文档库 最新最全的文档下载
当前位置:文档库 › 线性代数第三章向量复习题.doc

线性代数第三章向量复习题.doc

线性代数第三章向量复习题.doc
线性代数第三章向量复习题.doc

向量复习题( 3)

一、填空题:

1. 当 t _______时,向量 1 (1,2, 2)T , 2

(4, t,3) T ,

3

(3, 1,1)T 线性无关 .

2.. 向量

(1,2,1)T , 则

T

T

3. 如 果 1

, 2

,

,

n 线 性 无 关 , 且

n 1 不 能 由

1, 2

,

, n 线 性 表 示 , 则

1

,

2 , ,

n 1

的线性

4.

T

,

, T a

2 线性相关 .

设 1 ( 2,5) 2

a)

,当

时, 1,

(1

5. 一个非零向量是线性

的,一个零向量是线性

的.

6. 设向量组 A:

1

, 2

,

3 线性无关,

1

3

2

1

2

3 线性

7. 设 A 为 n 阶方阵,且 r ( A) n 1, 1

, 2 是 AX=0的两个不同解,则 1,

2

线性

8. 向 量 组 1,L , l 能 由 向 量 组 1,L , m 线 性 表 示 的 充 分 必 要 条 件 是

R( 1, 2,L

m

)

R( 1,

2 ,L

m

, 1

,

2,L ,

l ) 。( 填大于,小于或等于 )

9. 设向量组

1

1,1,1 ,

2

1,2,3 ,

3

1,3,t 线 性 相 关 , 则 t 的 值

二、选择题:

1. .

n

阶方阵 A 的行列式

A 0

,则 A 的列向量(

A.线性相关 B.线性无关 C. R(A) 0 D. R( A) 0

2. 设 A 为 n 阶方阵, R( A) r n ,则 A 的行向量中(

A 、必有 r 个行向量线性无关

B 、任意 r 个行向量构成极大线性无关组

C 、任意r 个行向量线性相关

D 、任一行都可由其余r 个行向量线性表示

3.设有n 维向量组(Ⅰ):1, 2,L,

r 和(Ⅱ): 1 , 2,L, m (m r ) ,则().

A、向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关

B、向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关

C、向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关

D、向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关

4. 下列命题中正确的是 ( )

(A) 任意 n 个n 1维向量线性相关(B) 任意n个 n 1维向量线性无关

(C) 任意 n 1个n 维向量线性相关(D) 任意 n 1个n维向量线性无关

5. 向量组1, 2, , r线性相关且秩为 s,则 ( )

( A)r s (B) r s (C) s r (D) s r

6. n 维向量组1,2,,s (3? s? n )线性无关的充要条件是(). (A)1,2,,s 中任意两个向量都线性无关

(B) 1,

2,,s 中任一个向量都不能用其余向量线性表示

(C) 1,

2,,s 中存在一个向量不能用其余向量线性表示

(D) 1,

2,,s 中不含零向量

7. 向量组1, 2, , n 线性无关的充要条件是()

A 、任意i 不为零向量

B 、 1 , 2 ,,n 中任两个向量的对应分量不成比例

C 、 1 , 2 ,,n 中有部分向量线性无关

D 、 1 , 2 ,,n 中任一向量均不能由其余n-1 个向量线性表示

8.设A为n阶方阵,R( A)r n ,则A的行向量中(

A、必有 r 个行向量线性无关

B、任意 r 个行向量构成极大线性无关组

C、任意 r 个行向量线性相关

D 、任一行都可由其余 r 个行向量线性表示

9. 设 A 为 n 阶方阵,且秩 ( A) n 1. 1 ,

2 是非齐次方程组

AX B 的两个不同的解

向量,则 AX

0的通解为 ( )

A 、 k

1

B 、 k 2

C 、 k ( 1 2 )

D 、 k ( 1

2 )

10. 已知向量组 1

1,1, 1,1 , 2 2,0, t,0 , 3

0, 2,5, 2 的秩为 2,则 t ( ).

A 、3 B

、 -3

C

、2

D

、-2 11. 设 A 为 n 阶方阵, R( A) r

n ,则 A 的行向量中(

A 、必有 r 个行向量线性无关

B 、任意 r 个行向量构成极大线性无关组

C 、任意 r 个行向量线性相关

D 、任一行都可由其余 r 个行向量线性表示

12. 设向量组 A:

1 ,

2 ,

3 线性无关,则下列向量组线性无关的是(

A 、

B 、

1 2

3

,2132

23,31 22 33

1

2

, 23

,3

1

C 、 1 22,22 33,331

D 、- 1

2

2

3

1

2

2

3

13. A 、 B 均为 n 阶方阵, X 、Y 、b 为 n O B X O 1 阶列向量,则方程

O Y

A b

解的充要条件是( )

A 、 r (B) n B

、 r ( A) n

C 、 r ( A) r ( A b)

D 、 r ( A) n

14. 已知向量组 A 线性相关,则在这个向量组中 ( )

(A) 必有一个零向量 . (B) 必有两个向量成比例 .

( C)必有一个向量是其余向量的线性组合 .

(D) 任一个向量是其余向量的线性组合 .

15. 设 A 为 n 阶方阵,且秩 R( A) n 1 , a 1 , a 2 是非齐次方程组 Ax b 的两个不同的 解向量 , 则 Ax

0 的通解为 ( )

( A ) k( a 1 a 2 ) ( B) k(a 1 a 2 )

(C) ka 1 (D)ka 2

16. 已知向量组1 ,K , m 线性相关,则()

( A )该向量组的任何部分组必线性相关 . ( B) 该向量组的任何部分组必线性无关 . ( C) 该向量组的秩小于 m .

(D) 该向量组的最大线性无关组是唯一的 .

17.已知 R( 1, 2 , 3

) 2, R(

2

, 3, 4) 3,则 (

)

(A ) 1 , 2 ,

3

线性无关

(B)

2

,

3

, 4 线性相关

( C)

1

能由

2 ,

3

线性表示

(D)

4 能由 1, 2, 3 线性表示

k 1 1 3 k

18. 若有 3 0

1 k 6 , 则 k 等于

0 2

1

3

5

(A) 1

(B) 2 (C)

3 (D) 4

第三题

计算题:

1

0 2 1 1 1 , 3

5 5 2 1. 已知向量组 1

2

, 3

, 4

, 5

2 1

3

4 2

4

2

6

8

(1)求向量组 1 , 2

, 3, 4,

5 的秩以及它的一个极大线性无关组; (2)将其余的向量用所求的极大线性无关组线性表示。

2. 求向量组 A : ? 1 (-2,6,2,0)T

, 2 (1,-2,-1,0)T , 3 (-2,-4,0,2 )T ? ,

4

(0,10,2, 2)T ,的一个极大无关组,并将其余向量由它线性表示 .

3. T , 2 T T

设 1 1,4,3 2, a, 1 , 3

2,3,1

1) a 为何值时 , 1

, 2, 3 线性无关 .

2) a 为何值时 ,

1

,

2, 3 线性相关 .

4. 求向量组 A: 1

T T T

1,2, 1,1 、 2 2, 3,1, 2 、3 4,1, 1,0 的极大无关

组,并把其余向量用极大无关组线性表示.

5.已知11,4,2 T , 22,7,3 T , 30,1,a T ,3,10,4 T,问a为何值时,可由1 , 2 , 3唯一线性表示?并写出表示式

2 1 1 1 2

6. 设矩阵

1 1

2 1 4 A

6 2 2

?

4 4

3 6 9 7 9

求矩阵 A 的列向量组的一个极大无关组 ? 并把不属于极大无关组的列向量用极大无关组线性表示 ?

7. 求向量组 A : 1 (1, 1,2) T,2 (0,3,1)T,3 (1,5,4)T, 4 (1, 2,2)T,

(2, 3,4) T的一个极大无关组,并将其余向量由它线性表示.

5

8.试求向量组 1 =(1,1,2,2)T, 2 =(0,2,1,5)T, 3 =(2,0,3,-1)T, 4 =(1,1,0,4)T 的秩和该向量组的一个最大无关组,并将其他向量用此最大无关组表示。

9. 求向量组1 =(1,-2,3,-1,2) T, 2 =(3,-1,5,-3,-1) T,

3 =(5,0,7,-5,-4) T ,

4 =(2,1,2,-2,-3) T 的秩和该向量组的一个最大无关组,并将不在最大无关组中的向量用最大无关组线性表示。

四、证明题:(10 分)

1.设向量组a1, a2, a3线性无关,证明a1a2 , a1a2 , a3也线性无关。

2.设向量组A:1,2,3线性无关,求证:122,22 3 3,331线性

无关 .

3. 已知向量组, ,线性无关,1, 2, 3,试证明向量组1, 2, 3线性无关.

4. 已知向量组a1, a2, a3线性无关,1+ 22,2+23,1 2 3线性无关.

5.若向量组1,2,3线性无关,而1123,21223,31 22 33,试证:1,2,3线性无关。

6. 已知向量组 A? a1 (0,1,1)T, a2 (1,1,0)T,向量组B ? b1 ( 1,0,1)T,b2 (1,2,1)T, b3 (3, 2, 1)T,证明:向量组A与向量组B等价?

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数 第三章向量

n维向量部分 这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。常出现在选择题中。 回顾: n维向量的运算 1.定义:设 ,,k为数域P中的数,定义 ,称为向量与的和; ,称为向量与数k的数量乘积. 2.向量运算的基本性质 1) 2) 3) 4) 5) 6) 7) 8),9),, 10)若,则即,若,则或 1 向量组的秩、极大无关组的相关题型 知识点 极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足 i) 线性无关 ii) 对任意的,可经线性表出 则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩 定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质: 1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同. 一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.) 3)若向量组可经向量组线性表出,则 秩秩. 例1 设向量组 (1)求此向量组的秩; (2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。

例2 选择题 若向量组的秩为 r,则() (A)必定r秩(向量组II) (C)秩(向量组I)<秩(向量组II) (D)不能确定秩(向量组I)与秩(向量组II)的大小关系 2 向量组的线性相关性的判定或根据向量相关性求参数 知识点:1对向量组,设 若如果存在不全为零的数,使上式成立,则向量组线性相关。 若当且仅当上式才成立,则线性无关。 2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。(注意它的逆否定理) 3 利用矩阵的秩或行列式 设有 s个n维列向量组,设A=(), 则当秩A=s时,线性无关;当秩A

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? L L L L L L L 01,2,,i i a b i n ≠? ? ??=?? L 2.设12312323k A k k -?? ??=--?? ??-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

第三章线性代数方程组

第3章 线性代数方程组 3.1.1 矩阵秩的定义 定义1 矩阵A 的k 阶子式 在n m ?矩阵A 中任取k 行,k 列()()n m k ,m in 1≤≤,位于这k 行,k 列交叉点处的元素按原来次序组成的行列式,称为A 的一个k 阶子式。 定义2矩阵A 的秩 设在矩阵A 中有一个不等于零的r 阶子式D ,且所有的r +1阶子式(如果有的话)全等于零,那么D 称为矩阵A 的最高阶非零子式,数r 称为矩阵A 的秩,记为)(A rank ,简记为()A r 。 定义3 满秩阵 设A 为n 阶方阵,若()A r =A ,则称A 为满秩阵。 3.1.2 矩阵秩的性质 (1)()();A r A r T = (2)()(),A r A r =λ其中0≠λ; (3)()0=A r 等价于0=A ; (4)()()n m A r n m ,m in ≤?; (5)设A ,B 为同阶矩阵,则 ()()()B r A r B A r +≤+ (1) 设A 为n m ?矩阵,B 为s n ?矩阵,则 ()()()() ()()()n B r A r AB r B r A r AB r -+≥≤,min 特别当AB =0时,()()n B r A r ≤+成立。 (7)()()()()()()B r A r B D A r B r A r B C A r B r A r B A r +≥?? ????+≥??????+=??????0000 3.1.3 矩阵秩的有关结论 (1)初等变换不改变矩阵的秩,即 若A ∽B,则()()B r A r =

(2)矩阵乘上一个可逆阵不改变原矩阵的秩,即当A 可逆时,有 ()()B r AB r =;()()B r BA r = (3) 设A 为n 阶方阵,则其转置伴随阵的秩为 () ()()()?? ? ??-≤-===2 011 *n A r n A r n A r n A r (4)设A 为方阵,则()n A r A =?≠0。 3.1.4 矩阵秩的求法 (1)用定义求矩阵的秩。 (2)用初等变换法求矩阵的秩。 (3)用性质求矩阵的秩。 (4)用有关结论求矩阵的秩。 (5)用齐次线性方称组的基础解系讨论矩阵的秩。 3.1.5 系数矩阵可逆的线性代数方程组的求解 问题:求b Ax =的解,其中0≠A 。 方法(1) 克莱娒法则 ()n i A D x i i ,2,1== ,其中i D 为右端列b 取代A 的第i 列所构成的行列式。 方法(2)逆矩阵法 b A x 1 1 --=,其中A A A *1 =-或用()()1-?→?A I I A 行求1 -A 。 方法(3) G 法 将增广矩阵()b A 经过行初等变换化为行梯形阵,回代求解。 方法(3)G -J 法 将增广矩阵()b A 经过行初等变换化为行标准形后得解。 3.1.6 齐次线性方程组 0=?x A n m (1)齐次线性方程组有解的条件 0=x 为0=Ax 的平凡解。 当()n A r =时,0=Ax 只有零解。 ()n A r 时,0=Ax 有含()A r n -个参数的无穷多组解。 注0=Ax 有非零解()n A r ?。 (2)齐次线性方程组解的求法

线性代数期末考试试卷

本科生2010——2011学年第 一 学期《线性代数》课程期末考试试卷(B 卷) 草 稿 区 专业: 年级: 学号: 姓名: 成绩: 一 、选择题(本题共 28 分,每小题 4 分) 1.设n 阶方阵A 为实对称矩阵,则下列哪种说法是错误的 ( B ) (A) A 的特征值为实数; (B) A 相似于一个对角阵; (C) A 合同于一个对角阵; (D) A 的所有特征向量两两正交。 2.设n 维列向量组)(,,21n m m <ααα 线性无关,则n 维列向量组m βββ ,,21线性无关的充要条件是 ( D ) (A)向量组m ααα ,,21可由向量组m βββ ,,21线性表示; (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示; (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价; (D) 向量组m ααα ,,21与向量组m βββ ,,21等价。 3.设n 阶方阵A 的伴随矩阵为*A ,则 ( C ) (A) *A 为可逆矩阵; (B) 若0||=A ,则0||*=A ; (C) 若2)(*-=n A r ,则2)(=A r ; (D) 若0||≠=d A ,则d A 1||*= 。 4.设A 为n 阶非零方阵,E 为n 阶单位矩阵,30A =则 ( ) (A)()E A -不可逆,()E A +不可逆; (B) ()E A -不可逆,()E A +可逆; (C) ()E A -可逆,()E A +可逆; (D) ()E A -可逆,()E A +不可逆. 第 1页,共 6 页

5.实数二次型T f X AX =为正定二次型的充分必要条件是 ( ) (A) 负惯性指数全为零; (B) ||0A >; (C) 对于任意的0X ≠,都有0f >; (D) 存在n 阶矩阵U ,使得T A U U =. 6.设12,λλ为A 的不同特征值,对应特征向量为12,αα,则112,()A ααα+线性无关的充要条件为 ( ) (A)10λ≠; (B) 20λ≠; (C) 10λ=; (D) 20λ=. 7.设211100121,010112000A B --???? ? ? =--= ? ? ? ?--???? ,则 ( ) (A) A 与B 合同,但不相似;(B) A 与B 相似,但不合同; (C) A 与B 既合同又相似; (D) A 与B 既不合同也不相似. 二 、填空题(本题共 24分,每小题 4 分) 1.二次型2221231231213(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是 . 2.设01000 01000010 000A ?? ? ? = ? ? ?? ,则3A 的秩3()r A 为 . 3.设三阶矩阵A 的特征值为,2,3λ,若|2|48A =-,则λ= . 4.设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T T a ααα=-==,若123,,ααα构成的向量组的秩为2, 则a = . 5.设3阶矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,且已知||1A =,则||B = . 第 2页,共 6 页

四川大学2014级线性代数期末测验题(A卷)

四川大学2014级线性代数期末测验题(A 卷) 姓名:__________,学号:___________________,学院:___________,教师:杨荣奎 分) 分填空题一1553(.=×._______3A 2500230052A 3.123=?? ?????????A ,则相似于矩阵阶矩阵若.______003,14042531.2==≠? ?????????=a AB B a A ,则,满足阶矩阵若存在设. ____83344),,(.32322212332223121321=?+=?+?+?=a y y y QY X x x ax x x x x x x x x f ,则化为标准形变换可经过正交 设实二次型._________32,211-101.421212的过渡矩阵为到基,的基从?? ????=??????=??????=??????=ββααR . ___,2),,(,),1,1,2(,)2,0,1,1(,01-21.532132T 1=====a rank a T T 则若),,,(设αααααα分 分选择题二1553(.=×). ().(;)().(); ().(;).(. 0][)0(,,,2)(,4.132132122113221132211321βββββββββββββββββ?++?+++?+=≠==×k D k k k k C k k B k k A AX AX A rank m A 的通解为向量,则的三个线性无关解为矩阵是设.,,,).(;,,,).(; ,,,).(;,,,).(][ ,,,.2144332211443322114433221144332214321αααααααααααααααααααααααααααααααααααα??++?+++????++++D C B A 线性无关。线性无关,则向量组已知向量组. )().(;)2()5(n ).(;)2-(5-().(;25).(]. [,0103:A .32n A rank D n E A rank E A k ra C n E A rank E A rank B E A E A A E A A n ==++?=?++?===??)或则下列结论不正确的是满足阶矩阵设.3).(; 2).(;1).(;0).(]. [)2(,)(3,23.421D C B A A E rank A A A =?==则相似于对角阵,若一重(二重)的特征值为阶矩阵,为设λλ; ).().A ].[ .5合同矩阵等价合同矩阵的秩相同;(下列命题中不正确的是B

四川大学数一二线性代数期末考试试卷A

第 页 共6页 1 四 川大学期末考试试卷(A ) 科 目:《大学数学》(线性代数) 一、填空题(每小题3分,共15分) 1. 2 32 32 3 a a a b b b c c c = __abc()_____. 2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性___ ____. 3. 设A =378012002?? ??-????-?? , A *是A 的伴随矩阵, 则 |1 5-A*| = _________. 4. 当t 满足______的条件时, 2 2 2 12311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.

第 页 共6页 2 二、选择题(每小题3分,共15分) 1. 设矩阵,23?A ,32?B 33?C , 则下列式子中, ( )的运算可行. (A) AC; (B) C AB -; (C) CB ; (D) BC CA -. 2. 设D=123 012247 -, ij A 表示D 中元素ij a 的代数余子式, 则3132333 A A A ++= ( ) .(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ?矩阵, 秩(A)=2, 123,,X X X 是非齐次线性方程组AX =β的三个线性 无关解向量, 则( )为AX =0的通解. (A) 11223;k X k X X +- (B) 123();X k X X +- (C) 1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+ 4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ). (A) 1 1 --=BC A X ; (B) 1 1 --=C BA X ; (C) 1 1 --=A BC X ; (D) 1 1 --=BA C X . 5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值. (A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件 三、计算下列各题(每小题10分,共30分) 1. 计算行列式 1112 0132.1223 1 420 ------

线性代数期末试卷及解析(4套全)2019科大

线性代数期末试卷(一) 一、填空题(每小题3分) (4)设12243311t -?? ? = ? ?-?? A , B 为3阶非零矩阵,=AB 0,则t =_________. 解:3-. 若||0≠A ,则A 可逆,由=AB 0知,=B 0,与B 为非零矩阵矛盾, 故 有||0=A . 122||0 811(8)77117(3)0 7 7 t t t -==-=-?+?=+-A 行 , 所以 3t =-. 二、选择题(每小题3分) (4)设111122232333,,a b c a b c a b c ?????? ? ? ? === ? ? ? ? ? ??????? ααα,则三条直线 1110a x b y c ++= 2220a x b y c ++= (其中22 0,1,2,3i i a b i +≠=) 3330a x b y c ++= 交于一点的充要条件是 (A )123,,ααα线性相关; (B )123,,ααα线性无关; (C )秩123(,,)r =ααα秩12(,)r αα; (D )123,,ααα线性相关,12,αα线性无关. 解:(D )正确. 1 12 2123 3(,)a b a b a b ?? ?== ? ???A αα,1 1 12 221233 33(,,)a b c a b c a b c -?? ? =-=- ? ?-??A ααα 三条直线交于一点的充要条件是方程组3x y ?? =- ??? A α有唯一解,当且仅当()()r r =A A ,且r n =时成 立,即()()2r r ==A A ,这说明12,αα线性无关,123,,-ααα线性相关,也就是123,,ααα线性相关, 12,αα线性无关,故选(D ). 仅123,,ααα线性相关,不足以保证()()r r =A A ,可能无解,故(A )不对. 123,,ααα线性无关,()2()3r r =<=A A ,无解,(B )不对. 当12312(,,)(,)r r =ααααα,说明方程组有解,但无法确保解唯一,故(C )不对. 七、(本题共2小题,第(1)题5分,第(2)题6分,满分11分) (1)设B 是秩为2的54?的矩阵,T T 12(1,1,2,3),(1,2,4,1),==--αα T 3(5,1,8,9)=--α是齐次 线性方程组=Bx 0的解向量,求x =B 0的解空间的一个标准正交基.

大一线性代数期末考试试卷+答案

线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321321321x x x x x x x x x λλ只有零解,则λ应满足。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ①n 2②1 2 -n ③1 2 +n ④4 2. n 维向量组s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ①s ααα,, , 21中任意两个向量都线性无关 ②s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关

大一线性代数期末试卷试题附有答案.docx

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ? ? ? ? ? ?诚信应考 , 考试作弊将带来严重后果! ?线性代数期末考试试卷及答案 ? ? ? 号?注意事: 1.考前将密封内填写清楚; 位? 2.所有答案直接答在卷上( 或答上 ) ; 座? 3.考形式:开()卷; ? 4.本卷共五大,分100 分,考 120分。 题号一二三四五总分? ?得分 ?评卷人 ? ? ? ?一、(每小 2 分,共 40 分)。 ? 业? 专?1.矩A为2 2矩阵, B为23矩阵 ,C为32矩阵,下列矩运算无意的是? ?【】 ? ? ) ? 封A B. ABC C . BCA D. CAB ?. BAC 2 答?+ E =0 ,其中 E是 n 位矩,必有【】 2. n 方 A 足 A 院不 ? A.矩 A 不是矩 B. A=-E C. A=E D. det(A)=1 ? 学内 ? ? 封?3. A n 方,且行列式det(A)= 1 ,det(-2A)=【】密 ? (? A. -2-2 n-2n ? B. C. D. 1 ? ?4. A 3 方,且行列式det(A)=0,在 A的行向量中【】? ? A. 必存在一个行向量零向量 ? ? B. 必存在两个行向量,其分量成比例 ? C. 存在一个行向量,它是其它两个行向量的性合 号? 密 D. 任意一个行向量都是其它两个行向量的性合 学 ? ? 5.向量a1, a2,a3性无关,下列向量中性无关的是【】? ?A.a1a2 , a2a3 , a3a1 B.a1, a2 ,2a13a2 ? C. a2,2a3,2a2a3a1- a3, a2 , a1 ? D. ? ? 名? 6. 向量 (I):a1 ,, a m (m 3) 性无关的充分必要条件是【】 姓? ? ? ? ? ?

线性代数期末考试试卷+答案(单美静)

2008年线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2?② 1 2 -n ?③ 1 2 +n ?④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n)线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

相关文档
相关文档 最新文档