文档库 最新最全的文档下载
当前位置:文档库 › 锻造压力计算公式

锻造压力计算公式

锻造压力计算公式
锻造压力计算公式

压力计算:F(N)=zmAp

z:考虑到变形条件之系数,其值如下:

自由锻造1.1;模锻简单外形锻件1.5;

模锻复杂外形锻件1.8;模锻各断面剧烈过渡、模锻外形很复杂锻件,模锻有大量余料流入飞边槽的锻件,模锻带压入成型的锻件等为2.0;

m:考虑到变形体积影响之系数,其值如下:

模锻之毛坯体积(cm3)系数

<25 1.0

>25-100 1.0-0.9

>100-1000 0.9-0.8

>1000-5000 0.8-0.7

>500-10000 0.7-0.6

>10000-15000 0.6-0.5

>15000-25000 0.5-0.4

>25000 0.4

A:模锻件(不计飞边)在垂直于作用力方向上的面积(mm2)。

p:单位压力(Mpa)根据合金种类和及变形的最终条件来选取,例如对于薄而宽的腹板的高强度铝合金模锻件可以参考一下数据来:p=500Mpa。

对于一般的镁、铝合金模锻件可以参考一下数据来选取:p=300Mpa。

新浇混凝土对模板的最大侧压力计算:

附页: 外墙单面支模模板计算书 1、由于采用大钢模板,现只对其的支撑体系进行验算。单面模板高3m,以单排支撑点为验算单位,计算宽度为1m。 2、新浇混凝土对模板的最大侧压力计算: 计算参数:γc=24KN/m3(混凝土的重力密度) t o=5小时(新浇混凝土的初凝时间要求搅拌站保证) β1=1.2(外加剂影响系数) β2=1.15(坍落度影响系数) v=1m/小时(混凝土浇筑速度,3m高的墙要求在>3小时浇完) H=3m(混凝土侧压力计算位置处到新浇顶面的总高度) 由公式F=0.22γc t oβ1β2v =0.22×24×5×1.2×1.15×1 =36.43KN/m2 由公式F=γc H =24×3 =72KN/m2 按取最小值,故最大侧压力为36.43KN/m2 3、荷载设计值F6及有效压头高度h F6=γc F =1.2×36.43 =43.72 KN/m2 有效压头高度h= F6/γc =43.72/24=1.82m 倾倒荷载产生的压头x= F7/γc=2.8/24=0.12 叠加后的有效高头h=1.82-0.12=1.7m 4、倾倒混凝土时产生的荷载F=2KN/m2 F7=γ7F=2×1.4=2.8KN/m2 剪力图

N B = a cos F T A =sinaN B 由此得:

采用密布型钢管行架进行支撑增加锚拉,采用分析计算的方法进行计算: φ48×3.5mm钢管的力学性能 抗拉、抗压强度设计值:f=205N/mm2 抗剪强度设计值:τ=120 N/mm2 单个杆件的抗力验算 单个受拉构件:T A max/489=15740/489=32.19N/mm2<205 N/mm2(满足要求) 总的拉力ΣTAi=14.43+15.74+14.28+9.24+4.14=57.83KN 57830/489=118.3 N/mm2<205 N/mm2(满足要求) 受压构件:N B max=30.59 KN;L B=1166mm 采用十字扣件,计算长度系数为1.5,所以实际计算长度为1749mm λ=L/r=1749/15.78=111;查表得Ψ=0.555 δ=N/ΨA=30590/(0.555×489)=112.7N/mm2<205 N/mm2(满足要求)5、地锚钢筋抗剪(整体) ΣF/fv=(24.05+26.23+23.79+15.40+6.90)×1000/(489×125)=1.58(根)所以至少需2排钢管埋地抗剪,实际安排5排,满足要求。 6、扣件抗滑 以每个抗滑能力为7 KN验算 水平方向,支点的最大水平力为26.23KN,每根水平受力杆通过5道行架有10个扣件锁定不可能位移。 通过以上计算,该支撑体系满足要求。

70MN锻造水压机液压缸的设计计算

主缸的结构设计 采用三缸分级压力,主缸30MN ,侧缸每个20MN 。 柱塞尺寸的确定: z D =0232.1105.3610304466 =????=ππp P m ,取1100=z D mm (主缸活塞直径) c D = 698.0105.361020446 6 =????=ππp P m ,取 710=c D mm (侧缸活塞直径) 70MN 锻造水压机主要技术参数 压机结构形式:三梁四柱预应力组合上传动式; 传动形式:油泵直传; 介质压力:36.5MPa ; 公称压力:70MN ; 压力分级:20MN/40MN/60MN(墩粗70MN) 回程力:6.4MN ; 活动横梁行程:2500mm ; 最大净空距(开启高度):6000mm ; 锻造偏心距:200mm ×200mm ; 活动横梁速度: 下降:300mm/s ; 工作:75~100mm/s(60MN); 60mm/s(70MN) 回程:300mm/s 工作台尺寸:3400×9000mm ; 工作台行程:左右各6000mm ; 移动工作台速度:150~200mm/s 移动工作台承重:≤170T 立柱中心距:5200×2300mm ;

此时,第一级压力为6695.344 1 21== P p D z πMN , 第二级压力为MN p D p D z c 1132.496695.344437.144 1 41222=+=+=P ππ 第三级压力为5569.636695.348874.284 1 42222=+=+=P p D p D z c ππMN 主缸内径1110101100211=+=?+==t D r D z mm ,即5552 1110 1==r mm 工作 缸 材 料 选 择 为 20MnMo , 许 用 应 力 [] σ取110~ 150Mpa(MPa MPa s b 372350,570 ==σσ),根据强度公式可以得到 主工作缸的外径: [][]p r r D 3221 22- ==σσ([]σ=110 Mpa ),08.17022=D mm ,取180 2=D mm , 即9002 1800 2== r mm 34512=-=r r δmm ,690~5.517345)2~5.1()2~5.1(=?==δt mm ,取 600=t mm 690~5.517345)2~5.1()2~5.1(=?===δh mm ,取600=h mm , 2225554.04.011=?==r R mm , 75.39615.11==δδmm ,25.86~75.51)25.0~15.0(==δR mm ,取 70=R mm , 5.5175.1==δL mm ,??=15~101a ,取?10 筒壁部分: 最大应力点在缸筒内壁,计算当量应力为 01.102105.36555 900900336 2 22212222max =??-?=?-=p r r r σMPa 570≥b σMPa 372≥s σMpa 安全系数为 6467.301 .102372 == s n

锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺 一、前言 复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。 二、工艺分析与方案确定 轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。 图1 针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

水的流量与管径的压力的计算公式

1、如何用潜水泵的管径来计算水的流量 Q=4.44F*((p2-p1)/ρ)0.5 流量Q,流通面积F,前后压力差p2-p1,密度ρ,0.5是表示0.5次方。以上全部为国际单位制。适用介质为液体,如气体需乘以一系数。 由Q=F*v可算出与管径关系。 以上为稳定流动公式。 2、请问流水的流量与管径的压力的计算公式是什么? 管道的内直径205mm,高度120m,管道长度是1800m,请问每小时的流量是多少?管道的压力是多少,管道需要采用多厚无缝钢管? 问题补充: 从高度为120米的地方用一根管道内直径为205mm管道长度是1800米放水下来,请问每个小时能流多少方水?管道的出口压力是多少?在管道出口封闭的情况下管道里装满水,管道底压力有多大 Q=[H/(SL)]^(1/2) 式中管道比阻S=10.3*n^2/(d^5.33)=10.3*0.012^2/(0.205^5.33)=6.911 把H=120米,L=1800米及S=6.911代入流量公式得 Q=[120/(6.911*1800)]^(1/2) = 0.0982 立方米/秒= 353.5 立方米/时 在管道出口封闭的情况下管道里装满水,管道出口挡板的压力可按静水压力计算: 管道出口挡板中心的静水压强P=pgH=1000*9.8*180=1764000 帕 管道出口挡板的静水总压力为F: F=P*(3.14d^2 /4)=1764000*(3.14*0.205^2 /4)=58193.7 牛顿 3、管径与流量的计算公式 请问2寸管径的水管,在0.2MPA压力的情况下每小时的流量是多少?这个公式是如何计算出来的? 流体在水平圆管中作层流运动时,其体积流量Q与管子两端的压强差Δp,管的半径r,长度L,以及流体的粘滞系数η有以下关系: Q=π×r^4×Δp/(8ηL) 4、面积,流量,速度,压力之间的关系和换算方法、 对于理想流体,管道中速度与压强关系:P + ρV2/2 = 常数,V2表示速度的平方。 流量=速度×面积,用符号表示 Q =VS 5、管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

锻造

1.锻造工艺的定义 锻造是一种在一定温度下借助工具或模具在冲击或压力作用下加工金属机械零件或零件毛坯的方法,锻件的生产率最高,锻件的形状,尺寸稳定性好,并有最佳的综合力学性能 2.锻造分类,按照成型方式分?按照温度划分? 锻造根据使用工具和生产工艺的不同而分为自由锻,模锻和特种锻造。 3.模锻冲孔连皮以及各种形式的应用情况 模锻不能直接锻出透空,因此在设计热锻件图时必须在孔内保留一层连皮,然后在切边压力机上冲除掉。冲孔连皮分为平底连皮,斜底连皮,带仓连皮,拱底连皮和压凹。 ①平底连皮:常用的脸皮形式 ②斜底连皮:当锻件内孔较大时(d﹥2.5h或d﹥60mm) ③带仓连皮:若锻件形状复杂,需经预锻和终锻成型,可在预锻型槽中安排斜底连皮,而在终锻型槽中则改用带仓连皮,以便于切边时冲除 ④拱底连皮:若锻件内孔很大(d﹥15h),而高度又很小,金属向外流动困难,这时采用拱底连皮或带仓连皮 ⑤压凹:当锻件内孔直径较小(d﹤25mm),不宜锻出连皮,应该有压凹形式,其目的是使锻件饱满成型 4.锻造时考虑锻件胚料的失稳问题:坯料的高径比H/D>3坯料镦粗时容易产生失稳,导致纵向弯曲。尤其在坯料端面不平,或坯料本身轴线不直,或坯料温度不均匀,或锤砧面不平行,都会使H/D>3得坯料产生纵向弯曲。弯曲了的坯料若不及时校正而继续镦粗,就可能产生折叠。因此在镦粗时,对坯料的高径比应有所限制。通常,圆截面坯料 H/D不宜超过2.5-3;方形或矩形截面坯料H/A不大于3.5-4 5.自由锻和模锻的特点各是什么?优缺点 自由锻:坯料在平砧上面或工具之间经逐步的局部变形而完成 模锻:①工艺灵活,适用推广②锤头行程打击速度或打击能量可调节③充填型槽能力强④提高锻件的使用寿命⑤生产率高⑥机械加工余量小,成本较低 自由锻优缺点:①工具简单通用性强,灵活性大,适用单件和小批量锻件,适用于新产品试制等②锻件精度低加工余量大,生产效率低,劳动强度大 6.精压锻件的目的:①提高锻件精度,降低表面粗糙度②使锻件表面产生硬化,可提高零件的表面强度和耐磨性能 7.锤上锻模的安装:(工序)①模锻工序:使坯料得到锻件所要求的形状和尺寸②制坯工序:改变毛坯的形状,合理分配毛坯体积③切断工序:当采用一料多件的模锻时,切断已锻好的锻件 8.材料的缺陷 铸锭:划痕,折叠,发裂,结疤,碳化物偏析,白点,非金属夹杂流线,粗晶环钢锭:偏析夹杂气体缩孔疏松贱疤 9.锻件图的绘制 确定分模面,确定锻件的机械加工余量和公差,模锻斜度,圆角半径,肋和腹板,冲孔连皮,模锻锻件图及锻件技术条件。 10.锻前加热的目的,变化,缺陷,以及避免措施 目的:提高金属塑性,降低变形抗力,即增强金属的可锻性,从而使金属易于流动成形,并使锻件获得良好的组织和力学性能。 变化与缺陷:组织结构方面,大多数金属不但发生组织转变,其晶粒还会长大,严重时会造成过热过烧 力学性能方面,总的趋势是金属塑性提高,变形抗力降低,残余应力逐步消失,但也可能产生新的内应力,过大的内应力会引起金属开裂。 物理性能当面,金属的导热系统,导温系统,膨胀系数,密度等均随温度的升高而变化。 化学变化方面,金属表层与炉气或其他周围介质发生氧化,脱碳,吸氢等化学反应,结果产生氧化皮与脱碳层等。 避免措施,按照加热规范进行加热 11.平锻机上模锻特点,适用范围(P204计算必考;注意课本上的步骤不对) 特点:①锻造过程中坯料水平放置,其长度不受设备工作空间的限制②有两个分模面,因而可以锻出一般锻压设备难以锻成的在两个方向上有凹槽凹孔的锻件,锻件形状更接近零件形状③平锻机导向性好,行程固定,锻件长度方向尺寸稳定性比锤上模锻高。但是,平锻机传动机构受力产生的弹性变形随压力增大而增加。所以,要合理预调必和尺寸,否则将影响锻件长度方向的精度④平锻机可以进行开式和闭式模锻,可以进行终锻成型和制坯,也可以进行弯曲,压扁,切料,穿孔,切边等工布 缺点:①平锻机是模锻设备中结构最复杂的一种,价格贵投资大②靠凹模加紧棒料进行锻造成型,一般要用高温度热轧钢材或冷拔整径刚才,否则会夹不紧或在凹模间产生大的纵向毛刺③锻前必须用特殊装置清除坯料上的氧化皮,否则锻件粗糙度比锤上锻件高④平锻机工艺适用性差,不适宜模锻非对称锻件 适用范围:平锻机用于镦锻各种螺栓,铆钉类锻件,大批量生产汽门,汽车半轴,环类锻件

混凝土侧压力的计算

K1621+193涵洞台身拉杆演算 1、墙身结构尺寸 墙身上口尺寸1.05m,下口尺寸为1.78m,墙高2.9m,墙身长37.3m (单侧),每4m设置沉降缝。 2、浇筑过程中混凝土侧压力的计算(取两式中较小值) F=0.22γc t oβ1β2V1/2(公式1) F=γc H(公式2) 式中: F—新浇筑混凝土对模板的侧压力,kN/m2; γc—混凝土的重力密度,24kN/m3; t o—新浇混凝土的初凝时间(h)可按实测确定(本段位4h)。当缺乏试验资料时,可采用t o=200/(T+15)=4.76计算(T为混凝土的温度=28);V—混凝土的浇筑速度m/h(按泵车浇筑速度30m3/h进行控制,浇筑长度按37.3m控制,则混凝土浇筑速度为V=30/(1.05+1.78)/2*37.3=0.6m/h; H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,H=0.6*4=2.4m; β1—外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2;(本段掺外加剂,取1.2) β2—混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。(本段取1.15) F=0.22γc t oβ1β2V1/2=0.22×24×4×1.2×1.15×0.78=22.73kN/m2

F=γc H=24×2.4=57.6kN/m2 取两者较小值22.73kN/m2计算。 3、对拉螺杆受力验算及间距确定 各拉杆尺寸容许拉力表 螺栓直径(mm)螺纹内径(mm)净面积(mm2)质量(kg/m)容许拉力(N) 12 9.85 75 0.89 12900 14 11.55 105 1.21 17800 16 13.55 144 1.58 24500 18 14.93 174 2 29600 20 16.93 225 2.46 38200 22 18.93 282 2.98 47900 初步拟定该涵洞墙身拉杆采用14拉杆(因实际为全丝拉杆,可采用12拉杆容许拉力进行演算),对拉螺栓取横向800mm,竖向600mm,按最大侧压力计算,每根螺栓承受的拉力为: N=22.73kN/m2×0.6m*0.8m=10.91kN 按拉杆直径为12,查表格得容许应力为12.9KN≥10.91,故拉杆直径及间距均能满足要求。

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

水泵管道压力损失计算公式

水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损 失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头 损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式

Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数;S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数; S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能 量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; H st--水泵运行时的净扬程,m; v2出-v2进/2g --进、出水的流速水头差,m; Σh--管路水头损失,m。 若进、出水池的流速水头差较小可忽略不计,则式(3-3)可简化为 H需=H st+Σh=H st=SQ2 (3-4) 利用式(3-4)可以画出如图3-2所示的二次抛物线,该曲线上任意一点表示水泵输送某一流量并将其提升H st高度时,管道中每位重力的液体所消耗的能量。因此,称该曲线为水泵装置的需要扬程或管路系统特性曲线。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

压力与流速的计算公式

压力与流速的计算公式 没有“压力与流速的计算公式”。流体力学里倒是有一些类似的计算公式,那是附加了很多苛刻的条件的,而且适用的范围也很小。 1,压力与流速并不成比例关系,随着压力差、管径、断面形状、有无拐弯、管壁的粗糙度、是否等径/流体的粘度属性……,无法确定压力与流速的关系。 2,如果你要确保流速,建议你安装流量计和调节阀。也可以考虑定容输送。 要使流体流动,必须要有压力差(注意:不是压力!),但并不是压力差越大流速就一定越大。当你把调节阀关小后,你会发现阀前后的压力差更大,但流量却更小。 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n, n是糙率,其大小视管壁光洁程度,光滑管至污秽管在0.011至0.014之间取 列举五种判别明渠水流三种流态的方法 [ 标签:明渠,水流,方法 ] (1)明渠水流的分类 明渠恒定均匀流 明渠恒定非均匀流 明渠非恒定非均匀流 明渠非恒定均匀流在自然界是不可能出现的。 明渠非均匀流根据其流线不平行和弯曲的程度,又可以分为渐变流和急变流。 (2)明渠梯形断面水力要素的计算公式: 水面宽度 B = b+2 mh (5—1) 过水断面面积 A =(b+ mh)h (5—2) 湿周(5—3) 水力半径(5—4)

式中:b为梯形断面底宽,m为梯形断面边坡系数,h为梯形断面水深。 (3)当渠道的断面形状和尺寸沿流程不变的长直渠道我们称为棱柱体渠道。 (4)掌握明渠底坡的定义,明渠有三种底坡:正坡(i>0)平坡(i=0)和逆坡(i<0。 明渠均匀流特性和计算公式 (1)明渠均匀流的特征: a)均匀流过水断面的形状、尺寸沿流程不变,特别是水深h沿程不变,这个水深也称为正常水深。 b)过水断面上的流速分布和断面平均流速沿流程不变。 c)总水头线坡度、水面坡度、渠底坡度三者相等,J = Js = I。 即水流的总水头线、水面线和渠底线三条线平行。 从力学意义上来说:均匀流在水流方向上的重力分量必须与渠道边界的摩擦阻力相等才能形成均匀流。因此只有在正坡渠道上才可能形成均匀流。 (2)明渠均匀流公式 明渠均匀流计算公式是由连续性方程和舍齐公式组成的,即 Q = A v (5—5)(5—5) 也可表示为:(5—7) 曼宁公式为(5—8) 式中K是流量模数,它表示当底坡为i = 1的时候,渠道中通过均匀流的流量。 水在管道内的流速与水所受的压力有关系吗? [ 标签:管道流速,流速,关系 ] 水在一根管道内的流速与他所受的压力有什么关系?加上管道对水的阻力之后呢? 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算,

水泵管道压力损失计算公式资料

水泵管道压力损失计 算公式

精品资料 水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式 Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中 S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数; S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数;S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; 仅供学习与交流,如有侵权请联系网站删除谢谢2

模板侧压力计算公式

新浇混凝土模板侧压力的计算研究 一、实验数据 表1.实验测的浇筑速度与最大压力 编号 浇筑速度V(m/h) 实测值P(kN/m) 编号 浇筑速度V(m/h) 实测值P(kN/m) 1 0.22 11.68 23 2.92 46.73 2 0.25 14.60 24 2.92 57.46 3 0.17 28.84 25 3.11 53.89 4 0.38 18.98 26 3.24 58.78 5 0.47 20.08 27 3.43 45.63 6 0.43 38.33 28 3.73 44.54 7 0.63 44.98 29 3.99 44.54 8 0.78 25.19 31 4.65 57.68 9 0.87 30.30 32 4.67 61.33 10 0.83 37.75 33 4.79 62.57 11 1.05 41.62 34 4.97 72.29 12 1.24 47.83 35 5.62 65.57 13 1.51 34.32 36 5.95 75.06 14 1.78 49.87 37 14.10 79.14 15 1.95 45.27 38 10.00 71.14 16 2.00 40.30 39 15.70 74.79 17 2.10 45.85 40 3.29 38.00 18 2.12 52.21 41 15.81 80.80 19 2.24 57.32 42 4.13 52.00 数据编号1至36为之前规范给出的图中已测的的数据,其中考虑到如今泵送混凝土的坍落度普遍偏高,按照规范中坍落度的修正我们在实测值上乘以了1.15。温度与混凝土侧压力的关系,采用线性比例关系图。 通过以上修正,表中的实测值实际上是经过修正,换算成温度200C ,坍落度12~16cm 下的模板侧压力值。 二、实验数据分析 依旧采用幂函数的关系即n P KV 来描述侧压力同浇筑速度的关系,对表中的测试数

水土压力计算示例

4.1 基坑围护墙内、外的土压力、水压力计算 4.1.1主动土压力的计算 按照水土分算原则计算土压力时,可采用总应力抗剪强度指标按下式计算主动土压力。 ()a a i i a K C K h q p 2-+=∑γ 式中,a p ——计算点处的主动土压力强度(kPa ),0≤a p 时,取0=a p ; i γ——计算点以上各土层的重度(kN/m 3) ,地下水位以上取天然重度,地下水位以下取水下重度; i h ——各土层的厚度(m ); a K ——计算点处土的主动土压力系数,() 245tan 2?-= a K ; C 、?——计算点处土的总应力抗剪强度指标。按三轴固结不排水试验或直剪固结快剪试验峰值强度指标取用。 计算式: ①填土 () 33.021045tan 21=-= a K ; 在水位以上 ()1111112a a a K C K h r q p -''+='; m h 01 ='; ())(6.633.0233.002011Kpa p a =?-?+='; m h 5.01 ='; ())(57.933.00233.05.0182012Kpa p a =?-??+='。 在水位以下 ()111111 112a a a K C K h r h r q p -+''+=; m h 01=; ())(57.933.00233.05.0182011Kpa p a =?-??+=; m h 11=; ())(21.1233.00233.0185.0182012Kpa p a =?-??+?+=。 ②褐黄色粉质粘土 () 49.02045tan 22=-= a K ; ()22222111 122a a a K C K h r h r h r q p -++''+=;

管径和压力损失计算

管径和压力损失计算 一、管径计算 1、管径计算 蒸汽、热水、压缩空气、氮气、氧气、乙炔按下述三式计算: 按体积流量计算 按质量流量计算 按允许压降计算 式中—管道内径(mm); —在工作状态下的体积流量(m3/h); —在工作状态下的质量流量(t/h); —在工作状态下的流速(m/s); —在工作状态下的密度(kg/m3); —摩擦阻力系数; —允许比压降(Pa/m)。 压缩空气、氮气、氧气、乙炔等气体工作状态下的体积流量可由标准状态(0℃,绝对压力0.1013MPa)下的体积流量换算而得 式中—标准状态下气体体积流量(m3/h); —气体工作温度(℃); —气体绝对工作压力(MPa)。 二、管道压力损失计算 管道中介质流动产生的总压差包括直管段的摩擦阻力压降和管道附件的局部阻力压降,以及管内介质的静压差。 管内介质的总静压差:; 直管的摩擦阻力压降:; 管道附件的局部阻力压降:; 管内介质的静压差:。 式中Δp—管内介质的总静压差(Pa); Δpm—直管的摩擦阻力压降(Pa); Δpd—管道附件的局部阻力压降(Pa); Δpz—管内介质的静压差(Pa); ∑ξ—管件局部阻力系数之和; ∑Ld—管道局部阻力当量长度之和(m); H1—管段始点标高(m); H2—管段终点标高(m); 对液体,因其密度大,计算中应计入介质静压差。对蒸汽或气体,其静压差可以忽略不计。 三、允许比压降计算 对各种压力管路的计算公式为 式中—单位压力降(Pa/m); 、—起点、终点压力(MPa); —管道直管段总长度(m);

—管道局部阻力当量长度(m)。 在做近似估算时,对厂区管路可取=(0.1-0.15);对车间的蒸汽、压缩空气、热水管路,取=(0.3-0.5);对车间氧气管路去=(0.15-0.20) 看见公式,写上自己知道的公式吧。 管径计算公式。 d=18.8乘以(Q/u)的开平方,其中Q=Qz(273+t)/(293*P),其中,Qz为标准状态下的压力,P为绝对压力。 对于u的确定,p=0.3~0.6MPa时,u=10~20s; p=0.6~1MPa时,u=10~15s; p=1~2MPa时,u=8~12s; p=2~3MPa时,u=3~6s; p>3MPa时,u=0~3s

掌握模锻压力机选择的方法

掌握模锻压力机选择的方法 [摘 要] 对模锻件变形力进行准确地计算,选择适当的模锻压力机是模锻加工过程中非常重要和必要的环节。本文解析了一个有关模锻压力机吨位选择的案例,旨在让大家能够理解和掌握模锻压力机选择的方法。 [关键词] 模锻 压力机 选择 一、引言 模锻(模型锻造)是把金属毛坯放在一定形状的锻模模膛进行锻压变形,模膛与锻件形状一致,金属变形流动充满模膛后得到模锻件的一种机械加工工艺。由于模锻件具有形状、尺寸比较精确,切削加工量少,材料利用率高,加工成本低,成品率高,机械性能优等特点,模锻加工已经被广泛应用到机械加工制造的各个领域,发展迅速,对我国汽车工业的快速发展起到推动作用。对模锻件变形力进行准确计算,选择适当的模锻压力机是模锻加工过程中非常重要和必要的环节。 二、案例 2006年7月3日,某锻造企业锻压车间使用德国辛佩坎普(Siempelkamp)公司制造的NPS1600T型高能压力机模锻齿轮(Dy202)时,滑块压下后不能向上自动回位,经设备维修人员检查后,发现压 力机的传动件螺旋副——螺杆、螺母上的一段螺纹根部出现环状裂纹,开裂处中的一段矩形螺纹已经断裂、脱落(见照片1)。锻造企业据 此向已投保的某保险公司提出理赔要求。该螺旋副是在2005年5月更 换的,至损坏时仅使用了一年多。为了查明螺旋副损坏的原因,保险

公司分别进行如下检测和计算: a. 委托D理工大学材料实验室对NPS1600T高能压力机螺母、螺杆 的损坏进行失效分析,得出结论: 1. 螺杆钢材及热处理等加工工艺正常,螺杆及螺母无质量问题; 2. 螺杆及螺母的螺纹断裂是疲劳引起的脆性断裂,疲劳源位于 螺纹根部的应力集中区,螺纹工作表面形成大范围多处疲劳 开裂,造成螺丝头多处断裂; 3. 压力机超负荷运行中的高压力是造成螺杆及螺母疲劳断裂 的直接原因。 b. 委托H大学锻压专业教授提供齿轮精锻选用压力机吨位的计算 结论为:锻造齿轮(Dy202)所需压力机吨位为3493~4722(吨); c. 螺旋副损坏后,锻造企业技术部提供给保险公司事故原因分析报告中的计算打击力为5500吨。 综上分析,保险公司的鉴定结论为:该NPS1600T高能压力机(公称压力为16000kN,最大工作压力为20000kN)损坏的原因是模锻齿轮(Dy202)所需的锻压力超过压力机的工作范围,导致压力机超负荷 工作,引起传动螺杆、螺母上的螺纹疲劳脆断。由于该公司技术部门选择设备不当,造成设备损坏,因此,拒绝理赔。 锻造企业对保险公司拒绝理赔的决定持有异议,诉讼至某市中级人民法院。法院委托辽宁省大连市产品质量监督检验所对NPS1600高 能压力机能否用于锻造模锻齿轮(Dy202)进行司法鉴定。通过深入 细致的调查、研究和分析,笔者发现保险公司的鉴定结论是错误的,

压力设备吨位计算

1 总述 模锻锤、螺旋压力机、热模锻压力机是锻造行业的三大主力模锻设备,尽管多年来各自技术均得到相应的发展,但由于其各自的性能特点,因而具有不同的适应性! 2 模锻设备的性能特点及选型 2.1 模锻锤 2.1.1性能特点 模锻锤是在中批量或大批量生产条件下进行各种模锻件生产的锻造设备,可进行多型模锻,由于它具有结构简单、生产率高、造价低廉和适应模锻工艺要求等特点,因此它是常用的锻造设备。 锻锤在现代锻造工业中的地位取决于如下几个方面: a结构简单,维护费用低; b 操作方便,灵活性强; c 模锻锤可进行多模镗锻造,无需配备预锻设备,万能性强; d 成形速度快,对不同类别的锻件适应性强; e 设备投资少(仅为热模锻压力机投资的1/4)。 锻锤的特出优点在于打击速度快,因而模具接触时间短,特别适合要求高速变形来充填模具的场合。例如带有薄筋板、形状复杂的而且有重量公差要求的锻件。由于其快速、灵活的操作特性,其适应性非常强,有人称之为“万能”设备。因而特别适合多品种、小批量的生产。锻锤是性能价格比最优的成形设备。 特别是百协程控锻锤的出现,使锻锤在现代锻造工业发展中又一次得到了复兴。 百协程控锻锤是充分发挥传统锻锤灵活自如、成型速度快的优势,综合运用了液压、电器等现代传动、控制技术,不仅具有简单可靠的结构,而且具有极为周到的运行监测系统、故障诊断系统、能量自控系统及程序打击控制系统,是当今锻造工业中符合高效、节能、环保要求的具有高精度、高可靠、高性价比特点并具有广泛适应性的现代化精密锻造设备。

百协程控锻锤具有如下特点: A. 高效 由于其独特的液压传动结构,使锤头在较短行程内获得巨大能量成为可能,即短行程高速锻造和高频率的连续锻造成为现实,这就为锻件的高效率快速成形创造了先决条件,程控锻锤的这一优势是其它锻造设备所无可比拟的。 B. 节能 节能是液压锤得到快速发展的最主要原因,程控锻锤传动效率可达65%,而传统蒸汽锤能量利用率为2%,能量利用率提高了几十倍,节能效果十分显著。程控锻锤的节能效益还体现再打击能量的有效控制,多余能量的打击也是一种能源的浪费。 C. 环保 该项目生产过程中无“三废”排放,打击能量的自动控制,避免了由于富余打击能量带来的噪音问题;程控全液压模锻锤采用液压阻尼隔振器,避免了由于打击带来的振动问题,其隔振效率可达85%,工作环境大为改善。程控锻锤是真正意义上符合环保要求的现代化锻造设备。 D . 高精度 整体U形铸钢砧座床身,可方便拆换的宽导轨结构,以及便于对模的模具固定、调整结构,为锻件的高精度要求提供了保证。打击能量的精确控制、程序打击的实现可避免由于操作者技术水平的差异造成产品质量的不稳定。可控制的打击能量,可保证模具不承受多余能量的打击。 E. 高可靠 高度集成化的锥阀控制技术,液压系统结构大为简单。简单的结构是锻锤具有较高可靠性的前提条件。现代电子技术的应用极大地提高了设备的控制性能及运行的可靠性,为其在锻造行业中成功地得到应用奠定了坚实的基础。 F、高质量 如果锻锤是由人操作,不管多么熟练的工人,也难保持100%的一致,特别换班操作,对同一种锻件更难以得到一致的打击能量和打击次数。百协程控锻锤

相关文档
相关文档 最新文档