文档库 最新最全的文档下载
当前位置:文档库 › 可程控方波信号发生器的设计

可程控方波信号发生器的设计

可程控方波信号发生器的设计
可程控方波信号发生器的设计

方波_三角波_正弦波_锯齿波发生器

X X X X X X X大学 课程设计报告 课程名称:电子技术基础 设计题目:方波三角波正弦波锯齿波函数发生器 系别: 专业: 班级: 学生姓名: 学号: 同组同学: 学号: 指导教师: XXXX大学XXXX学院 XXXX年月日

摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路

目录 · 设计要求 (1) 1.前言 (1) 2方波、三角波、正弦波发生器方案 (2) 2.1原理框图 (2) 3.各组成部分的工作原理 (3) 3.1方波发生电路的工作原理 (3) 3.2方波--三角波转换电路的工作原理 (4) 3.3三角波--正弦波转换电路的工作原理 (5) 3.4方波—锯齿波转换电路的工作原理 (6) 3.5总电路图 (7) 4.用Multisim10电路仿真 (8) 4.1输出方波电路的仿真 (8) 4.2三角波电路的仿真 (9) 4.3正弦波电路的仿真 (10) 4.4锯齿波电路的仿真 (11) 5实验总结 (11) 6.仪器仪表清单 (13) 7.参考文献 (13) 8.致谢 (13)

简易信号发生器设计制作

简易信号发生器设计制作 一、训练目的 (1)掌握正弦波、三角波、矩形波和方波发生电路的工作原理; (2)学会正弦波、三角波、矩形波和方波发生电路的设计方法; (3)进一步熟悉电子线路的安装、调试、测试方法。 二、工作原理 正弦波、三角板、矩形波是电子电路中常用的测试信号,如测试放大器的增益、通频带等均要用到正弦信号作为测试信号。下面分别介绍产生这三种信号电路结构和工作原理。 1.正弦信号发生器 正弦信号的产生电路形式比较多,频率较低时常用文氏电桥振荡器,图7-1为实用文氏电桥振荡电路。图中R 1、R 2、R 3、RW 2构成负反馈支路,二极管D 1、D 2构成稳幅电路,C 2、R 11(或R 12或R 13)、C 1、R 21(或R 22或R 23)串并联电路构成正反馈支路,并兼作选频网络。调节电位器RW 2可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二极管D 1、D 2要求温度稳定性好,特性匹配以确保输出信号正负半周对称,R 4接入用以消除二极管的非线性影响,改善波形失真。如K1接电阻R 11、K2接R 21,并且R 11= R 21=R ,C 1= C 2=C ,则电路的振荡频率为: 1 2f RC π= (7-1) 起振的幅值条件: 1 1f v R A R =+ (7-2) 图7-1 正弦信号发生器 通过调整RW 2可以改变电路放大倍数,能使电路起振并且失真最小。该电路可通过开关K1、K2选择不同的电阻以得到不同频率的信号输出。 2.方波和矩形波发生器

方波发生电路如图7-2,其基本原理是在滞回比较器的基础上增加了由R 4和C 1构成的积分电路,输出电压通过该积分电路送人到比较器的反相输入端。其中R 3 、D Z1和D Z2构成双向限幅电路,这样就构成了方波发生器电路,其工作原理如下: 假设在接通电源瞬间,输出电压o v 为Z V +(稳压二极管D Z1、D Z2额定工作时的稳压值),这时比较器同相端的输入电压为 2 12 Z R v V R R +≈ + (7-3) 同时输出电压o v 会通过电阻R 4给C 1充电,反相端的输入电压v -就会逐步升高,当反向输入端的电压v -略大于同相端输入电压v +时,比较器输出电压立即从Z V +翻转为Z V -,这时输出端电压o v 为Z V -,比较器同相端输入电压v +'为 2 12 Z R v V R R +'≈- + (7-4) 这时输出的电压o v 会通过R 4对C 1进行反向充电,当反相输入端的电压略低于v +'时,输出状态再翻转回来,如此反复形成方波信号。所产生方波信号的频率为 41 1 2f R C = 方波 (7-5) R 4 o 图7-2 方波发生电路

DSP任意波形信号发生器毕业设计

目录 摘 要 (2) Abstract (3) 1 绪论 (4) 1.1概述 (4) 1.2选题的目的、意义 (4) 1.3 选题的背景 (5) 1.4 本文所研究的内容 (6) 2 波形信号发生器的原理及方案选择 (7) 2.1任意波形信号发生器的原理 (7) 2.1.1 直接模拟法 (7) 2.1.2 直接数字法 (7) 2.2 任意波形发生器的设计方案 (9) 2.2.1 查表法 (9) 2.2.2计算法 (9) 2.2.3传统方法 (10) 3 基于DSP 5416的任意波形信号发生器的软件设计 (12) 3.1 TMS320C5416的开发流程 (12) 3.2软件开发环境 (13) 3.3任意波形信号发生器的软件编程 (14) 3.3.1 计算法实现波形输出 (14) 3.3.2 D/A转换 (15) 3.3.3波形控制及软件设计流程图 (16) 3.4参数的设定 (18) 4 基于DSP 5416的任意波形信号发生器的硬件设计 (20) 4.1 TMS320VC5416开发板 (20) 4.2 TMS320VC5416实验箱的连接 (23) 4.3 波形信号发生器的硬件测试过程 (23) 5 任意波形信号发生器展望 (28) 结束语 (29) 致谢 (30) 参考文献 (31)

摘 要 任意波形发生器是信号源的一种,它是具有信号源所具有的特点,更因它高的性能优势而倍受人们青睐。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和试验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 随着无线电应用领域的扩展,针对广播、电视、雷达、通信的专用信号发生器获得了长足的发展,表现在载波调制方式的多样化,从调幅、调频、调相到脉冲调制。如果采用多台信号发生器获得测量信号显然是很不方便的。因此需要任意波形发生器(Arbitrary Waveform Generator,AWG),使其能够产生任意频率的载频信号和多种载波调制信号。 目前我国已经开始研制任意波形发生器,并取得了可喜的成果。但总的来说,我国任意波形发生器还没有形成真正的产业。并且我国目前在任意波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。 本文主要工作分为以下几个方面:首先,介绍研制任意波形信号发生器的目的、意义、背景,以及利用CCS仿真工具用软件实现任意波形信号发生器的的过程 ;之后,对硬件的连接及测试结果作介绍;最后,简要的对任意波形信号发生器的未来作一下展望。 关键词:DSP,任意波形信号发生器,DDS

(完整版)数字信号发生器的电路设计_(毕业课程设计)

1 引言 信号发生器又称信号源或者振荡器,它是根据用户对其波形的命令来产生信号的电子仪器,在生产实践和科技领域有着广泛的应用。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其他仪表测量感兴趣的参数。信号发生器在通信、广播、电视系统,在工业、农业、生物医学领域内,在实验室和设备检测中具有十分广泛的用途。 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形。到70年代处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。随着现代电子、计算机和信号处理等技术的发展,极大地促进了数字化技术在电子测量仪器中的应用,使原有的模拟信号处理逐步被数字信号处理所代替,从而扩充了仪器信号的处理能力,提高了信号测量的准确度、精度和变换速度,克服了模拟信号处理的诸多缺点,数字信号发生器随之发展起来。

信号发生器作为电子领域不可缺少的测量工具,它必然将向更高性能,更高精确度,更高智能化方向发展,就象现在在数字化信号发生器的崛起一样。但作为一种仪器,我们必然要考虑其所用领域,也就是说要因地制宜,综合考虑性价比,用低成本制作的集成芯片信号发生器短期内还不会被完全取代,还会比较广泛的用于理论实验以及精确度要求不是太高的实验。因此完整的函数信号发生器的设计具有非常重要的实践意义和广阔的应用前景。 2 数字信号发生器的系统总述 2.1 系统简介 信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。 本设计以AT89C52[1]单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统主要包括CPU模块、显示模块、键盘输入模块、数模转换模块、波形输出模块。系统电路原理图见附录A,PCB (印制电路板)图见附录B。其中CPU模块负责控制信号的产生、变化及频率的改变;模数转换模块采用DAC0832实现不同波形的输出;显示模块采用1602液晶显示,实现波型和频率显示;键盘输入模块实

任意信号发生器毕业设计开题报告书

苏州科技学院 毕业设计开题报告 设计题目任意信号发生器的硬件设计(基于89C51实现)院系电子与信息工程学院 专业电子信息工程 班级电子0911 学生姓名XXXXXXX 学号 设计地点 指导教师 2013 年3月31 日

设计题目:任意信号发生器的硬件设计(基于89C51实现)课题目的、意义及相关研究动态: 一、课题目的: 信号发生器是一种能产生模拟电压波形的设备,这些波形能够校验电子电路的设计。信号发生器广泛用于电子电路、自动控制系统和教学实验等领域,它是一种可以产生正弦波,方波,三角波等函数波形的一起,其频率范围约为几毫赫到几十兆赫,在工业生产和科研中利用信号发生器输出的信号,可以对元器件的性能鉴定,在多数电路传递网络中,电容与电感组合电路,电容与电阻组合电路及信号调制器的频率,相位的检测中都可以得到广泛的应用。因此,研究信号发生器也是一个很重要的发展方向。 常用的信号发生器绝大部分是由模拟电路构成的,但这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而本课题设计的函数信号发生器,由单片机构成具有结构简单,价格便宜等特点将成为数字量信号发生器的发展趋势。 本课题采用的是以89c51为核心,结合 DAC0832实现程控一般波形的低频信号输出,他的一些主要技术特性基本瞒住一般使用的需要,并且它具有功能丰富,性能稳定,价格便宜,操作方便等特点,具有一定的推广作用。 二、课题意义: (1)任意信号发生器主要在实验中用于信号源,是电子电路等各种实验必不可少的实验设备之一,掌握任意信号发生器的工作原理至关重要。 (2)任意信号发生器能产生某些特定的周期性时间任意波形(正波、方波、三角波)信号,频率范围可从几个微赫到几十兆赫任意信号发生器在电路实验和设备检测中具有十分广泛的用途。 (3)本课题主要研究开发一个基于51单片机的实验用任意信号发生器,不但成本较低而精度较高,最重要的是开发简单易于调试,具有一定社会价值和经济价值。 (4)任意信号发生器作为一种常见的电子仪器设备,既能够构成独立的信号源,也可以是高新能的网络分析仪,频谱仪以及自动测试装备的组成部分,任意信号发生器的关键技术是多种高性能仪器的支撑技术,因为它是能够提高质量的精密信号源及扫描源,可使相应系统的检测过程大大简化,降低检测费用并且提高检测精度。

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

基于某DSP的任意信号发生器设计汇总情况

数字信号处理(DSP) 综合设计性实验报告 学院:电子信息工程学院 班级:通信0708 指导教师:高海林 学生:原凌云07211253 张丽康07211256

北京交通大学电工电子教学基地 2004年12月28日 目录 一、设计任务 (3) 二、实验目的 (3) 三、设计内容 (3) 四、实验原理 (4) 五、程序设计 (6) 1、程序源代码 2、实验截图和结果 六、实验总结 (22) 七、参考资料 (23)

一、设计任务书 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。信号发生器在现代工程中应用非常广泛。在实际中常需要产生一些特殊波形,用于仿真实际信号的波形,以检测和调试测量装置。 使用DSP 和D/A 转换器可以产生连续的正弦波信号,同样也能产生方波、锯齿波、三角波等其它各种信号波形。本设计要求采用DSP及其D/A转换器产生上述各种信号波形。 二、实验目的 (1)了解产生信号的两种方法及各自的优缺点。 (2)掌握使用DSP产生正弦波的原理和算法,进而掌握一般信号产生的原理和方法。 (3)掌握5402DSK CODECC(A/D、D/A)的工作原理和初始化过程。(4)掌握使用指针访问片上ROM中正弦查找表的方法。

三、设计内容 使用DSP 产生300—4000HZ 的正弦信号,要求使用查表法,测量产生的信号波形的频率和幅度,并且频率可变、幅度可变、直流分量可变。用软件CCS5000编程实现,并硬件(DSK 板或示波器)连接进行功能演示。 使用计算法产生余弦波分量。 发挥部分: (1)使用DSP 产生300—4000HZ 的方波、锯齿波和三角波。 (2)使用现有程序,实现不改变源程序,频率和幅度自动可调。 四、实验原理 产生连续信号的方法通常有两种:查表法和计算法,查表法不如计算法使用灵活。计算法可以使用泰勒级数展开法进行计算,也可以使用差分方程进行迭代计算或者直接使用三角函数进行计算。计算结果可以边计算边输出,也可以先计算后输出。 正弦函数和余弦函数的泰勒级数数学表达式为: =x sin ΛΛ+--+-+-+---)! 12()1(!9!7!5!31 219753n x x x x x x n n ,x ?),(∞-∞∈ =x cos ΛΛ+-+-+-+-)! 2()1(!8!6!4!2128 642n x x x x x n n ,x ?),(∞-∞∈. 如果要计算一个角度ⅹ的正弦和余弦值,可以取其前五项进行近似计算。 或使用下面递归的差分方程进行计算。 y [n ]=A*y [n -1]-y [n -2] 其中:A=2cos(x ),x =2πF/F S 。F —信号频率,

基于运放的信号发生器设计

北京工业大学课程设计报告 模电课设题目基于运放的信号发生器设计 班级:1302421 学号:13024219 姓名:吕迪 组号:7 2015年 6月

一、设计题目 基于运放的信号发生器设计 二、设计任务及设计要求 (一)设计任务 本课题要求使用集成运算放大器制作正弦波发生器,在没有外加输入信号的情况下,依靠电路自激震荡而产生正弦波输出的电路。经过波形变换可以产生同频三角波、方波信号。(二)设计要求 基本要求:使用LM324,采用经典振荡电路,产生正弦信号,频率范围,360Hz~100kHz。输出信号幅度可调,使用单电源供电以及增加功率。 (三)扩展要求 (1)扩大信号频率的范围; (2)增加输出功率 (3)具有输出频率的显示功能。 三、设计方案 (一)设计框图 (二)设计方案选择思路 我们在模电课上学过几种正弦波振荡器的基本电路,包括RC串并联正弦波振荡器、电容三点式正弦波振荡器以及电感三点式正弦波振荡器。因为题目要求设计基于运放的正弦波发生器,我们就确定将RC串并联网络正弦波振荡器作为我们设计的基础电路,因为此振荡器适用于频率在1MHz一下的低频正弦波振荡器而且频率调节方便,我们打算先通过计算搭建RC 正弦波振荡电路,测试基本电路达到的频率及幅值范围,再在这一基础上进行放大,使频率及幅值与设计要求相符合,因此设计出了二级反向放大这一模块。最后,为了提高电路的输出功率,减小电路的输出阻抗,再设计电压跟随器这一模块来完善整个电路。由此,我们确定出三个模块:RC正弦波振荡电路,二级反向放大电路,电压跟随器,并准备从基础模块入手,分模块实现,并根据实际情况不断调整改进原先的设计方案。 (三)元器件清单 芯片:LM324*2 40106*1 二极管:1N4148*2 电容:10μF*1、10nf *4 电阻:2k*1 、10k*4、51k*1 、82k*1 、91k*1 、100k滑动变阻器*1、220k*1 电位器:50k双联*1、10k*2、50k*1 (四)芯片资料

正弦波、方波、三角波信号发生器

附件2 :课程设计报告格式 CITY COLLEGE OF SCIENCE AND TECHNOLOGYXHONGQING UNIVERSITY 樹以电路课程设讣 课题:正弦波方波三角波信号发生器 专业:物联网工程 _________________ 班级:2 班____________________________ 学号:1XXXXXX ___________________________ 姓名:过客______________________________ 指导教师:_______________________________ 设计日期:________________________________ 成绩:___________________________________

重庆大学城市科技学院电气学院 正弦波方波三角波信号发生器设计报告 」、设计目的 1. 掌握简易信号发生器的设计、组装与调试方法。 2. 能熟练使用multisimIO电路仿真软件对电路进行设计仿真调试。 3. 加深对模拟电子技术相关知识的理解及应用。 :、设计任务与要求 1.设计任务和要求 设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下:基本要求: ①输出频率为300Hz误差小于2% ②正弦波输出幅度不小于5V,矩形波输出幅度不小于500mV三角波输出幅 度不小于20mV ③要求波形失真小,电路工作稳定可靠,布线美观。 发挥部分: ①改进电路使矩形波幅度不小于5V,三角波幅度幅度不小于1V,且波形失真小。 ②改进电路使输出频率能在一定范围内可调,如1Hz~1kHz可调。 三、设计的具体实现 1、系统概述 本信号发生器由RC正弦波振荡器、滞回比较器、积分器三部分组成。经过RC正弦波振荡器输出正弦波信号,再经过滞回比较器电路输出方波信号,经过积分电路模块输出三角波信号。其原理图如下: 正弦波方波三角波

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

简易函数信号发生器

课程设计任务书 (一)设计目的 1、掌握信号发生器的设计方法和测试技术。 2、了解单片函数发生器IC8038的工作原理和应用。 3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。 (二)设计技术指标与要求 1、设计要求 (1)电路能输出正弦波、方波和三角波等三种波形; (2)输出信号的频率要求可调; (3)拟定测试方案和设计步骤; (4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (5)在面包板上或万能板或PCB板上安装电路; (6)测量输出信号的幅度和频率; (7)撰写设计报告。 2、技术指标 频率范围:100Hz~1KHz 1KHz~10KHz; 输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。 (三)设计提示 1、方案提示: (1)设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。 (2)也可用单片集成芯片IC8038实现,采用这种方案时要求幅度可调。 2、设计用仪器设备: 示波器,交流毫伏表,数字万用表,低频信号发生器,实验面包板或万能板,智能电工实验台。 3、设计用主要器件: (1)双运放NE5532(或747)1只(或741 2只)、差分管3DG100 4个、电阻电容若干; (2)IC8038、数字电位器、电阻电容若干。 4、参考书: 《电子线路设计·实验·测试》谢自美主编华中科技大学出版社 《模拟电子技术基础》康华光主编高等教育出版社 《模拟电子技术》胡宴如主编高等教育出版社 (四)设计报告要求 1、选定设计方案; 2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值; 3、列出测试数据表格; 4、调试总结,并写出设计报告。 (五)设计总结与思考 1、总结信号发生器的设计和测试方法;

频率可调的方波信号发生器

频率可调的方波信号发生器 用单片机产生频率可调的方波信号。输出方波的频率范围为1Hz-200Hz,频率误差比小于0.5%。要求用“增加”、“减小”2个按钮改变方波给定频率,按钮每按下一次,给定频率改变的步进步长为1Hz,当按钮持续按下的时间超过2秒后,给定频率以10次/秒的速度连续增加(减少),输出方波的频率要求在数码管上显示。用输出方波控制一个发光二极管的显示,用示波器观察方波波形。开机默认输出频率为5Hz。 1模块1:系统设计 (1)分析任务要求,写出系统整体设计思路 任务分析:方波信号的产生实质上就是在定时器溢出中断次数达到规定次数时,将输出I/O管脚的状态取反。由于频率范围最高为200Hz,即每个周期为5ms(占空比1:1,即高电平2.5ms,低电平2.5 ms),因此,定时器可以工作在8位自动装载的工作模式。 涉及以下几个方面的问题:按键的扫描、功能键的处理、计时功能以及数码管动态扫描显示等。问题的难点在按键连续按下超过2S的计时问题,如何实现计时功能。 系统的整体思路:主程序在初始化变量和寄存器之后,扫描按键,根据按键的情况执行相应的功能,然后在数码显示频率的值,显示完成后再回到按键扫描,如此反复执行。中断程序负责方波的产生、按键连续按下超过2S后频率值以10Hz/s递增(递减)。 (2)选择单片机型号和所需外围器件型号,设计单片机硬件电路原理图 采用MCS51系列单片机At89S51作为主控制器,外围电路器件包括数码管驱动、独立式键盘、方波脉冲输出以及发光二极管的显示等。 数码管驱动采用2个四联共阴极数码管显示,由于单片机驱动能力有限,采用74HC244作为数码管的驱动。在74HC244的7段码输出线上串联100欧姆电阻起限流作用。 独立式按键使用上提拉电路与电源连接,在没有键按下时,输出高电平。发光二极管串联500欧 图1 方波信号发生器的硬件电路原理图 (3)分析软件任务要求,写出程序设计思路,分配单片机内部资源,画出程序流程图 软件任务要求包括按键扫描、定时器的控制、按键连续按下的判断和计时、数码管的动态显示。 程序设计思路:根据定时器溢出的时间,将频率值换算为定时器溢出的次数(T1_over_num)。使用变量(T1_cnt)暂存定时器T1的溢出次数,当达到规定的次数(T1_over_num)时,将输出管脚的状态取反达到方波的产生。主程序采用查询的方式实现按键的扫描和数码管的显示,中断服务程序实现方波的产生和连续按键的计时功能。 单片机内部资源分配:定时器T1用来实现方波的产生和连续按键的计时功能,内部变量的定义:

基于无滤波器方波信号注入的永磁同步电机初始位置检测方法

2017年7月电工技术学报Vol.32 No. 13 第32卷第13期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Jul. 2017 DOI: 10.19595/https://www.wendangku.net/doc/6a5753854.html,ki.1000-6753.tces.L70030 基于无滤波器方波信号注入的 永磁同步电机初始位置检测方法 张国强王高林徐殿国 (哈尔滨工业大学电气工程及自动化学院哈尔滨 150001) 摘要针对无位置传感器内置式永磁同步电机(IPMSM)初始位置检测中,传统的基于凸极跟踪的短脉冲电压注入法难以确定脉冲宽度和幅值、实现困难、二次谐波分量法信噪比低的缺点,提出一种基于无滤波器方波信号注入的IPMSM初始位置检测方法。首先通过向观测的转子d轴注入高频方波电压信号,采用无滤波器载波信号分离方法解耦位置误差信息,通过位置跟踪器获取磁极位置初定值;然后基于磁饱和效应,通过施加方向相反的d轴电流偏置给定,比较d轴高频电流响应幅值大小实现磁极极性辨识;最后,通过2.2kW IPMSM矢量控制系统对提出的基于无滤波器方波信号注入的初始位置检测方法进行实验验证。结果表明,所提方法收敛速度较快,可在IPMSM转子静止或自由运行状态实现初始位置辨识和低速可靠运行,位置观测误差最大值为6.9°。 关键词:内置式永磁同步电机无位置传感器无滤波器方波注入初始位置检测 中图分类号:TM351 Filterless Square-Wave Injection Based Initial Position Detection for Permanent Magnet Synchronous Machines Zhang Guoqiang Wang Gaolin Xu Dianguo (School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China) Abstract With regard to the initial position detection for position sensorless interior permanent magnet synchronous machine (IPMSM) drives, existing saliency-tracking-based methods have difficulties to determine the amplitude and width of the pulses for the short pulses injection method, and also have low signal-noise ratio for the position-dependent secondary-harmonics-based method. Hence, this paper presents a filterless square-wave voltage injection based initial position detection scheme for position sensorless IPMSM drives. A high-frequency square-wave voltage vector is injected in the estimated d-axis, then the position error information is demodulated through filterless carrier signal separation, and the position tracking observer is adopted to obtain the initial position. Based on the magnetic saturation effect, the magnetic polarity can be identified by comparing the amplitudes of the induced d-axis high-frequency current with two given d-axis current offsets which are equal in value but opposite in direction. Experiments on a 2.2kW IPMSM sensorless vector controlled drive have been carried out to verify the proposed scheme. The experimental results show that the initial position detection for standstill and free-running rotor applications as well as the stable operation at 国家自然科学基金(51522701)和台达环境与教育基金会电力电子科教发展计划(DREK2015002)资助项目。 收稿日期 2016-07-14 改稿日期 2016-12-09

多功能信号发生器课程设计

课题:多功能信号发生器专业:电子信息工程 班级:1班 学号: 姓名: 指导教师:汪鑫 设计日期: 成绩: 重庆大学城市科技学院电气学院

多功能信号发生器设计报告 一、设计目的作用 1.掌握简易信号发生器的设计、组装与调试方法。 2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。 3.加深对模拟电子技术相关知识的理解及应用。 二、设计要求 1.设计任务 设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下: (1)输出频率,f=20Hz-5kHz 连续可调的正弦波、方波、三角波; (2)输出正弦波幅度V=0-5V可调,波形的非线性失真系数<=5%; (3)输出三角波幅度V=0-5V可调。 (4)输出方波幅度可在V=0-12V之间可调。 2.设计要求 (1)设计电路,计算电路元件参数,拟定测试方案和步骤; (2)测量技术指标参数; (3)写出设计报告。 三、设计的具体实现 1、系统概述 1.1正弦波发生电路的工作原理: 产生正弦振荡的条件: 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。 正弦波振荡电路的组成判断及分类: (1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。 (2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。 (3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。 判断电路是否振荡。方法是: (1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产

基于单片机的信号发生器的设计

唐山师范学院 题目基于单片机的信号发生器的设计 院系名称:电子信息科学与技术 学号: 摘要 波形发生器即简易函数信号发生器,是一个能够产生多种波形,如三角波、锯

齿波、方波、正弦波等波形电路。函数信号发生器在电路实验和设备仪器中具有十分广泛的用途。通过对函数发生器的原理以及构成分析,可设计一个能变换出三角波、锯齿波、方波、正弦波的函数波形发生器。在工业生产和科研中利用函数信号发生器发出的信号,可以对元器件的性能及参数进行测量,还可以对电工和电子产品进行指数验证、参数调整及性能鉴定。常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不仅参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其性能好但体积较大,价格较贵,因此,高精度,宽调幅将成为数字量信号发生器的趋势。 本文介绍的是利用89C52单片机和数模转换器件DAC0832产生所需不同信号的低频信号源,其信号幅度和频率都是可以按要求控制的。文中简要介绍了 DAC0832数模转换器的结构原理和使用方法,89C52的基础理论,以及与设计电路有关的各种芯片。文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路和软件编程。信号频率幅度也按要求可调。 本设计核心任务是:以AT89C52为核心,结合D/A转换器和DAC0832等器件,用仿真软件设计硬件电路,用C语言编写驱动程序,以实现程序控制产生正弦波、三角波、方波、三种常用低频信号。可以通过键盘选择波形和输入任意频率值。

关键词: AT89C52单片机函数波形发生器 DAC0832 方波三角波正弦波 目次 1 引言 (4) 2 系统设计 (6) 方案 (6) 器件选择 (6) 总体系统设计 (6) 硬件实现及单元电路设计 (7) 单片机最小系统设计 (7) D/A转换器 (8) 运算放大器电路 (10) LED显示器接口电路 (11) 波形产生原理及模块设计 (11) 显示模块设计 (13) 键盘显示模块设计 (14) 软件设计流程 (14) 软件中的重点模块设计 (14) 3 输出波形种类与频率的测试 (18) 测量仪器及调试说明 (18) 调试过程 (18) 调试结果 (22) 结论 (23) 致谢 (25) 参考文献 (26) 附录A 源程序 (27)

简易函数信号发生器的设计

单片机课程设计报告书 课题名称 简易函数信号发生器的设计 姓 名 ** 学 号 ** 院、系、部 ** 专 业 电子信息科学与技术 指导教师 ** 2011年12月12日 ※※※※※※※※※ ※ ※ ※※ ※ ※ ※※※※※※※※※ **级学生单片机 课程设计

目录 一、绪言 (1) 二、系统方案论证 (1) 2.1设计要求 (1) 2.2 简易函数信号发生器方案论证 (1) 2.3 单片机的控制方案论证 (1) 2.4 键盘选择方案论证 (2) 三、系统设计 (2) 3.1 硬件电路设计 (2) 3.2 程序流程图 (4) 3.3 C语言程序设计 (5) 四、简易函数信号发生器的仿真 (8) 4.1 系统仿真 (8) 4.2工作原理分析 (10) 结束语 (11) 参考文献 (11) 修改通篇页面设置里面的左右边距

一绪言 函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚至任意波形。函数发生器有很宽的频率范围,使用范围很广,它是一种不可缺少的通用信号源。因此设计使用的AT89S52单片机构成的发生器,可以产生正弦波和方波。 二系统方案论证 2.1设计要求 1、设计一个基于AT89S52单片机的信号发生器; 2、能够输出方波和正弦波(正弦波是双极性的),要求可用按键选择; 3、可选电压值为1V、2V、3V、4V、5V五个档位; 4、可选频率值为:10Hz、20Hz、50Hz、100Hz、200Hz、500Hz、1KHz七个档位; 5、能够通过显示模块显示输出波形的主要参数。 2.2 简易函数信号发生器方案论证 方案一:用分立元件组成函数发生器,通常是单函数发生器且频率不高,其工作不很稳定,不易调试。 方案二:可以由晶体管,运放 IC等通用器件制作,更多的则是用专用的函数信号发生器IC产生。早期的函数信号发生器IC,如L8083、BA205等,他们的功能少,精度不高,频率上限只有300KHz,频率和占空比不能独立调节,二者相互影响。 方案三:利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并且达到很高的频率。但成本很高。 方案四:采用 AT89S52单片机和DAC0832芯片,直接连接按键和显示。该种方案主要对AT89S52单片机的各个I/0口充分利用,不再多用其他的芯片,从而减小了系统的成本,也对按照系统便携式低频信号发生器的要求所完成,占用空间小,使用空间小,使用芯片少,低功耗。 综合考虑,方案四各项性能和指标都优于其他各种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片和器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。 2.3 单片机的控制方案论证 方案一:采用可编程逻辑期间CPLD 作为控制器。CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。

基于max038的信号发生器设计说明

一、课题名称:函数信号发生器 二、主要技术指标(或基本要求): 1)能精密地产生三角波、锯齿波、矩形波(含方波)、正弦波信号。 2)频率范围从0.1Hz~20MHz,最高可达40MHz,各种波形的输出幅度均为2V(P-P)。 3)占空比调节范围宽,占空比和频率均可单独调节,二者互不影响,占空比最大调节范围是 15%~85%。 4)波形失真小,正弦波失真度小于0.75%,占空比调节时非线性度低于2%。 5)采用±5V双电源供电,允许有5%变化范围,电源电流为80mA,典型功耗400mW,工作温 度范围为0~70℃。 6)内设2.5V电压基准,可利用该电压设定FADJ、DADJ的电压值,实现频率微调和占空比调 节。 7)低阻抗定压输出,输出电阻典型值0.1欧姆,具有输出过载/短路保护。 三、主要工作内容:方案设想,MAX038,OP07,电路原理等资料查询准备。电路原理图设 计绘制,面包板验证设计可行性。之后进行PCB板设计调整,电路板定制,元件采购;裸板 测试,焊接,整机测试。实验设计进行报告反馈 四、主要参考文献: [1]赵涛,辛灿华,姚西霞,陈晓娟,基于MAX038的多功能信号发生器的设计。《机电产品 与创新》 2008.07 [2]蒋金弟,朱永辉,毛培法。MAX038高频精密函数信号发生器原理及应用。《山西电子技 术》 2001 [3]黄庆彩,祖静,裴东兴.基于MAX038的函数信号发生器的设计[J].仪器仪表学报,2004,S1. [4]陈一新.单片高频函数发生器MAX038及其应用[J].中国仪器仪表,2002,04. [5]赵立民.电子技术实验教程[M].北京:机械工业出版社,2004

相关文档
相关文档 最新文档