

Yes No Offset

// to BV // to BV Motion // to BV ⊥ to BV

22.

GIVEN: BCC metal with τcrss = 7MPa [001] tensile axis. REQUIRED: (a) Slip system that will be activated and (b) normal stress for plastic deformation. SOLUTION: Recall that for BCC metals the usual slip system is <111> {110}. Deformation occurs on the plane and direction for which cos θ?cos φ is a maximum since this will have the maximum resolved shear stress. The situation is shown below. (Note that the slip directions are shown shortened in this view)

Possible slip systems are listed below:

sketch (also [11_1] on (011)) (also [1_11] on (01_1)) (also [1_1_1] on (101))

similar to planes shown in sketch. Also [111] on (1_01)

We see by inspection that the resolved shear due to a tensile force in [001] will all be the

same. The resolved shear on all other {110}<111> systems is zero.

B. To compute the normal stress at the onset of plastic deformation we will consider

(011) [1_1_1]

τcrss = σcosθcosφ = 7

θ = [001] [1_1_1]; cosφ = [001] [011]

Note if we considered (101) [1_1_1] we would have

and we would obtain exactly the same answer.

23. GIVEN: Yielding occurs at normal stress of σ = 170 MPa in [100] direction.

Dislocation moves on (101) in [111_] direction.

REQUIRED:τcrss and crystal structures

SOLUTION: Assume an edge dislocation. τcrss = σcos?cosφ

θ = [100] [111_] φ = [100] [101]

The - sign means that the slip direction is opposite to the motion of the dislocation.

Essentially, we have a negative edge dislocation on (101) as shown below:

The edge dislocation moves in [111_] direction but the offset is in [1_1_1] direction.

The slip plane and slip direction are representative of BCC structures.

24.

GIVEN: (1_10)[111] slip system. [123] tensile axis

τcrss = 800 psi for BCC crystal

τcrss = 80 psi for FCC crystal with σFCC = 457 psi [123] tensile axis and (111)[11_0] system.

REQUIRED: Normal stress at yield for BCC metal

SOLUTION: The simplest way to solve this problem is to note cos θ?cos φ is the same for the BCC and FCC crystal with the meaning of φ and θ interchanged. Let M = cos θ?cos φ.

(1)

(2)

25.

Here crystallographically equivalent positions join ions at cube corners (b v = a o ), face diagonals )a 2 = b (o v , cube diagonals )a 3 = b (o v

The most densely packed plane is the (110) in which we have

The shortest vector that will reproduce all elements of the structure is a o . Thus b = a<100>

COMMENT: We note that this is not sufficient for general deformation (e.g. a tensile axis of the type <100> produces zero shear on the 1<100> Burgers vectors. We expect then a<110> Burgers vectors as well.

26. GIVEN:σ = 1.7 MPa [100] tensile axis (111)[101] slip systems

REQUIRED:τcrss, and crystal structure. Also find flaw in problem statement.

SOLUTION: Since the slip system is of the type {111}<110> the structure is FCC. The problem is misstated since the Burgers vector must lie on the slip plane and [101] does

not lie on (111). The slip direction would more appropriately be [101_]. Thus the slip

system is (111)[101_] as shown below.

27.

⊥ = edge dislocation x = start of Burgers circuit

b = Burgers vector y = end of Burgers circuit

28. FIND: Show energy/area = force/length, that is, surface energy is surface tension in

liquids.

DATA: The units of energy are J = W/s or N-m. The units of force are N.

SOLUTION: Energy/area = J/m2 =N-m/m2 = N/m = force/length

29. GIVEN: Two grain sizes, 10μm and 40μm

REQUIRED: A) ASTM GS# for both processes, B) Grain boundary area.

SOLUTION: Assume that the grains are in the form of cubes for ease of calculation.

The ASTM GS# is defined through the equation: n = 2N-1 where n = # grains/in2 at 100X.

N=ASTM GS#

To solve the problem we first convert the grain size to in. where D = length of cube edge in μm.

At 100X linear magnification, the sides of the smaller grains will be: The area of each grain at 100X will be Similarly the area of the 40μm grains at 100X is For the 10μm dia grain, the # of grains per in 2 (at box) is 645.16 = 10 x 1.5501 = n 3

-100X 10μgrains/in 2 at 100X Similarly 40.31 = 10

x 24.811 = n 3-100X 40μgrains/in 2 at 100X For the 10μm grain size:

B. In computing the total g.s. area we will assume 1 in 3 of materials. Since there are 6 faces cube and the area of each face is shared by 2 cubes, each cube has an area of 3x Area of face. G.B. Area =d / 3 = d 3 x d 123??

???? GB Area (10μ gs) = 3/3.937 x 10-4 = 7620in 2/in 3

GB Area (40μ gs) = 3/15.75 x 10-4 = 1905in 2/in 3

30.

GIVEN: σys = 200MPa at GS#4

= 300MPa at GS#6

REQUIRED: σys at GS#9

SOLUTION: Recall σys = σo + kd -1/2 (1) for low carbon steel. If d = grain size (assume cubes) load = grain diameter at 100X

(2) (3)

16.82 = d 1

1/24

For ASTM GS# 4: For ASTM GS#6:23.78 = d 1

1/24

(5) Substituting (4) and (5) into (1) we have

200 - σo + k(16.82)

(6) 300 = σo + k(23.78)

(7)

Subtracting (6) from (7):

100 = k(23.78 - 16.82)

∴k = 14.37

Substituting this value of κ into (6) yields 200 = σo + 14.37 x 16.82

σo = -41.70 (this is not physically realistic since σo relates to the lattice friction stress which should not be negative)

For ASTM GS#9

Thus σys = σo + 14.37 x 40 = 41.70 + 574 = 533MPa

31. GIVEN: ∣b ∣ = 0.25μm for BCC metal tilt boundary has angular difference of 2.5o

REQUIRED: Dislocation density in tilt boundary wall

SOLUTION: The physical situation is shown below:

If b = Burgers vector, D = spacing between edge dislocation

# of dislocations in boundary for a 1cm high boundary is

D 1(where D is in cm)

32.

33. FIND: Show D = b / θ.

GIVEN: b is the magnitude of the Burger's vector; D is the spacing between

dislocations, and θ is the tilt angle.

SKETCH: See Fig. 5.3-4.

SOLUTION: We can see the geometry more clearly using the following sketch:

From the Figure we can immediately write that tan

/

θ

2

2

=

b

D

. Since the tan of a small angle is

the angle itself:

θ2

2

=

b

D

/

, so that D = b / θ, as is written in the margin.

34. FIND: How can you detect a cluster of voids or a cluster of precipitates in a material?

SOLUTION: This can be a difficult challenge indeed. If the total void volume is

large, then the density of the sample will be lower than that of dense material. The

same is true for clusters of precipitate; however, usually the density difference between host and precipitate is not as great as between host and air, so the technique does not

work as well. Another possible technique is microscopy. Samples can be prepared for microscopy, perhaps by polishing and etching and the defects observed using optical

or electron microscopy. X-ray diffraction can also be used. With a random spacing of void or precipitate there is then an average spacing. Sometimes Bragg's law can be

used to calculate the spacing if an intensity maximum is observed. Note that the angle of the maximum will be very small.

COMMENTS: There are many other potential techniques that can potentially be used.

They all rely on some property difference - magnetic, electrical, optical, or whatever.

35. FIND: How can you ascertain whether a material contains both crystalline and

noncrystalline regions?

GIVEN: Recall that the density (and other properties) of crystalline material is greater than that of noncrystalline material of the same composition

SOLUTION: There are three methods in common usage to establish crystallinity

polymers. These methods apply to all materials.

1. Density. Measure the density of your sample and compare it to the density of

noncrystalline and crystalline samples of the same composition.

2. Differential Scanning Calorimetry. Heat your sample in a calorimeter. Samples

that are crystalline will absorb heat at the melting temperature and show a "melting

endotherm". Some noncrystalline samples (such as amorphous metals) will crystallize in the calorimeter and show a huge release of heat prior to melting. This is a

"crystallization exotherm".

3. X-ray diffraction. Crystalline materials show well-defined peaks.

COMMENTS: Knowing whether a material is crystalline or noncrystalline is a

common challenge to polymers scientists. We often need to quantify the fraction or

percent crystallinity. Can you suggest a method for each of the 3 techniques outlined?

36. FIND: State examples of materials' applications that require the material to behave in

a purely elastic manner.

SOLUTION: There are many such possible examples. Since plastic deformation is

nonrecoverable deformation, any application that requires repeated stressing and

dimensional stability is a good example. Here are some examples:

1. Springs in automobiles - leaf and coil springs

2. A diving board

3. Trusses in a bridge

4. The walls in a building

5. A bicycle frame

6. Piano wire

7. Airplane wings

37. As the dislocation density ↑, there are more dislocation/dislocation interactions and

the strength goes up. At the same time, the degree of “damage” also increases and the ductility decreases.

38. If the point defect concentration ↑, the strength will go up as well. This is because the

defects may migrate to edge dislocations where they cause jogs on the dislocations. A jogged dislocation is much harder to move and may itself require the generation of

point defects to move. In addition the point defects may collapse to form dislocation

loops which also impede the motion of other dislocations making the materials

stronger. If the defects are interstitials, they may migrate to areas around the

dislocations in which the system energy is reduced. For the dislocation to move away from the interstitial an increase in the system energy is required which means the stress to move the dislocation must increase. If the point defect is a substitutional atom,

similar considerations apply. However, the magnitude of the energy reduction is less because of the less severe distortion. Thus the strength increase is not as high as for

intersitital.

39. As d↓σys↑ since this means the path over which a dislocation moves ↓. This means

that the stress will have to increase to either nucleate or unlock dislocations in adjacent grains. The relationship quantifying this behavior is the Hall-Petch equation: σys = σo + kd-1/2

40. The strength may increase as a result of:

1. decreasing grain size - should not be too (see previous questions) temperature

dependent.

2. Adding impurities (e.g. C in Fe). The impurities “lock” the dislocation by

associating with the dislocation to lower the system energy. This will be very

temperature dependent for dilute concentrations of impurities as the impurities will

diffuse away at high temperatures.

3. Adding precipitates - blocks the motion of dislocations through either having a

different crystal structure or a large strain field. Since the precipitates are usually large

compared to the atomistic dimension, strong temperature dependence is not expected.

4. Cold work - increase quantity of dislocations.

41. GIVEN: = 1012/cm 2 for low C steel

REQUIRED: concentration of C atoms (at %) to lock all dislocations

SOLUTION: Recalling the At. weight of Fe is 55.85 and the density is about 7.8

gm/cm 3 we may write 10 x 6.02 55.857.8 = N 23

Fc

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

高中人教版英语必修五课本答案

教材练习答案及听力原文 Unit 1 WARMING UP ?Answers: 1 Archimedes, Ancient Greek (287-21 2 BC) He was a mathematician. He found that if you put an object into water the water pushes the object up. It rises and partly floats. The force of the water pushing it up is the same as the weight of the object. 2 Charles Darwin, British (1808-1882) The Origin of Species was published in 1859. It explained how plants and animals had changed over time to fit in with a changing environment. At the time it was published it was very controversial. Many people believed the Bible when it said that God made the first two people (Adam and Eve) and that all other people came from these two. Darwin’s book showed that people had developed from apes instead. So this caused a lot of ar gument between religious and scientific people. However Darwin’s idea became very influential and is still accepted today. 3 Thomas Newcomen, British (1663-1729) He improved the first steam pump built by Thomas Savery in 1698 and turned it into a steam engine for taking water out of mines in 1712. James Watt improved it still further in the 1770s turning it into the first modern steam engine used on the railways. 4 Gregor Mendel, Czech (1822-1884) He grew pea plants and developed ideas on heredity and inherited characteristics. He concentrated on cross-fertilising pea plants and analyzing the results. Between 1856-1863 he grew 28,000 pea plants. He examined seven kinds of seed and plant characteristics and developed some laws of inheritance. The first is that inheritance factors do not combine but are passed to the next generation intact. Second, he found that each partner gives half the inherited factors to the young. Third, some of these factors show up in the offspring (and so are dominant). The other factors are masked by the dominant ones (and so are recessive). 5 Marie Curie, Polish and French (1867-1934) She was born in Poland and came to study in France in 1891 and she lived there for the rest of her life. In 1898 she discovered radium. She received two Nobel prizes, one (with Pierre Curie) for physics (1903) and one for chemistry (1911). She is the only person to have been so honoured. On the death of her husband she took over his job at the Sorbonne in Paris. Her work on radioactivity and the discovery of radium meant that she began a new scientific area of research. She was the first woman to receive a Nobel Prize and the first woman to teach at the Sorbonne. 6 Thomas Edison, American (1847-1931) He was already an inventor of other electrical devices (phonograph, electric light bulb) when in 1882 he designed a system for providing New York with electricity from a central power station. This was a tremendous achievement, which had previously been thought impossible.

材料科学基础习题及答案

习题课

一、判断正误 正确的在括号内画“√”,错误的画“×” 1、金属中典型的空间点阵有体心立方、面心立方和密排六方三种。 2、位错滑移时,作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。 3、只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。 4、金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。 5、固溶体凝固形核的必要条件同样是ΔG<0、结构起伏和能量起伏。 6三元相图垂直截面的两相区内不适用杠杆定律。 7物质的扩散方向总是与浓度梯度的方向相反。 8塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。 9.晶格常数是晶胞中两相邻原子的中心距。 10.具有软取向的滑移系比较容易滑移,是因为外力在在该滑移系具有较大的分切应力值。11.面心立方金属的滑移面是{110}滑移方向是〈111〉。 12.固溶强化的主要原因之一是溶质原子被吸附在位错附近,降低了位错的易动性。13.经热加工后的金属性能比铸态的好。 14.过共析钢的室温组织是铁素体和二次渗碳体。 15.固溶体合金结晶的过程中,结晶出的固相成份和液相成份不同,故必然产生晶内偏析。16.塑性变形后的金属经回复退火可使其性能恢复到变形前的水平。 17.非匀质形核时液体内部已有的固态质点即是非均匀形核的晶核。 18.目前工业生产中一切强化金属材料的方法都是旨在增大位错运动的阻力。 19、铁素体是α-Fe中的间隙固溶体,强度、硬度不高,塑性、韧性很好。 20、体心立方晶格和面心立方晶格的金属都有12个滑移系,在相同条件下,它们的塑性也相同。 21、珠光体是铁与碳的化合物,所以强度、硬度比铁素体高而塑性比铁素体差。 22、金属结晶时,晶粒大小与过冷度有很大的关系。过冷度大,晶粒越细。 23、固溶体合金平衡结晶时,结晶出的固相成分总是和剩余液相不同,但结晶后固溶体成分是均匀的。 24、面心立方的致密度为0.74,体心立方的致密度为0.68,因此碳在γ-Fe(面心立方)中的溶解度比在α-Fe(体心立方)的小。 25、实际金属总是在过冷的情况下结晶的,但同一金属结晶时的过冷度为一个恒定值,它与冷却速度无关。 26、金属的临界分切应力是由金属本身决定的,与外力无关。 27、一根曲折的位错线不可能是纯位错。 28、适当的再结晶退火,可以获得细小的均匀的晶粒,因此可以利用再结晶退火使得铸锭的组织细化。 29、冷变形后的金属在再结晶以上温度加热时将依次发生回复、再结晶、二次再结晶和晶粒长大的过程。 30、临界变形程度是指金属在临界分切应力下发生变形的程度。 31、无限固溶体一定是置换固溶体。 32、金属在冷变形后可形成带状组织。 33、金属铅在室温下进行塑性成型属于冷加工,金属钨在1000℃下进行塑性变形属于热加工。

材料科学基础课后习题

1.作图表示立方晶体的晶面及晶向。 2.在六方晶体中,绘出以下常见晶向 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的 等价晶面。 4.镁的原子堆积密度和所有hcp金属一样,为。试求镁单位晶胞的 体积。已知Mg的密度,相对原子质量为,原子半径r=。 5.当CN=6时离子半径为,试问: 1)当CN=4时,其半径为多少? 2)当CN=8时,其半径为多少? 6.试问:在铜(fcc,a=)的<100>方向及铁(bcc,a=的<100>方向,原 子的线密度为多少? 7.镍为面心立方结构,其原子半径为。试确定在镍的 (100),(110)及(111)平面上1中各有多少个原子。 8.石英的密度为。试问: 1)1中有多少个硅原子(与氧原子)? 2)当硅与氧的半径分别为与时,其堆积密度为多少(假设原子是 球形的)?

9.在800℃时个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时个原子中则只有一个原子,试求其激活能(J/原 子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空 位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J)。 11.设图1-18所示的立方晶体的滑移面ABCD平行于晶体的上、下底面。 若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b∥AB。 1)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台 阶应为4个b,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后, 滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD平行于晶体的上、下底面。 晶体中有一条位错线段在滑移面上并平行AB,段与滑移面垂直。位错的柏氏矢量b与平行而与垂直。试问: 1)欲使段位错在ABCD滑移面上运动而不动,应对晶体施加 怎样的应力? 2)在上述应力作用下位错线如何运动?晶体外形如何变化? 13.设面心立方晶体中的为滑移面,位错滑移后的滑移矢量为 。 1)在晶胞中画出柏氏矢量b的方向并计算出其大小。 2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方 向,并写出此二位错线的晶向指数。

高一必修5解三角形练习题及答案

第一章 解三角形 一、选择题 1.在A B C ?中,a =03,30;c C == (4) 则可求得角045A =的是( ) A .(1)、(2)、(4) B .(1)、(3)、(4) C .(2)、(3) D .(2)、(4) 2.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) A .10=b , 45=A , 70=C B .60=a ,48=c , 60=B C .14=a ,16=b , 45=A D . 7=a ,5=b , 80=A 3.在ABC ?中,若, 45=C , 30=B ,则( ) A ; B C D 4.在△ABC ,则cos C 的值为( ) A. D. 5.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( ) A B .120≤

三、解答题 11. 已知在ABC ?中,cos A = ,,,a b c 分别是角,,A B C 所对的边. (Ⅰ)求tan 2A ; (Ⅱ)若sin()2 B π += ,c =求ABC ?的面积. 解: 12. 在△ABC 中,c b a ,,分别为角A 、B 、C 的对边,5 82 22bc b c a - =-,a =3, △ABC 的面积为6, D 为△ABC 内任一点,点D 到三边距离之和为d 。 ⑴求角A 的正弦值; ⑵求边b 、c ; ⑶求d 的取值范围 解:

材料科学基础习题及答案

《材料科学基础》习题及答案 第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[] 907.032/2/2/34/222==?ππr r

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

(完整版)材料科学基础练习题

练习题 第三章晶体结构,习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b)在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。1:1和2:1 (b)对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。 3-3 MgO晶体结构,Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。并说明为什么其体积分数小于74.05%?

人教版生物生物必修二教材课后习题答案

人教版生物生物必修二教材课后习题答案 第1章遗传因子的发现 第1节《孟德尔的豌豆杂交实验(一)》 (一)问题探讨 1. 粉色。因为按照融合遗传的观点,双亲遗传物质在子代体内混合,子代呈现双亲的中介性状,即红色和白色的混合色——粉色。 2. 提示:此问题是开放性问题,目的是引导学生观察、分析身边的生物遗传现象,学生通过对遗传实例的分析,辨析融合遗传观点是否正确。有些学生可能举出的实例是多个遗传因子控制生物性状的现象(如人体的高度等),从而产生诸多疑惑,教师对此可以不做过多的解释。只要引导学生能认真思索,积极探讨,投入学习状态即可。 (二)实验 1. 与每个小组的实验结果相比,全班实验的总结果更接近预期的结果,即彩球组合类型数量比DD ∶Dd ∶dd=1∶2∶1,彩球代表的显性与隐性类型的数值比为3∶1。因为实验个体数量越大,越接近统计规律。 如果孟德尔当时只统计10株豌豆杂交的结果,则很难正确地解释性状分离现象,因为实验统计的样本数目足够多,是孟德尔能够正确分析实验结果的前提条件之一。当对10株豌豆的个体做统计时,会出现较大的误差。 2. 模拟实验的结果与孟德尔的假说是相吻合的。因为甲、乙小桶内的彩球代表孟德尔实验中的雌、雄配子,从两个桶内分别随机抓取一个彩球进行组合,实际上模拟雌、雄配子的随机组合,统计的数量也足够大,出现了3∶1的结果。但证明某一假说还需实验验证。 (三)技能训练 提示:将获得的紫色花连续几代自交,即将每次自交后代的紫色花选育再进行自交,直至自交后代不再出现白色花为止。 (四)旁栏思考题 不会。因为满足孟德尔实验条件之一是雌、雄配子结合机会相等,即任何一个雄配子(或雌配子)与任何一个雌配子(或雄配子)的结合机会相等,这样才能出现3∶1的性状分离比。 (五)练习 基础题1.B。2.B。 3. (1)在F1水稻细胞中含有一个控制合成支链淀粉的遗传因子和一个控制合成直链淀粉的遗传因子。在F1形成配子时,两个遗传因子分离,分别进入不同配子中,含支链淀粉遗传因子的配子合成支链淀粉,遇碘变橙红色;含直链淀粉遗传因子的配子合成直链淀粉,遇碘变蓝黑色,其比例为1∶1。 (2)孟德尔的分离定律。即在F1形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中。(3)2。 4. (1)白色;黑色。 (2)性状分离;白毛羊为杂合子,杂合子在自交时会产生性状分离现象。 拓展题 1. (1)将被鉴定的栗色公马与多匹白色母马配种,这样可在一个季节里产生多匹杂交后代。 (2)杂交后代可能有两种结果:一是杂交后代全部为栗色马,此结果说明被鉴定的栗色公马很可能是纯合子;二是杂交后代中既有白色马,又有栗色马,此结果说明被鉴定的栗色公马为杂合子。 2. 提示:选择适宜的实验材料是确保实验成功的条件之一。孟德尔在遗传杂交实验中,曾使用多种植物如豌豆、玉米、山柳菊做杂交实验,其中豌豆的杂交实验最为成功,因此发现了遗传的基本规律。这是因为豌豆具有适于研究杂交实验的特点,例如,豌豆严格自花受粉,在自然状态下是纯种,这样确保了通过杂交实验可以获得真正的杂种;豌豆花大,易于做人工

材料科学基础部分习题

晶体结构 1、解释下列概念 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/ 3、b/2、c,求出该晶面的米勒指数。 3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321] 4、写出面心立方格子的单位平行六面体上所有结点的坐标。 5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。 6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。 7、从理论计算公式计算NaC1与MgO的晶格能。MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。 8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有34.01%),为什么它也很稳定? 9、证明等径圆球面心立方最密堆积的空隙率为25.9%; 10、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。 11、根据半径比关系,说明下列离子与O2—配位时的配位数各是多? r o2-=0.132nm r Si4+=0.039nm r K+=0.133nm r Al3+=0.057nm r Mg2+=0.078n m 12、为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多? 13、有效离子半径可通过晶体结构测定算出。在下面NaCl型结构晶体中,测得MgS 和MnS的晶胞参数均为a=0.52nm(在这两种结构中,阴离子是相互接触的)。若CaS(a=0.567nm)、CaO(a=0.48nm)和MgO(a=0.42nm)为一般阳离子——阴离子接触,试求这些晶体中各离子的半径。

《材料科学基础》课后答案章

第 一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101).(011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的a=b,c=a/2。某晶面在三个晶轴上的截距分别为6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的{111},1110},{123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题: (1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。 (2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。 6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。 解:1、体心立方

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

05 高中数学必修5课后习题答案

人教版高中数学必修5课后习题解答 第一章 解三角形 1.1两角和与差的正弦、余弦和正切公式 练习(P4) 1、(1),,; (2)cm ,cm , . 2、(1),,;或,,; (2),,. 练习(P8) 1、(1); (2). 2、(1); (2). 习题1.1 A 组(P10) 1、(1); (2) 2、(1) (2); (3); 3、(1); (2); (3); 4、(1); (2); 习题1.1 A 组(P10) 1、证明:如图1,设的外接圆的半径是, ①当时直角三角形时,时, 的外接圆的圆心在的斜边上. 在 中,, 即, 所以 , 又 所以 ②当时锐角三角形时,它的外接圆的圆心在三角形内(图2), 作过的直径,连接, 则直角三角形,,. 在 中,, 即 , 所以, 同理:, ③当时钝角三角形时,不妨假设为钝角, 它的外接圆的圆心在外(图3) 作过的直径,连接. 则直角三角形,且, 在中,, 即 即 同理:, 综上,对任意三角形,如果它的外接圆半径等于, 则 2、因为, 所以,即 因为, (第1题图1) (第1题图2) (第1题图3)

所以,或,或. 即或. 所以,三角形是等腰三角形,或是直角三角形. 在得到后,也可以化为 所以 ,或 即,或,得到问题的结论. 1.2应用举例 练习(P13) 1、在中,n mile,, 根据正弦定理, 得 ∴到直线的距离是(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15) 1、在中,, 在中,根据正弦定理, 所以,山高为 2、在中,m, 根据正弦定理, m 井架的高约9.8m. 3、山的高度为m 练习(P16) 1、约. 练习(P18) 1、(1)约;(2)约;(3)约. 2、约 3、右边 左边【类似可以证明另外两个等式】 习题1.2 A组(P19) 1、在中,n mile, , 根据正弦定理,

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

人教版高中数学必修五课后习题答案

高中数学必修5课后习题答案 第一章 解三角形 1.1 两角和与差的正弦、余弦和正切公式 练习(P4) 1、(1)14a ≈,19b ≈,105B =?; (2)18a ≈cm ,15b ≈cm ,75C =?. 2、(1)65A ≈?,85C ≈?,22c ≈;或115A ≈?,35C ≈?,13c ≈; (2)41B ≈?,24A ≈?,24a ≈. 练习(P8) 1、(1)39.6,58.2, 4.2 cm A B c ≈?≈?≈; (2)55.8,81.9,10.5 cm B C a ≈?≈?≈. 2、(1)43.5,100.3,36.2A B C ≈?≈?≈?; (2)24.7,44.9,110.4A B C ≈?≈?≈?. 习题1.1 A 组(P10) 1、(1)38,39,80a cm b cm B ≈≈≈?; (2)38,56,90a cm b cm C ≈≈=? 2、(1)114,43,35;20,137,13A B a cm A B a cm ≈?≈?≈≈?≈?≈ (2)35,85,17B C c cm ≈?≈?≈; (3)97,58,47;33,122,26A B a cm A B a cm ≈?≈?≈≈?≈?≈; 3、(1)49,24,62A B c cm ≈?≈?≈; (2)59,55,62A C b cm ≈?≈?≈; (3)36,38,62B C a cm ≈?≈?≈; 4、(1)36,40,104A B C ≈?≈?≈?; (2)48,93,39A B C ≈?≈?≈?; 习题1.1 A 组(P10) 1、证明:如图1,设ABC ?的外接圆的半径是R , ①当ABC ?时直角三角形时,90C ∠=?时, ABC ?的外接圆的圆心O 在Rt ABC ?的斜边AB 上. 在Rt ABC ?中,sin BC A AB =,sin AC B AB = 即sin 2a A R =,sin 2b B R = 所以2sin a R A =,2sin b R B = 又22sin 902sin c R R R C ==??= 所以2sin , 2sin , 2sin a R A b R B c R C === ②当ABC ?时锐角三角形时,它的外接圆的圆心O 在三角形内(图2), 作过O B 、的直径1A B ,连接1 AC , 则1A BC ?直角三角形,190ACB ∠=?,1 BAC BAC ∠=∠. 在1Rt A BC ?中, 11sin BC BAC A B =∠, a b A O C B (第1题图1) A 1 O A

相关文档
相关文档 最新文档