文档库 最新最全的文档下载
当前位置:文档库 › 液压设备的故障诊断与排除方法

液压设备的故障诊断与排除方法

液压设备的故障诊断与排除方法
液压设备的故障诊断与排除方法

2.1.1液压设备故障有哪些诊断方法?

液压设备故障的诊断方法很多,目前常用的有直观检查法、对比替换法、逻辑分析法、仪器专项检测法、状态监测法等。

(1)直观检查法

直观检查法又称初步诊断法,是液压系统故障诊断的一种最为简易且方便易行的方法。这种方法通过“看、听、摸、闻、阅、问”六字口决进行。直观检查法既可在液压设备工作状态下进行,又可在其不工作状态下进行。

<1>看观察液压系统工作的实际情况。

一看速度,指执行元件运动速度有无变化和异常现象。

二看压力,指液压系统中各压力监测点的压力大小以及变化情况。

三看油液是否清洁、变质、表面是否有泡沫,液位是否在规定的范围内,液压油的黏度是否合适。

四看泄漏,指各连接部位是否有渗漏现象。

五看振动,指液压执行元件在工作时有无跳动现象。

六看产品,根据液压设备加工出来的产品质量,判断执行机构的工作状态、液压系统的工作压力和流量稳定性等。

<2>听用听觉判断液压系统工作是否正常。

一听噪声,听液压泵和液压系统工作时的噪声是否过大及噪声的特征,溢流阀、顺序阀等压力控制元件是否有尖叫声。

二听冲击声,指工作台液压缸换向时冲击声是否过大,活塞是否有撞击缸底的声音,换向阀换向时是否有撞击端盖的现象。

三听汽蚀和困油的异常声,检查液压泵是否吸进空气,及是否有严重困油现象。

四听敲打声,指液压泵运转时是否有因损坏引起的敲打声。

<3>摸用手触摸允许摸的运动部件,了解其工作状态。

一摸温升,用手摸液压泵、油箱和阀类元件外壳表面,若接触两秒感到烫手,就应检查温升过高的原因。

二摸振动,用手摸运动部件和管路的振动情况,若有高频振动应检查产生的原因。

三摸爬行,当工作台在轻载低速运动时,用手摸有无爬行现象。

四摸松紧程度,用手触摸挡铁、微动开关和紧固螺钉等的松紧程度。

<4>闻用嗅觉器官辨别油液是否发臭变质,橡胶件是否因为过热发出特殊气味等。

<5>阅查阅在关故障分析和修理记录、日检和定检卡及交接班记录和维修保养情况记录。

<6>问访问设备操作者,了解设备平时运行状况。

一问液压系统工作是否正常,液压泵有无异常现象。

二问液压油更换时间,滤网是否清洁。

三问发生事故前压力或速度调节阀是否调节过,有哪些不正常现象。

四问发生事故前是否更换过密封件或液压件。

五问发生事故前后液压系统出现过哪些不正常现象。

六问过去经常出现哪些故障,是怎样排除的。

由于每个人的感觉、判断能力和实践经验的差异,判断结果肯定会有差异,但是经过反复实践,故障原因是特定的,终究会被确认并予以排除,应当指出的是:这种方法对于有实践经验的工程技术人员来讲,显得更加有效。

(2)对比替换法

这种方法常用于在缺乏测试仪器的场合检查液压系统故障,并且经常结合替换法进行。对比替换方法有如下两种情况。一种情况是用两台型号、性能参数相同的机械进行对比试验,从中查找故障。试验过程中可对机械的可疑元件进行替换,再开机试验,如性能变好,则故障所在即知。否则,可继续用同样的方法或其他方法检查其余部件。另一种情况是对于具有相同功能回路的液压系统,采用对比替换法,这样做更为方便,而且,现在许多系统的连接采用高压软管连接,为替换法的实施提供了更为方便的条件。遇到可疑元件时,要更换另一回路的完好元件时,不需拆卸元件,只要更换相应的软管接头即可。

(3)逻辑分析法

对于复杂的液压系统故障,常采用逻辑分析法,即根据故障产生的现象,采取逻辑分析与推理的方法。

采用逻辑分析法诊断液压系统故障通常有两个出发点:一是从主机出发,主机故障也就是指液压系统执行机构工作不正常;二是从系统本身故障出发,有时系统故障在短时间内并不影响主机,如油温变化、噪声增大等。

逻辑分析法只是定性分析,若将逻辑分析法与专用检测仪器的测试相结合,就可显著地提高故障诊断的效率及准确性。

(4)仪器专项检测法

有些重要的液压设备必须进行定量专项检测,即检测故障发生的根源性参数,为故障判断提供可靠依据。国内外有许多专用的便携式故障检测仪,测量流量、压力、温度,并能测量泵和马达的转速等。

<1>压力检测液压系统各部位的压力值,分析其是否在允许范围内。

<2>流量检测液压系统各位置的油液流量值是否在正常范围内。

<3>温升检测液压泵、执行机构、油箱的温度值,分析是否在正常范围内。

<4>噪声检测异常噪声值,并进行分析,找出噪声源。

应该注意的是;对于有故障嫌疑的液压件要在试验台上按出厂试验标准进行检测,元件检测要先易后难,不能轻易把重要元件从系统中拆下,甚至盲目解体检查。

(5)状态监测法

很多液压设备本身配有重要参数的检测仪表,或系统中预留了测量接口,不用拆下元件就能观察或从接口检测出元件的性能参数,为初步诊断提供定量依据。如在液压系统的有关部位和各执行机构中装设压力、流量、位置、速度、液位、温度、过滤阻塞报警等各种监测传感器,某个部位发生异常时,监测仪器均可及时测出技术参数状况,并可在控制屏幕上自动显示,以便于分析研究、调整参数、诊断故障并予以排除。

状态监测技术可为液压设备的预知故障维修提供各种信息和参数,能对仅靠人的感觉器官无法解决的疑难故障进行正确诊断。状态监测法一般适用于下列几种液压设备:

<1>发生故障后对整个生产影响较大的液压设备和自动线;

<2>必须确保其安全性能的液压设备和控制系统;

<3>价格昂贵的精密、大型、稀有、关键的液压系统;

<4>故障停机修理费用过高或修理时间过长、损失过大的液压设备和液压控制。

2.1.2液压系统故障如何分析?

液压系统在工作中发生故障的原因很多,主要原因在于设计、制造、使用以及液压油污染等方面存在故障根源;其次便是在正常使用条件下的自然磨损、老化、变质而引起的故障。在分析液压系统的故障原因时,可从以下几个方面进行。

(1)设计原因

液压系统产生故障,一般应首先分析液压系统设计上的合理性是否存在问题。设计的合理性是关系统到液压系统使用性能的根本问题,这在引进设备的液压系统故障分析过程

中表现得相当突出。其原因与国外的生产组织方式有关,国外的制造商,大多数采用互相协作的方式,这就难免出现所设计的液压系统不完全符合设备的使用场合以及要求的情况。如从德国引进的某水泥生产线的核心设备——立磨液压机的故障过程中充分体现了这一点。立磨液压机的液压系统在工作过程中由于轧辊位移量很小,主要工作在保压状态,所以系统在保压过程中必须使液压泵处于卸荷状态,才能减少系统的发热量,保证液压油的黏度不至于变化太大,从而保证水泥的生产能力。引进设备的液压系统设计上采用了常用的溢流阀带载卸荷方式,显然属于不合理造成的。

设计液压系统时,不公要考虑液压回路能否完成主机的动作要求,还要注意液压元件的布局,特别注意叠加阀设计使用过程中的元件排放位置,例如在由三位换向阀、液控单向阀、单向节流阀组成的回路中,或者选用外控方式,或者采用带预压单向阀的内控方式,其目的均为确保液控阀的正常换向。其次要注意油箱设计的合理性、管路布局的合量性等因素。对于使用环境较为恶劣的场合,要注意液压元件外露部分的保护。例如在冶金行业使用的液压缸的活塞杆常裸露在外,被大气中污物包围。活塞杆在伸出缩回的往复运动中,不仅受到磨粒的磨损与大气中腐蚀性气体的锈蚀,而且还有可能从活塞杆与导套的配合间隙中进入污物污染油液,进一步加速了液压缸组件的磨损。如在结构设计中在活塞杆上加装防护套,使其外露部分由套保护起来,则可减少或避免上述危害。有的设计人员为了省事,在油箱图纸的技术要求中提出“油箱内外表面喷绿凶垂纹漆”,这样制造商自然就不会对油箱内表面进行酸磷化处理,使用一段时间后,随着油箱内表面油漆的脱落,就会堵塞液压泵的吸油过滤器,造成液压泵吸空式压力升不高的故障。

(2)一般情况下,经过正规生产企业装配、调试出厂后的液压设备,其综合的技术性能是合格的。但在设备维修、需要更换一些新的液压元件时,由于用户采用了劣质液压元件,反而在新元件取代旧元件之后系统出现了故障。因此对元件的制造问题也应认真对待,不容忽视。否则也有可能给液压系统带来预想不到的故障。例如,某造纸机械液压系统中更换了一双筒精过滤器滤芯,安装后仅6天就出现了由于小孔堵塞而造成的故障。经过对更换的新购纸芯过滤器的滤芯进行认真检查,发现滤芯在加工制造中受到了严重机械损伤。呈一定规律分布的微孔和裂缝,失去了过滤作用,滤纸的质量低,纸内粘有污物。显而易见这样的滤芯装后不仅起不到过滤的作用,反而本身又构成了一个污染源,给系统造成不应有的故障。更有甚者,一些家庭作坊式的液压站制造商在液压系统总装时根本不对系统进行冲洗。以装配时的元件清洗取代装配时系统的冲洗,使系统内留下了装配过程中带进的污染物,也是造成系统故障的一个不可轻视的原因。液压系统的清洗,必须借助于液流在一定压力、一定速度的情况下,对整个系统的各个回路分别进行冲洗。现在一些正规的液压站专业制造商已把装配后系统严格用于装配生产中,并把这一技术看成是产品质量保证体系中草药的一个重要环节,也是一个行之有效的措施。另外,液压集成块中的毛刺清理的程度也是制造、清洗过程中一个不可忽视的环节。

(3)使用原因

液压系统使用维护不当,不仅使液压设备的故障频率增加,而且会降低设备的使用寿命和使用性能,这在一些新的液压系统用户中体现得较为突出。例如,福建某玻璃门窗生产企业新购进一台玻璃涂胶液压设备,该企业的操作人员在液压站不加液压油的情况下就开始了设备调试,结果不到10min液压泵抱死、电动机烧坏,并且差一点造成人身事故。又如有一个企业的一台液压设备,液压油未达到液位计的最低液位,由于未能及时购买液压油,为了不影响生产,设备操作者“灵机一动”在油箱中放了两块砖头,液位上来了,设备也开了起来,结果使用了2个月左右,由于砖在液压油中发生粉化,使得砖粉末进入了,整个液压系统,造成了整机瘫痪的严重后果。另外液压设备在使用过程中的超载、超速,维护保养不及时、使用不当等,都可能引起液压系统的故障。

(4)液压油污染的原因

液压系统的故障75%以上是由于液压油的污染引起的,在使用液压油时要把它看作像人的血液一样保持足够的清洁才能确保液压系统的故障率到最低限度。在液压系统中极易造成油液污染的地方是油箱。不少油箱,在结构设计和制造上存在着缺陷。最常见的是“封闭性”油箱设计得不合理,例如在连接处、接管处不加密封,导致污物进入油箱。污染的油液进入液压系统中,加速液压元件的磨损、锈蚀、堵塞。最后导致辞故障的形成。近几年来许多制造商在油箱结构设计上做了不少有益的探索和实践,以减少或杜绝污染物进入油箱。

例如采用全封闭的油箱结构,除只留一个与大气相通的通气孔之外,油箱全部采用封闭结构,所有连接处和接管处设有严格密封装置。加油口盖设置过滤装置构成通气孔,该口使油箱内液面与大气相通而保证系统正常工作,同时还可以防止外界污染物进入油箱。由于油箱全密闭,所以泵的油口处取消了过滤器,系所有回油经总回油管路上的(回油)过滤器再回到油箱内,从而确保了整个液压系统油液的清洁。这种结构不仅避免了外界污物对油箱内油液的污染。而且由于吸油口去掉了过滤装置,使汲油阻力大大减少,从而避免了空穴现象的发生。

2.1.3液压系统故障特点是什么?

液压系统在不同运行阶段有不同的故障特点。

(1)试制液压设备调试价段的故障特点。

液压设备调试阶段的故障率较高。其特点是设计、制造、安装等质量问题交织在一起。除了机械、电气的问题之外,液压系统常发生的故障如下。

<1>外泄漏严重,主要发生在接头和有关元件的端盖连接处。

<2>执行元件运动速度不稳定。

<3>液压阀的阀芯卡死或运动不灵活,导致执行元件动作失灵,有时发现液压阀的阀芯方向装反,要特别注意二位电控电磁阀。

<4>压力控制元件的阻尼小孔堵塞,造成压力不稳定。

<5>阀类元件漏装弹簧、密封件,造成控制失灵。有时出现管路接错而使系统动作错乱。

<6>液压系统设计不完善。液压元件选择不当,造成系统发热、执行元件同步精度低等故障现象。

(2)液压设备运行初期的故障

液压设备经过调试阶段后,便进入了正常生产运行阶段。此阶段故障特征如下。

<1>管接头因振动而松脱。

<2>密封件质量差,或由于装配不当而被损伤,造成泄漏。

<3>管道或液压元件油道内的毛刺、型砂、切屑等污物在油液的冲击下脱落,堵塞阻尼孔或过滤器,造成压力和速度不稳定。

<4>由于负荷大或外界环境散热条件差,使油液温度过高,引起泄漏,导致压力和速度的变化。

(3)液压设备运行中期的故障

液压设备运行到中期,属于正常磨损阶段,故障率最低,这个阶段液压系统运行状态最佳。但应特别注意定期更换液压油、控制油液的污染。

(4)液压设备运行到后期,液压元件因工作频率和负荷的差异,易损件先后开始正常性的超差磨损。此阶段故障率较高,泄漏增加,效率降低。针对这一状况,要对液压元件进行全面检验,对已失效的液压元件应进行修理或更换。以防止液压设备不能运行而被迫停产。

除上述阶段所涉及的故障特征以外,液压设备在运行的初期和后期还经常会发生突发性故障。故障的特征是突发性,故障发生的区域及产生原因较为明显。如发生碰撞,元件内弹

簧突然折断,管道破裂,异物堵塞管路通道,密封件损坏等故障现象。

突发性故障往往与液压设备安装不当、维护不良有直接关系。有时由于操作错误也会发生破坏性故障。防止这类故障的主要措施是加强设备日常管理维护,严格执行岗位责任制,加强操作人员的业务培训。

2.1.4故障排除前的准备工作有哪些?

在故障排除前,首先要认真查阅设备使用说明书及设备使用有关的档案资料。通过阅读和初步查询应掌握以下情况。

<1>设备的结构、工作原理及其技术性能、特点等。

<2>液压系统中所采用各种元件的结构、工作原理、性能。

<3>液压系统在设备上的功能、系统的结构、工作原理及设备对液压系统的要求。

<4>设备生产厂的制造日期、液压件状况、运输途中有无损坏、调试及验收的原始记录,以及使用期间出现过的故障及处理措施等。

<5>掌握液压传动的基本知识及处理液压故障的初步经验。

2.1.5处理故障的步骤是什么?

在处理故障时,可按下述步骤进行。

(1)查找故障液压元件

液压系统的故障有时是系统中某个元件产生故障造成的,因此,首先需要把出了故障的元件找出来。根据下列步骤进行检查,就可以找出液压系统中产生故障的元件。

第一步,确定液压传动设备运转不正常的现象,是没有运动,还是运动不稳定;是运动方向不正确,还是运动速度不符合要求;是动作顺序错乱,不是输出力不稳定;是泄漏严重,还是爬行等。无论是什么原因,都可以归纳为:流量、压力和方向三个大问题。

第二步,审校液压回路图,并检查每个液压元件,确认它的性能和作用,初步评定其质量状况。

第三步,列出与故障相关的元件清单,逐个进行分析。进行这一步时,一要充分利用判断力,二是注意绝不可遗漏对故障有重大影响的元件。

第四步,对清单中所列出的元件按以往的经验和元件检查的难易排列次序。必要时,列出重点检查的元件和元件的重点检查部位。可同时利用仪器进行测量。

第五步,对清单中列出的重点检查元件进行初检。初检应判断以下一些问题:元件的用途和装配是否合适;元件的测量装置、仪器和测试方法是否合适;元件的外部信号是否合适,对外部信号是否响应等。特别注意某些元件的故障先兆,如过高的温度和噪声、振动和泄漏等。

第六步,如果初检中未查出故障,要用仪器反复检查。

第七步,识别出发生故障的元件。对不合格的元件进行修理或更换。

第八步,在重新启动主机前,必须先认真考虑一下这次出现故障的原因和后果。如果故障是由于污染或油温过高引起的,则应预料到其他元件也有出现故障的可能性,同时对隐患采取相应的措施。例如,由于污染原因引起液压泵的故障,则在更换新泵前必须对系统进行彻底清洗和过滤。

(2)重新启动

排除液压系统故障之后,不能操之过急,肓目启动,必须遵照一定的要求和程序启动。否则,旧的故障排除了,新的故障会相继产生。其主要原因是缺乏周密的思考。如前所述,液压泵由于污染而出现故障,那么,污染是怎样引起的?其他液压元件是否也被污染了呢?

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

液压系统故障诊断技术的现状与发展趋势

液压系统故障诊断技术的现状与发展趋势 发表时间:2019-05-19T14:53:35.567Z 来源:《防护工程》2019年第1期作者: 1曹晓宁 2马海舰 3赵静思 [导读] 就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。1天津格特斯检测设备技术开发有限公司天津 300380;2天津格特斯检测设备技术开发有限公司天津 300380;3天津格特斯检测设备技术开发有限公司天津 300380 摘要:现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。液压系统重量轻、功率强、运行平稳,而且还能够采取大范围的无极调速,因此被普遍运用到了机械设备当中,同时液压系统一般都运用于控制和自动化这两种系统当中,并且液压系统还可以当做传输动力设备来运用。液压系统的运行能力以及安全性,能够对关键系统形成决定性的影响,要是液压系统出现问题,那么关键系统就会发生停滞的情况,从而让企业的经济收益受到影响,因此相关工作人员一定要掌握合理的液压系统故障诊断技术,从而让液压系统得到安全的运行。 关键词:液压系统;故障诊断技术;现状;发展趋势 引言 液压系统会通过对自身作用力的运用,对压强作用力进行增强。整体液压系统由液压油、动力元件以及执行元件等几部分内容组成,主要分为液压控制系统以及液压传动系统两类。由于其构成零件种类相对较为复杂,且安装位置较为隐蔽,所以一旦系统出现故障,就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。 1现状 早在上世纪60年代的的时候,我国就已经开始对液压系统故障诊断技术进行研究,主要是利用测量系统的流量、振动等参数,和处理与系统对应的信号,来给液压系统采取诊断。此项技术到了上世纪八十年代以后,因为液压系统具有很多的类型,而且结构也比较的繁杂,导致诊断技术无法给液压系统采取完善的诊断,这给液压系统故障诊断技术的发展造成了很大的影响。根据这些问题,我国的相关专家在经过了长时间的研究和改进以后,让诊断技术的水平得到了一定程度的提高,不但能够确保液压故障诊断的完善性,另外也能够给故障信息进行保存,这样的话就可以让液压系统得到更加完善的运维管理,从而进一步加强了液压系统的工作效率。 2液压系统故障诊断技术应用分析 2.1仪表测量技术 该项技术主要会通过对测试仪的运用,完成对系统故障的诊断。此设备主要由流量计、压力表以及安全阀等部件所组成,在具体测试过程中,技术人员会通过串联的方式将测试仪接连在相应回路之中,并会通过断开原主油路的方式,确保压力油可以经由测试仪流回到油箱之中,以便利用逐渐加载的方式完成相应诊断。所以该测试仪能够同时完成对系统监测点的流量以及压力测试工作,可以对执行元件、动力元件以及控制元件的工况与性能进行明确,以确保可以在短时间内完成故障位置查找。 2.2智能诊断技术 智能诊断技术种类相对较多,现阶段较为常用的技术主要有以下几种:1)专家系统。该项技术主要用于复杂系统诊断,是以信号处理以及传感技术为依托研发得到的。在具体应用过程中,技术人员会将故障现象经由用户接口输入到电脑终端,而电脑会按照数据库内信息对现象产生原因进行推理与分析,进而找出故障原因并会提供相应预防措施与维修方案,以供技术人员进行使用[2]。2)人工神经网络。此种诊断技术有效利用了神经网络所具有的计算、非线性以及自学习等方面能力,能够对系统故障进行准确判断,诊断效果较为理想。就某一角度而言,此项技术主要分为知识处理以及模式识别两种,其中在实施模式识别诊断时,会将神经网络作为分类器完成相应系统故障识别。 2.3四觉诊断技术 所谓“四觉”,就是利用嗅觉、触觉等较为直观的方式对系统故障进行获取。此种方式相对较为简单,技术人员会通过用手直接触摸的方式,明确液压泵表面是否存在过热问题或管路以及元件振动情况;会通过仔细观察的方式,对油温计、测点压力表以及真空表等设备数值合理性进行检查,以便及时发生异常数值,并准确找到数据产生原因等。与其他诊断技术相比,此种技术受技术人员自身能力以及感觉灵敏度的影响相对较大,只能作为定性判断,还需要展开后续检测,才可以查明故障产生真正原因。 3液压故障诊断技术的发展趋势 3.1经验知识和原理知识要紧密融合 若想加强液压故障智能诊断系统的能力,有关工作者要在研究液压系统故障诊断系统期间,掌握有关的专业知识,另外,还要掌握液压系统的结构和主要功能,要是在研究液压系统故障诊断期间,不重视对某一方面的研究的话,那么就会降低诊断效果。所以,相关工作者要把专业知识和诊断技能有效的融合到一起,然后再把两者结合到故障诊断系统里,安排合理的分析形式,还要保证所有的分析形式都可以单独运行,如此一来就可以慢慢的把液压系统故障诊断的系统的性能进行加强,让它能够变成具备专家级知识的诊断系统。 3.2多种智能故障诊断方法的混合 目前,液压系统故障诊断系统都在朝着技术融合的方向发展,也就是说把多种技术融合到一起,构成混合诊断系统。在智能技术进行融合期间,包括把专家诊断系统与神经网络采取有机融合,然后在里面加进模糊逻辑等。混合智能诊断方式的发展方向,就是要把传统的诊断系统转化为混合系统,把专家传播的知识转化成系统自主学习以及分析的系统,把单纯的推理转换为混合推理系统等。智能液压系统诊断系统在自主学习和诊断等方面都取得了突破性进展,所以目前受到了普遍的青睐。 3.3虚拟现实技术会得到重视和应用 在多媒体技术之后,虚拟现实技术开始得到人们普遍的关注,此项技术的存在感、感知性等都比较强。从表面进行分析,虚拟现实技术以及多媒体技术具有很多共同特征,所以人们能够更快的接受虚拟现实技术,不过虚拟现实技术可以让人们使用计算机来对很多的信息可视化,其属于交互性技术方式,和传统的人机界面采取对比的话能够发现,虚拟现实技术具有更好的应用价值。

液压系统的故障诊断与维修

液压系统的故障诊断与 维修 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

液压系统的故障诊断与维修随着液压技术的发展进步,以及一些与液压技术相关的技术产业的进步,液压系统的工作性能较以前有了很大进步。其中液压传动系统的改进最为明显,它相对于其他的液压技术有着更多的优点,因此在实际应用中也很广泛。然而,针对液压系统的故障的研究一直以来都是人们关注的焦点,尤其是故障的诊断和维修方面。 对于液压系统的故障诊断有很多的方法来参考,本文主要是从液压系统的故障的特点出来来介绍几种常见的故障诊断方法,包括观察判断法、仪器诊断法、元件对换法、定期检查法,然后针对故障提供了一些维修的方法,并对液压系统的故障的预防提供了一些意见,并对不同的液压系统的维修做了分析。 液压技术在现在的工程项目中应用越来越广泛,我国的工程机械也在不断的进步。因此对于液压系统的安全性就提出了更高的要求,系统的安全和可靠完全决定着工程的进度。降低液压系统的故障发生率以及加强液压系统的故障预防成为现在液压系统的重中之重。 1.故障诊断的方法

对于液压系统的故障诊断通常是由表及里的进行检测,主要是观察诊断法、仪器诊断法、元件对换法、定期检查法四种方法。 1.1观察判断法 所谓的观察判断就是通过外在的观察来判断故障的所在。主要是通过液压系统的异常表现来进行判断的,例如外部泄漏、一些部件额不正常运转、仪表指示出错、部件发热等等异常表现,这些异常都能在一定程度上反映出液压系统出现了某些部位的故障,通过观察分析,以及再通过一些操作试验,再利用一些短路、断路的检测方法,最终可以对一些故障进行判断,并采取一定的措施进行故障的排除。 1.2仪器诊断法 仪器诊断法指指通过PFM型万能液压检测仪来对故障部分进行检测和排除,PFM型仪表是对液压系统的流量、温度以及系统部件的转速进行检测的仪器,这种仪表遍布全系统,随时对各项数据进行检测。 在利用检测仪对系统进行故障检测时,要根据一定的顺序,依次对各个部件进行检测,并逐一的进行故障排除。

液压设备的故障诊断与排除方法

2.1.1液压设备故障有哪些诊断方法? 液压设备故障的诊断方法很多,目前常用的有直观检查法、对比替换法、逻辑分析法、仪器专项检测法、状态监测法等。 (1)直观检查法 直观检查法又称初步诊断法,是液压系统故障诊断的一种最为简易且方便易行的方法。这种方法通过“看、听、摸、闻、阅、问”六字口决进行。直观检查法既可在液压设备工作状态下进行,又可在其不工作状态下进行。 <1>看观察液压系统工作的实际情况。 一看速度,指执行元件运动速度有无变化和异常现象。 二看压力,指液压系统中各压力监测点的压力大小以及变化情况。 三看油液是否清洁、变质、表面是否有泡沫,液位是否在规定的范围内,液压油的黏度是否合适。 四看泄漏,指各连接部位是否有渗漏现象。 五看振动,指液压执行元件在工作时有无跳动现象。 六看产品,根据液压设备加工出来的产品质量,判断执行机构的工作状态、液压系统的工作压力和流量稳定性等。 <2>听用听觉判断液压系统工作是否正常。 一听噪声,听液压泵和液压系统工作时的噪声是否过大及噪声的特征,溢流阀、顺序阀等压力控制元件是否有尖叫声。 二听冲击声,指工作台液压缸换向时冲击声是否过大,活塞是否有撞击缸底的声音,换向阀换向时是否有撞击端盖的现象。 三听汽蚀和困油的异常声,检查液压泵是否吸进空气,及是否有严重困油现象。 四听敲打声,指液压泵运转时是否有因损坏引起的敲打声。 <3>摸用手触摸允许摸的运动部件,了解其工作状态。 一摸温升,用手摸液压泵、油箱和阀类元件外壳表面,若接触两秒感到烫手,就应检查温升过高的原因。 二摸振动,用手摸运动部件和管路的振动情况,若有高频振动应检查产生的原因。 三摸爬行,当工作台在轻载低速运动时,用手摸有无爬行现象。 四摸松紧程度,用手触摸挡铁、微动开关和紧固螺钉等的松紧程度。 <4>闻用嗅觉器官辨别油液是否发臭变质,橡胶件是否因为过热发出特殊气味等。 <5>阅查阅在关故障分析和修理记录、日检和定检卡及交接班记录和维修保养情况记录。 <6>问访问设备操作者,了解设备平时运行状况。 一问液压系统工作是否正常,液压泵有无异常现象。 二问液压油更换时间,滤网是否清洁。 三问发生事故前压力或速度调节阀是否调节过,有哪些不正常现象。 四问发生事故前是否更换过密封件或液压件。 五问发生事故前后液压系统出现过哪些不正常现象。 六问过去经常出现哪些故障,是怎样排除的。 由于每个人的感觉、判断能力和实践经验的差异,判断结果肯定会有差异,但是经过反复实践,故障原因是特定的,终究会被确认并予以排除,应当指出的是:这种方法对于有实践经验的工程技术人员来讲,显得更加有效。 (2)对比替换法

液压故障诊断复习题

液压故障诊断课外辅导 1、液压故障诊断的概念 液压故障诊斷,是对机械设备液压系统的运行状态进行判断是正常或非正常,是否发生了液压故障,并且当液压系统发生故障之后,以确定液压设备发生故障的部位及产生故障的性质和原因。 2、故障诊断的过程包括三个部分: IX信息的采集。从保证故障诊断的准确度来看,采集到能准确反映液压系统状态的信号是一个关键环节,因此在设计诊断方法时,选定什么样的传感器,是一个关键性问题。2)、故障信号处理(数据处理)。从采集出的故障信号中取出诊断所需的特征参数。信号处理技术的另一个重要作用,是寻找诊断用的特征抬标,要求这个指标对系统故障具有敏感性。3)、状态识别、判断和预报。根据特征参数,参照某种规范,利用各种知识和经验,对液压设备运行状态进行识别,对早期故障进行诊断,并对其发展趋势进行预测,为下一步的设备维修决策提供技术依据。 3、轴向柱塞泵故障判据容积效率下降到低于合格品指标的5% ;滑动摩擦副表面出现拉丝、粘铜或烧蚀;滚动体出现疲劳剥蚀;零部件出现损坏断裂;变量机构失灵,或变量机构的变量特性低于合格品指标的10%以上;有滴状外漏。 4、齿轮泵故障判据容积效率下降到低于合格品指标的5% ;齿轮端面等摩擦副表面出现拉丝、粘铜或烧蚀;轴承处出现剥蚀或抱轴、咬死;零部件出现损坏、断裂;有滴状外漏(算做故障)。 5、试制液压设备调试阶段的故障 试制的液压设备在调试阶段故障率最高。设计、制造、安装等质量问题交织在一起。经常出现的故障是: 1)外泄漏严重,主要发生在接头和有关元件的端盖处。 2)执行元件运动速度不稳定。 3)液压阀阀芯卡死、运动不灵活和运动不到位,导致执行元件动作失灵。 4)压力控制阀的阻尼孔堵塞,造成压力不稳定。 5)阀类元件漏装弹簧、密封件等零件,造成控制失灵。 6)液压系统设计不完善,液压元件选用不当,造成系统发热、噪声、振动、执行机构运动精度差等故障 现象。 6、液压系统运行初期的故障 液压系统经过调试阶段后,便进入正常生产运行阶段,此阶段故障特征是: 1)管接头因振动而松脱。 2)密封件质量差或由于装配不当而破损,造成泄漏。 3)管道或液压元件流道内的型砂、毛刺、切屑等污染物在油流的冲击下脱落,堵塞阻尼孔和滤油器,造成压力和速度不稳定等。 4)由于负荷大或外界散热条件差,油液温度过高,引起内外泄漏,导致压力和速度的变化。 7、按液压系统故障性质可以将故障分为突发性(急性)及缓发性(慢性)两种。 突发性的特点是具有偶然性。它与使用时间无关,这类故障多发生在液压设备运行初期和后期。由于对这两个时期故障特征认识不足,认为新设备运行不会有什么大问题,或认为老设备过去一直很好用,忽

液压故障诊断复习题

液压故障诊断 1、液压故障诊断的概念 ?液压故障诊断,是对机械设备液压系统的运行状态进行判断是正常或非正常,是否发生了液压故障,并且当液压系统发生故障之后,以确定液压设备发生故障的部位及产生故障的性质和原因。 3、故障诊断的过程包括三个部分: 1)、信息的采集。从保证故障诊断的准确度来看,采集到能准确反映液压系统状态的信号是一个关键环节,因此在设计诊断方法时,选定什么样的传感器,是一个关键性问题。2)、故障信号处理( 数据处理 )。从采集出的故障信号中取出诊断所需的特征参数。信号处理技术的另一个重要作用,是寻找诊断用的特征指标,要求这个指标对系统故障具有敏感性。3)、状态识别、判断和预报。根据特征参数,参照某种规范,利用各种知识和经验,对液压设备运行状态进行识别,对早期故障进行诊断,并对其发展趋势进行预测,为下一步的设备维修决策提供技术依据。 4、轴向柱塞泵故障判据容积效率下降到低于合格品指标的5% ;滑动摩擦副表面出现拉丝、粘铜或烧蚀;滚动体出现疲劳剥蚀;零部件出现损坏断裂;变量机构失灵,或变量机构的变量特性低于合格品指标的 10% 以上;有滴状外漏。 5、齿轮泵故障判据容积效率下降到低于合格品指标的5% ;齿轮端面等摩擦副表面出现拉丝、粘铜或烧蚀;轴承处出现剥蚀或抱轴、咬死;零部件出现损坏、断裂;有滴状外漏(算做故障)。 6、试制液压设备调试阶段的故障 ?试制的液压设备在调试阶段故障率最高。设计、制造、安装等质量问题交织在一起。经常出现的故障是: ?(1)外泄漏严重,主要发生在接头和有关元件的端盖处。 ?(2)执行元件运动速度不稳定。 ?(3)液压阀阀芯卡死、运动不灵活和运动不到位,导致执行元件动作失灵。 ?(4)压力控制阀的阻尼孔堵塞,造成压力不稳定。 ?(5)阀类元件漏装弹簧、密封件等零件,造成控制失灵。 ?(6)液压系统设计不完善,液压元件选用不当,造成系统发热、噪声、振动、执行机构运动精度差等故障现象。 7、液压系统运行初期的故障 ?液压系统经过调试阶段后,便进入正常生产运行阶段,此阶段故障特征是: ?(1)管接头因振动而松脱。 ?(2)密封件质量差或由于装配不当而破损,造成泄漏。 ?( 3)管道或液压元件流道内的型砂、毛刺、切屑等污染物在油流的冲击下脱落,堵塞阻尼孔和滤油器,造成压力和速度不稳定等。 ?(4)由于负荷大或外界散热条件差,油液温度过高,引起内外泄漏,导致压力和速度的变化。 8、按液压系统故障性质可以将故障分为突发性(急性)及缓发性(慢性)两种。

全国液压系统维修及故障诊断技术培训班

目录 第一章液压传动基本知识 (33) 一、液压传动的工作原理 (33) 二、液压传动工作特性 (33) 三、液压传动系统的组成 (44) 四、液压传动系统的图形符号 (55) 第二章常用液压元件 (55) 一、液压泵 (55) 二、液压缸 (88) 三、液压马达 (1010) 五、液压辅助元件 (1414) 第三章液压系统的使用维护与管理 (1616) 一、液压系统的安装与试压 (1616) 二、液压系统的正确使用 (1717) 三、液压系统的维护 (1717) 四、液压系统的点检管理 (1919) 五、运行中期液压设备的管理要点 (2121) 六、常用液压元件的维护与修理 (2121) 第四章工作介质的使用和管理 (2626) 一、工作介质的种类 (2626) 二、对工作介质的基本要求 (2727) 三、液压油液的基本性质 (2727) 四、工作介质的选用 (2828) 五、工作介质的储存保管 (3030) 六、液压系统的换油方式 (3030)

七、工作介质的取用 (3030) 八、工作介质变质的原因 (3131) 九、工作介质变质的控制 (3131) 十、工作介质的合理使用 (3232) 第五章液压系统的泄漏与密封....................... 错误!未定义书签。错误!未定义书签。 一、液压系统的泄漏............................. 错误!未定义书签。错误!未定义书签。 二、液压系统的密封............................. 错误!未定义书签。错误!未定义书签。第六章液压系统的污染控制......................... 错误!未定义书签。错误!未定义书签。 一、液压系统污染的原因......................... 错误!未定义书签。错误!未定义书签。 二、液压系统污染的类型及危害................... 错误!未定义书签。错误!未定义书签。 三、液压系统污染的控制......................... 错误!未定义书签。错误!未定义书签。 四、工作介质的污染度测定....................... 错误!未定义书签。错误!未定义书签。第七章液压系统故障诊断........................... 错误!未定义书签。错误!未定义书签。 一、液压系统故障的概念......................... 错误!未定义书签。错误!未定义书签。 二、液压系统故障分类........................... 错误!未定义书签。错误!未定义书签。 三、液压系统故障的特点......................... 错误!未定义书签。错误!未定义书签。 四、液压系统故障对设备及其工作的影响........... 错误!未定义书签。错误!未定义书签。 五、液压系统故障诊断的工作内容................. 错误!未定义书签。错误!未定义书签。 六、液压系统常见故障现象及其原因............... 错误!未定义书签。错误!未定义书签。 七、液压系统故障排除的步骤..................... 错误!未定义书签。错误!未定义书签。 八、液压系统故障诊断的层次和方法............... 错误!未定义书签。错误!未定义书签。 九、液压系统常见故障分析....................... 错误!未定义书签。错误!未定义书签。 十、现代液压故障诊断的技术途径................. 错误!未定义书签。错误!未定义书签。

一般液压系统故障诊断方法

一般液压系统故障诊断方法 摘要:在生产现场,由于受生产计划和技术条件的制约,要求工程技术人员准确、简便和高效地诊断出液压设备的故障,并利用现有的信息和现场的技术条件,尽可能减少拆装工作量,节省维修工时和费用,用最简便的技术手段,在尽可能短的时间内,准确地找出故障部位和发生故障的原因并加以修理,使系统恢复正常运行,并力求今后不再发生同样故障。 引言 液压传动系统由于其独特的优点,即具有广泛的工艺适应性、优良的控制性能和较低廉的成本,在各个领域中获得愈来愈广泛的应用。但由于客观上元、辅件质量不稳定和主观上使用、维护不当,而且系统中各元件和工作液体都是在封闭油路内工作,不象机械设备那样直观,也不象电气设备那样可利用各种检测仪器方便地测量各种参数, 液压设备中,仅靠有限几个压力表、流量计等来指示系统某些部位的工作参数,其他参数难以测量,同时一般故障根源有许多种可能,这给液压系统故障诊断带来一定困难。 在生产现场,由于受生产计划和技术条件的制约,要求工程技术人员准确、简便和高效地诊断出液压设备的故障,并利用现有的信息和现场的技术条件,尽可能减少拆装工作量,节省维修工时和费用,用最简便的技术手段,在尽可能短的时间内,准确地找出故障部位和发生故障的原因并加以修理,使系统恢复正常运行,并力求今后不再发生同样故障。 一液压系统故障的特点 液压系统出现故障不同于机械故障和电气故障,它们易于解体观察进行判断,同时可以利用多个相应仪器仪表诊断;与机械电气相比,液压系统故障有其自身的特点,特点如下: ⒈故障的多样性液压设备出现的故障可能是多种多样的,而且在大多数情况下是几个故障同时出现的。例如,系统的压力不稳定就经常和噪声振动故障同时出现;同一故障引起的原因可能有多个,而且这些原因常常是互相交织在一起互相影响的。例如,当系统压力达不到系统要求时,其产生原因可能是泵引起的,也可能是溢流阀引起的,也可能是两者同时作用的结果。 液压系统中往往是同一原因,但因其程度的不同、系统的结构不同,以及与它配合的机械结构的不同,所引起的故障现象可能是多种多样的。如,同样是系统吸入空气,可能引起不同的故障,如爬行,振动等等。 ⒉故障的的复杂性液压系统压力达不到系统要求经常和动作故障联系在一起,甚至机械电气部分的弊病也会与液压系统的故障交织在一起,使得故障变得复杂,新设备的调试更是如此。 ⒊故障的偶然性与必然性液压系统中的故障有时是偶然发生的,有时是必然发生的。故障偶然发生的情况如:油液中的污物偶然卡死溢流阀换向阀的阀芯,使系统偶然失压或不能换向;电压的偶然变化,使电磁铁吸合不正常而引起电磁阀不能正常工作。这些故障不是经常发生,也没有一定的规律。 故障必然发生的情况是指那些持续不断经常发生,并且有一定规律的原因引起的故障。如油液粘度低引起的系统泄漏,液压泵内部间隙大内泄漏增加导致泵的容积效率下降等。 ⒋故障的分析判断难度性由于液压系统故障存在上述特点,所以当系统出现故障时,不一定马上就可以确定故障的部位和产生的原因。如果工程技术人员在液压故障的分析判断方面的技术水平比较高或着熟练掌握所在液压设备的情况等,就能对故障进行认真的检查,分析,判断并很快找出故障的部位及其原因并加以排除。但是如果工程技术人员对液压设备

液压系统常见故障诊断及消除方法

液压系统常见故障地诊断及消除方法 5、1常见故障地诊断方法 液压设备就是由机械、液压、电气等装置组合而成地,故出现地故障也就是多种多样地、某一种故障现象可能由许多因素影响后造成地,因此分析液压故障必须能瞧懂液压系统原理图,对原理图中各个元件地作用有一个大体地了解,然后根据故障现象进行分析、判断,针对许多因素引起地故障原因需逐一分析,抓住主要矛盾,才能较好地解决与排除、液压系统中工作液在元件与管路中地流动情况,外界就是很难了解到地,所以给分析、诊断带来了较多地困难,因此要求人们具备较强分析判断故障地能力、在机械、液压、电气诸多复杂地关系中找出故障原因与部位并及时、准确加以排除、b5E2RGbCAP 5、1、1简易故障诊断法 简易故障诊断法就是目前采用最普遍地方法,它就是靠维修人员凭个人地经验,利用简单仪表根据液压系统出现地故障,客观地采用问、瞧、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障地原因与部位,具体做法如下:p1EanqFDPw 1)询问设备操作者,了解设备运行状况、其中包括:液压系统工作就是否正常;液压泵有无异常现象;液压油检测清洁度地时间及结果;滤芯清洗与更换情况;发生故障前就是否对液压元件进行了调节;就是否更换过密封元件;故障前后液压

系统出现过哪些不正常现象;过去该系统出现过什么故障,就是如何排除地等,需逐一进行了解、DXDiTa9E3d 2)瞧液压系统工作地实际状况,观察系统压力、速度、油液、泄漏、振动等就是否存在问题、 3)听液压系统地声音,如:冲击声;泵地噪声及异常声;判断液压系统工作就是否正常、 4)摸温升、振动、爬行及联接处地松紧程度判定运动部件工作状态就是否正常、 总之,简易诊断法只就是一个简易地定性分析,对快速判断与排除故障,具有较广泛地实用性、 5、1、2液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现地故障,找出故障产生地部位及原因,并提出排除故障地方法、液压系统图分析法就是目前工程技术人员应用最为普遍地方法,它要求人们对液压知识具有一定基础并能瞧懂液压系统图掌握各图形符号所代表元件地名称、功能、对元件地原理、结构及性能也应有一定地了解,有这样地基础,结合动作循环表对照分析、判断故障就很容易了、所以认真学习液压基础知识掌握液压原理图就是故障诊断与排除最有力地助手,也就是其它故障分析法地基础、必须认真掌握、RTCrpUDGiT 5、1、3其它分析法

液压系统故障诊断技术

液压系统故障诊断技术 军事交通学院王海兰齐继东王富强 摘要:介绍液压系统故障主观诊断技术、数学模型诊断技术和智能诊断技术,以及各种具体故障诊断方法的特点及应用,指出专家系统与神经网络的有机结合成为智能故障诊断技术的发展方向。 关键词:液压系统;故障诊断;信号处理与建模;专家系统;神经网络 Abstract:This paper covers subjective diagnosi s technology,mathematical model diagnosis technology and intelligent diag-nosis technology.Various diagnosis methods and their application in hydraulic systems are discussed.It i s concluded that fu ture in telligent diagnosis technology is combining of expert system,neural network and information technology. Keywords:hydraulic system;fault diagnosis;signal processing and modeling;e xpert syste m;neural network 液压设备的自动化程度越高、功能越多、结构越复杂,发生故障的几率随之增多,故障造成的危害和损失也越加严重。由于液压系统各元件在封闭的油路内工作,液压装置的损坏与失效,往往发生在内部,隐蔽性强。故障的症状与原因之间存在着重叠与交叉,因果关系复杂,再加上在运行过程中随机性因素的影响,能够正确而果断地判断出发生故障的部位,迅速排除故障尤为重要。 1液压故障的主观诊断技术 液压系统的故障有压力不足、流量不足、爬行、发热、噪声、振动、泄漏等。所谓主观诊断法,是指依靠简单的诊断仪器,凭借个人的实践经验,分析判断故障产生的原因和部位。常用的方法有: 四觉诊断法检修人员运用触觉、视觉、听觉和嗅觉来分析判断系统故障。 逻辑分析法(见图1)根据液压系统的基本原理,进行逻辑分析,减少怀疑对象,逐渐逼近,找出故障发生部位。 参数测量法通过测得液压系统回路中所需任意点处工作参数,将其与系统工作的正常值比较判断,可进行在线监测、定量预报和诊断潜在故障。图2所示为一种简单实用的检测回路[3]。检测回路与被检测回路并联,在被测点设置如图2所示的双球阀三通接头,用于对系统进行不拆卸检测。不需任何传感器,可同时检测系统中的压力、流量、温度3个参数,并立即诊断出故障所在的大致范围(泵源、控制传动部分或执行器部分)。增加参数检测点,如可在泵出口、执行元件进出口安装双球阀三通, 缩小故障发生区域。 图1故障逻辑分析基本步骤 此外,还有故障树分析、方框图分析、鱼刺分析法等,主观诊断法方便快捷,但由于人的感觉不同、判断能力和实践经验有差异,对客观情况的分析也不同,所以一般只用于对故障进行简单的定性。 2液压故障的数学模型诊断技术 数学模型诊断技术,首先用一定的数学手段描述系统某些可测量特征量在幅值、相位、频率及相关性上与故障源之间的联系,然后通过测量、分析、处理这些信号来判断故障源部位。这种方法实质上是以传感器技术和动态测试技术为手段,以信号处理和建模处理为基础的诊断技术。主要有:

挖掘机液压系统常见故障的诊断与排除

挖掘机液压系统常见故障的诊断与排除 来源:中国机械资讯网发布时间:2007-12-28 0:00:00 1.液压挖掘机的结构特点目前,在施工中使用的挖掘机多数为斗容1吨左右的单斗液压挖掘机, 它们多数采用双泵双回路全功率变量液压系统,其液压系统框图如图1所示, 所有的工作机构被分成两组,由操纵阀1、2分别控制,前泵、后泵分别作为操纵阀1、2的动力来源, 向它们提供压力油,主溢流阀1、2分别控制两组工作机构的最高工作压力,并且两者的调定值相等。 各工作机构的分液压油路中又装有过载阀(又名分路溢流阀),在机器受到意外冲击等情况下保护液压系统的安全。 各过载阀的调定压力一般也都比较接近。另外,许多挖掘机在斗杆缸、动臂缸共同或单独工作的情况下,操纵阀1、2合流, 同时对它们进行供油。 2 液压挖掘机的常见故障2. 1整机全部动作故障分析:由于是操纵阀1、2控制的所有动作均不正常,故障点应处于二者的公共部分,即操纵阀以前的部分。 根据液压系统框图,整机全部动作故障的原因有:(l)液压油不足,吸油油路不畅(如吸油滤芯堵塞), 油路吸空等造成液压泵吸油不足或吸不到油,使得整机全部动作发生故障。 (2)先导油路故障。此故障只存在于伺服操纵的挖掘机,对于机械式拉杆操纵的挖掘机则不存在。 先导油路故障会造成先导油压力不足,使得操纵系统失灵,从而表现为整机动作故障。 (3)液压泵与发动机之间的传动连接损坏。这样发动机不能带动液压泵,泵口也就没有压力油输出,使得整机不动作 。(4)前后液压泵均严重磨损或损坏,造成泵的输出流量、压力不足,从而引起整机动作迟缓无力或完全不动作。 (5) 液压泵的功率调节系统故障。在进行故障检查时,应按照先易后难,先外后内的原则进行检查,具体方法如下: 先检查液压油量。不足,加够Z检查吸油管是否破裂,接头是否有松动等类似现象,它们会造成油泵部分或严重吸空; 检查吸油滤芯是否有堵塞或吸扁等,如有应更换。再检查四油滤芯。如有大量金属粉末及颗粒,则为液压泵损坏,需检修。 其实,除液压泵损坏外,其它执行元件或轴承等损坏也会使得回油滤芯有大量金属粉末及颗粒, 但此处是讨论整机全部动作故障原因,因而忽略其它非公共部分元件。但有时液压泵因长期使用导致过度磨损,

液压系统维修及故障诊断技术。

全国液压系统维修及故障诊断技术培训班 目录 第一章液压传动基本知识 (1) 一、..................................................................... 液压传动的工作原理 1 二、液压传动工作特性 (2) 三、液压传动系统的组成 (2) 四、液压传动系统的图形符号 (3) 第二章常用液压元件 (3) 一、................................................................................. 液压泵 3 二、液压缸 (6) 三、液压马达 (8) 五、液压辅助元件 (13) 第三章液压系统的使用维护与管理 (15) 一、................................................................... 液压系统的安装与试压 15 二、液压系统的正确使用 (15) 三、液压系统的维护 (16) 四、液压系统的点检管理 (18) 五、运行中期液压设备的管理要点 (19) 六、常用液压元件的维护与修理 (20) 第四章工作介质的使用和管理 (25) 一、工作介质的种类 (25) 二、对工作介质的基本要求 (26) 三、液压油液的基本性质 (26) 四、工作介质的选用 (27) 五、工作介质的储存保管 (29) 六、液压系统的换油方式 (29) 1 中国机电装备维修与发行技术协会秦皇岛信和会展服务有限公司全国液压系统维修及故障诊断技术培训班

八、..................................................................... 工作介质变质的原因 30 九、工作介质变质的控制 (31)

液压系统压力不正常故障的诊断与排除

液压系统压力不正常故障的诊断与排除 液压系统压力不正常主要表现为工作压力建立不起来、升不到调定值或升高后降不下来,其原因往往与发动机、泵和阀等许多部分有关。 在检修中,按照发动机、泵和阀等部分的功能,依顺序隔离出一个回路或一个元件分别诊断、排除,最后找出故障的真正原因并排除。 1、液压泵的故障及排除 (l)泵内零件配合间隙超出规定要求,引起压力脉动或压力升不高。如齿轮泵的径向间隙应控制在0.13-0.16mm之间,轴向间隙应控制在0.03-0.04mm之间,超出此范围应对有关零件进行修复、调整或更换。 (2)液压泵的进、出油口不应泄漏或进入空气。在判断有无空气进人时,可将密封部位涂上黄油,看泵的噪声是否明显减小。若确认有空气进人,应采取排气措施。 (3)泵内零件加工质量和装配质量差,如齿轮泵齿轮的啮合面接触不良。应严格加工、装配的质量管理。 (4)泵的进、出口油管接反。应调换重接,起动前要向泵内灌满液压油。 (5)叶片泵的叶片卡死、装反、叶片与泵体内曲线表面接触不良;柱塞泵的柱塞卡死。如叶片或轴承损坏、柱塞弹簧变形失效,应更换;叶片装反的应重装。 2、液压泵驱动电动机的故障及排除

(l)电动机转向不对。应调线换相; (2)电动机功率不足或转速达不到规定要求。应检查电压,校核电动机性能。 3、溢流阀调压失灵故障及排除 (l)主阀芯上阻尼孔堵塞,油压传递不到主阀上腔和锥阀前腔,先导阀因此而失去了对主阀压力的调节作用,使系统压力建不起来。应清洗溢流阀,疏通阻尼孔。 (2)调压弹簧变形、阀内泄漏过大或先导阀的锥阀过度磨损,使压力不能达到调定值。应更换弹簧、锥阀和密封件。 (3)先导阀锥阀座上的阻尼小孔堵塞,油压传递不到锥阀上,先导阀失去了对主阀的调节作用,在任何压力下都不能泄油而使压力不断升高。应清洗先导阀,疏通阻尼孔。 (4)溢流阀密封件损坏,主阀芯及锥阀芯磨损过大,造成内、外泄漏严重,压力不稳定、忽高忽低。应更换损坏了的密封件、阀芯。 (5)主阀芯径向卡紧,不能实现调节功能,造成压力上不去或下不来。应拆检、清洗阀体,排除故障。 (6)溢流阀主阀芯阻尼小孔堵塞,使主阀芯在很低的压力下才能开启。应清洗溢流阀,疏通阻尼小孔,使溢流阀恢复正常压力下的调节功能。 (7)由于污染、毛刺等原因,使溢流阀芯卡死在开启或关闭位置,前者使系统压力不能升高,后者使压力突然升高而且降不下来。应拆

液压系统常见故障诊断

标签:机械,cad,仪表仪器,机械设计,机械加工,机械工程师 液压系统常见故障的诊断及消除方法 液压系统常见故障的诊断及消除方法 5.1 常见故障的诊断方法 液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐

一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。 3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

液压设备的故障诊断方法探讨

液压设备的故障诊断方法探讨 通过对我国目前的工程机械进行调查,多数的工程系统和装置都是采用液压的设备。但是液压的设备一旦出现故障,问题就出在液压设备部件的内部。液压设备的元件体积小,拆卸也不方便,所以,在修理液压设备的部件时经常会遇到各种各样的困难,给现场的修理人员带来各种修理障碍。文章从日常生活中液压设备出现的各种故障进行分析和探讨,结合理论知识和实践经验,对液压设备的故障诊断步骤判断方法和策略技巧进行总结。希望能为液压设备的管理人员提供排除和解除障碍的经验。 标签:液压设备;故障;诊断;分析 前言 目前我国工程机械普遍采用液压的设备,从行走系统到工作装置基本都是液压传递。但是液压的设备一旦出现故障,问题就出在液压设备部件的内部,往往具有隐蔽性。液压设备的元件体积小,拆卸也不方便,所以,在修理液压设备的部件时经常会遇到各种各样的困难,有些现场修理人员缺乏专业知识,造成液压设备无法使用甚至浪费。本文从日常生活中液压设备出现的各种故障进行分析和探讨,结合理论知识和实践经验,对液压设备的故障诊断步骤判断方法和策略技巧进行总结。旨在促进今后的液压设备长远的发展。 1 液压设备出现的故障案例 在日常生活中,液压设备的使用的十分广泛。一旦液压设备出现问题,就会造成不必要的麻烦。而且液压设备的元件体积小,拆卸也不方便,液压设备的修理和排障的技术难度很大。加之有些专业人员缺乏专业知识,给目前液压设备的维护带来障碍。常见的故障有以下几种: 1.1 液压设备出现漏油的现象 漏油一般就是指液压设备出现石油的泄漏。漏油有两种情况,一种是内部泄漏,一种是外部泄漏。内部泄漏就是液压设备的内部出现了泄漏,此时的处理很麻烦,首先要找到液压设备内部的漏油点,然后结合部件的特点选择粘合方式。因为液压设备的部件体积一般都比较小,所以在找液压设备的漏油点时很困难。外部漏油相对容易处理些,处理的步骤跟内部泄漏的步骤一样。 1.2 液压设备里储存的油发生污染 液压设备里储存的油一旦发生污染会出现许多问题,比如内部的元件受到污染损害,造成液压设备中的部件使用寿命减短,甚至导致整个液压设备无法正常的工作。

液压动力转向系统常见故障诊断与维修

摘要 液压动力转向系统由转向器、转向动力缸和转向动力阀三部分组成。动力转向系统的故障主要有一般故障、转向噪声和油液渗漏等。一般故障主要包括转向冲击、转向沉重、转向不灵和转向回跳等。这些故障有些可能与动力转向装置、转向操纵机构和转向传动机构均有关。 关键词:转向系故障现象故障分析故障排除

前言 转向系统是整车系统中必不可少的最基本的组成系统,驾驶者通过方向盘来操纵和控制汽车的行进方向,从而实现自己的驾驶意图。汽车转向系统也随着汽车工业的发展历经了长时间的演变。传统的汽车转向系统是机械式的转向系统,汽车的转向由驾驶员控制方向盘,通过转向器等一系列机械转向部件实现车轮的偏转,从而实现转向。随着上世纪五十年代起,液压动力转向系统在汽车上的应用,标志着转向系统革命的开始。汽车转向动力的来源由以前的人力转变为人力加液压助力。这种助力转向系统主要的特点是液压力支持转向运动,减小驾驶者作用在方向盘上的力,改善了汽车转向的轻便性和汽车运行的稳定性 一液压动力转向系统的概述 1.1液压动力转向系统的组成 液压动力转向系统由转向器、转向动力缸和转向动力阀三部分组成。 1.2液压动力转向系统的工作原理 (1)直线行驶时,转向控制阀将转向油泵泵出来的工作液与油罐相通,转向油泵处于卸荷状态,动力转向器不起助力作用。 (2)向右转向时,向右转动转向盘,转向控制阀将转向油泵泵出的工作液与R腔接通,将L腔与油罐接通,在油压作用下,活塞向下移动,通过传动结构使左右轮向右偏转,从而实现右转向。 (3)向左转向时向左转向时,情况与上述相反。 二液压动力转向系统常见的故障现象与分析 2.1 转向冲击或振动 1.故障现象:当前轮达最大转向角时,车辆出现冲击或振动。 2.故障分析: (1)检查齿条导向螺塞的调整是否正确,并视情调整。若经调整无

相关文档
相关文档 最新文档