文档库 最新最全的文档下载
当前位置:文档库 › 第七章 统计热力学习题及解答

第七章 统计热力学习题及解答

第七章 统计热力学习题及解答
第七章 统计热力学习题及解答

第七章 习题及解答

1. 设有一个体系,由三个定位的一维简谐振子所组成,体系能量为νh 2

11,这三个振子在三个固定的位置上振

动,试求体系全部的微观状态数。

解 对振动

νυενh )2

1

(+=,在总能量

νενh 2

11

=时,三个一维简谐振子可能有以下四种分布方式:

(1)

N 0=2, N 4=1, ν

εν

h 2

1

20?=, νεν

h 2

94

=, 3!2!1!

31==t (2)

N 0=1, N 2=2, νεν

h 2

1

10

?=, ν

ενh 2

5

22?=, 3!

2!1!

32==t (3)

N 0=1, N 1=1, N 3=1, ν

εν

h 21

0=, νενh 2

31=

, νενh 2

7

3=

, 6!1!1!1!33==t (4)

N 1=2, N 2=1, νεν

h 2

3

21

?=, νεν

h 2

5

2=, 3!

2!1!

34==t Ω= t 1+t 2+t 3+t 4=3+3+6+3=15

2. 当热力学体系的熵函数S 增加0.418J 〃K -1时,体系的微观状态数增加多少?用1/?ΩΩ表示。

解 S 1=kln Ω1, S 2=kln Ω2, S 2-S 1=kln(Ω2/Ω1)

ln(Ω2/Ω1)=(S 2-S 1)/k =(0.418J·K -1)/(1.38×10-23J 〃K -1)=3.03×1022

1/Ω?Ω=(Ω2

-Ω1

)/Ω1

=(Ω2

/Ω1

)-1≈Ω2

/Ω1

= exp(3.03×1022)

3. 在海平面上大气的组成用体积百分数可表示为:N 2(g)为0.78,O 2(g)为0.21,其他气体为0.01。设大气中各种气体都符合Bolzenmann 分布,假设大气柱在整个高度内的平均温度为220K 。试求:这三类气体分别在海拔10km ,60km 和500km 处的分压。已知重力加速度为9.8m·s -2。 解 所用公式为p=p 0e -Mgh/RT ,其中M(空气) =29g·mol -1, M(N 2)=28g·mol -1, M(O 2)=32g·mol -1, M(其它)=[M(空气)-0.78M(N 2)-0.21M(O 2)]/0.01

=44 g·mol -1,

海拔10km 处

2

33N 0028109.810100.78exp 0.17408.314220p p p -??

????=-= ????

233O 0032109.810100.21exp 0.03788.314220p p p -??

????=-= ????

330044109.810100.01exp 0.00098.314220p p p -??

????=-= ????

其它

22N O 00.2127p p p p p =++=总其它

2N x =0.8181,2O x =0.1777,x =其它0.0042;

海拔60km 处

2

335

N 0028109.860100.78exp 9.61108.314220p p p --??????=-=? ?

???

233-6

O 0032109.860100.21exp 7.15108.314220p p p -??????=-=? ?

??? 33-9

0044109.860100.01exp 7.19108.314220p p p -??????=-=? ?

???

其它 224N O 01.032610p p p p p -=++=?总其它

2N x =0.9307,2O x =0.0692,x =其它0.0001;

在海拔500km 处

233N 02.066710p p -=?,2N 0.999994x =

238

O 01.235410

p p -=?,2O 0.000006x =

5406.429910p p -=?其它,x 其它的数值太小,可忽略不计。

6. 设有一极大数目的三维平动子组成的粒子体系,运动与边长为a 的立方容器内,体系的体积、粒子质量和温度

有如下关系:

2

2

8m a h =0.10kT ,求处于能级22

149ma h =

ε和2

2

2827m a h =

ε上粒子数目的比值N 1/N 2。

解 由玻尔兹曼分布得

kT

kT

e g e g N N /2/12121εε--=

, kT m a

h 8.18182

2

1==ε

g 1=3 (18222=++z

y x

n

n n

) ???

?

?

??114141411

kT m a

h 7.28272

2

2==ε

g 2=4 (27222=++z

y x n n n ) ??????

?

?

?5

11151115

333

84.14

3439

.07.28.121===--e e e N N 7.将N 2气在电弧中加热,从光谱中观察到处于第一激发振动态的相对分子数

26.00

1

===υυN N ,式中υ为振动量子数,0=υN 为基态占有的分子数,1=υN 为第一激发态占有的分子数,已知N 2气的振动频率?=99.6ν11310-s 。

(1) 计算气体温度。

(2) 计算振动能量在总能量(包括平动、转动和振动)中所占的百分数。

解 (1)根据波尔兹曼分布

26.0)exp()2exp()

23exp(0

1=-=--===kT h KT

h kT h N N νννυυ 代入h 、ν、k 、T 数值得

K T 2490=。

(2)平动、转动为经典自由度,服从能量均分原理,故U t =RT

2

3

,

RT U r =。

N V T T

N

V T

e e RT T q RT U ,/22,2

)

1ln

(

ln ?????????-?=?

??

????=Θ-Θ-νννν

R K R e

e R T

T

)2857(21//=Θ+-Θ=Θ-Θ-νννν

%5.31%100)2857()2490()2490(2

3)2857(=?++=++R K R K R K R

K U U U U r t ν

ν 8. 设有一极大数目的三维平动子组成的粒子系统,运动于边长为a 的立方容器内,系统的体积、粒子质量和温度的

关系为:

2

2

8m a h =0.10kT ,试计算平动量子数为1,2,3和1,1,1两个状态上粒子分布数的比值。

解 量子数为1,2,3时2

52

14 1.48h kT ma

ε== ;量子数为1,1,1时

2

02

30.38h kT ma

ε==。由玻尔兹曼分布

5500/()/(1.40.3)/ 1.15/00.3329kT

kT kT kT kT kT N e

e e e N e

εεεε-------=====。 9.设某理想气体A ,其分子的最低能级是非兼并的,取分子的基态作为能量零点,相邻能级的能量为ε,其兼并度为2,忽略更高能级。

(1) 写出A 分子的总配分函数的表示式。 (2) 设ε=kT , 求出相邻两能级上最概然分子数之比N 1/N 0的值。 (3) 设ε=kT ,试计算1摩尔该气体的平均能量为多少?(设T=298.15K )

解 (1) ∑-=i

kT i i e g q /ε=kT kT e g e g /1

/010εε--+=1+2e -ε/kT

(2)N 1/N 0=2e

-ε/kT

=2e -1

=0.735

(3)2//2

,2

212ln kT e e RT T q RT U kT

kT N

V εεε?+=??? ????=--

==+=+--RT e

e 735.01735

.02121

10.424RT=1051J·mol -1 10. (1)某单原子理想气体的配分函数q 具有下列形式q=Vf(T),试导出理想气体的状态方程 。

(2)若该单原子理想气体的配分函数V h mkT q 2

3

2

2??

? ??=π,试导出压力p 和内能U 的表示式,以及理想气体

的状态方程 。

解 (1)

V NkT T f T Vf NkT V T Vf NkT V q NkT p T

N T N =?=???

????=??? ????=)()(1)](ln[ln ,,

对1mol 气体Nk=R ,V=V m 所以有pV m =RT 。

(2)V

NkT

h

mkT V mkT h NkT V q NkT p T N =

??? ????

??? ??=???

????=2

3

22

3

2

,212ln ππ

同理,对1mol 气体有pV m =RT 。

V

N T q NkT U ,2

ln ???

????= NkT T V h mk V

mkT h NkT 23

2321

22123

22

3

2

2

=???

? ??????

? ??=ππ。

11. 某气体的第一电子激发态比基态能量高400kJ 〃mol -1

,试计算

(1) 在300K 时,第一激发态分子所占的百分数? (2) 若要使激发态分子数占10%,则需多少温度? 解 (1)以1摩尔气体考虑

70

/)400000(/)400000(///1102.2111101-?-?----?=+=+=--RT

mol J RT

mol J RT E RT E RT

E e

e e e e N N

(2)1.01/)400000(/)400000(111=+=--?-?-RT

mol J RT

mol J e

e N N , T=2.2×104

K

13.零族元素氩(Ar )可看作理想气体,相对分子质量为40,取分子的基态(设其兼并度为1)作为能量零点,第一激发态(设其兼并度为2)与基态的能量差为ε,忽略其他高能级。 (1) 写出氩分子的总的配分函数表示式。

(2) 设ε=5kT ,求在第一激发态上最可及分布的分子数占总分子数的百分数。

(3) 计算1mol 氩气在标准状态下的统计熵值。设Ar 的核和电子的兼并度均等于1。

解(1)

kT kT

kT

kT

i

i e e

g e

g e g q i //1/0/2110εεεε----+=+==∑

(2)0133.021221255

///11111=+=+==-----e e e

e q e g N N kT kT kT εεε,即为1.33% (3)由沙克尔—特鲁德公式

}25])2(ln[{ln 3

2

/300+?+=V Nh

mkT g g Nk S e

n π

对1mol 理想气体,N=L ,m=M/L ,Nk=R ,V=V m =0.0224m 3,并把π,k,h 等常数代入得

)165.1ln 2

5

ln 23(-+=T M R S m θ

)165.124.14533.5)(314.8(11-+??=--K mol J

1

17.154--??=K

mol J

19. 298.15K 和p Θ

压力下,1molO 2(g)放在体积为的容器中,试计算

(1) 氧分子的平动配分函数q t

(2)氧分子的转动配分函数q r,已知其核间距r为1.207×10-10m。

(3)氧分子的电子配分函数q e,已知电子基态的兼并度为3,忽略电子激发态和振动激发态。(4)氧分子的标准摩尔熵值。

解(1)

kg

mol

mol

kg

m26

1

23

1

3

10

313

.5

10

023

.6

)

10

2

16

(-

-

-

-

?

=

?

?

?

?

=

1

3

1

302445

.0

0224

.0

15

.

273

15

.

298

-

-?

=

?

?

=mol

m

mol

m

K

K

V

m

30

2

3

2

10

29

.4

2

?

=

?

?

?

?

?

=V

h

mkT

q t

π

(2)

2

46

2

10

26

2

210

935

.1

)

10

207

.1(

2

2/

10

313

.5

2

m

kg

m

kg

r

m

r

I?

?

=

?

?

?

=

=

=-

-

-

μ

6.

71

2

8

2

2

=

=

h

IkT

q r

π

(3)

3

=

=e

e g

q

(4)

e

m

r

m

t

m

m

S

S

S

O

S+

+

=

)

(

2

θ

1

1

96

.

151

)

165

.1

ln

2

5

ln

2

3

(-

-?

?

=

-

+

=K

mol

J

T

M

R

S t

m

??

?

?

?

?

+

+

=

??

?

?

?

?

+

=

??

?

?

?

?

?

?

+

=1

8

ln

ln

1

8

ln

ln

ln

2

2

2

2

,

h

k

IT

R

h

IkT

R

T

q

RT

q

R

S

N

V

r

r

r

m

π

σ

σ

π

1

1

73

.

43

)

54

.

105

(ln-

-?

?

=

+

=K

mol

J

IT

R

σ

1

1

13

.9

3

ln

ln-

-?

?

=

=

=K

mol

J

R

g

R

S e

m

1

1

2

8.

204

)

(-

-?

?

=K

mol

J

O

S

m

θ

20. 求NO(g)在298K及101.325kPa时的摩尔熵。已知NO的

r

Θ=2.42K,νΘ=2690K,电子基态和第一激发态兼

并度皆为2,两能级间Δε=2.473×10-21J。

e

m

m

r

m

t

m

m

S

S

S

S

g

NO

S+

+

+

θ)

,

(

1

1

15

.

151

)

165

.1

ln

2

5

ln

2

3

(-

-?

?

=

-

+

=K

mol

J

T

M

R

S t

m

???

? ??+=???? ?

???+=18ln ln ln 22,h IkT R T

q RT q R S N V r

r r m

σπ 1

134.48)1(ln --??=+Θ

=K mol J T R r

σ ???

?

??????? ??---Θ=???? ?

???+=ΘΘ

T T N V m e e T R T

q RT q R S νννν

ν

ν

1ln 1/ln ln , 1

101.0--??=K mol J

T K kT e e e q /2.179/2222-?-+=+=ε

T e K e R e R T q RT q R S T K T

K T

K N

V e e e m )1(22.1792)22ln(ln ln /2.179/2.179/2.179,---+?++=???? ????+= =R(1.130+0.213)=11.166J 〃mol -1〃K -1

e

m m r m t m m S S S S g NO S +++=νθ),(= 210.65 J 〃mol -1

〃K -1

21. 某物质X 是理想气体,每个分子中含有n 个原子。在273.2K 时,X(g)与N 2(g)的C p,m 值相同,在这个温度下振动的贡献可以忽略。当升高温度后,X(g)的C p,m 值比N 2(g)的C p,m 值大3R,从这些信息计算n 等于多少,X 是什么形状的分子。

解 在低温时X(g)与N 2(g)有相同的C p,m 值,这说明X(g)与N 2(g)一样是线型分子。

在高温时振动对热容的贡献不能忽略。下面求一个单维谐振子在高温时振动对热容的贡献:

已知

)1(22 +++=-

-

-

kT

h kT

h kT

h e

e

e q ννν

ν

≈kT

h kT h e

e

νν--

-12

2

2

222,)1()/1(ln -??? ??=????????=???? ????=kT h kT h V V m m

V e e kT h R T q T R T U C νν

ν

ν

ν

ν

高温时

kT

h ν

<< 1,

kT

h e

kT

h νν

+

≈1,代入上式

R kT

h R C m

V ≈+≈)1(,ν

ν

即一个单维谐振子在高温时振动对热容的贡献为R 。这说明振动与平动和转动是有很大区别的,振动在低温时对热

容的贡献为0,高温时为R ;但平动和转动对热容的贡献基本上是每个自由度为

2

1

R (超低温时除外),并不随温度

变化。

本题在高温时X(g)的C p,m 值比N 2(g)的C p,m 值大3R, 这说明X(g)比N 2(g)分子多三个单维谐振子即三个振动自由度(或一个三维谐振子),即多一个原子,故X(g)为三原子线型分子。

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U , 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:() A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5. 对于玻尔兹曼分布定律n i =(N/q) ? g i ? exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:() A. n i 与能级的简并度无关 B. £ i 值越小,n i 值就越大 C. n i 称为一种分布 D. 任何分布的n i 都可以用波尔兹曼分布公式求出B 7. 15?在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上 分布的粒子数之比为:( ) A. 0.5exp( j/2£kT) B. 2exp(- £j/2kT) C. 0.5exp( -£j/kT) D. 2exp( 2 j/k£T) C 8. I2的振动特征温度? v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度?v是物质的重要性质之一,下列正确的说法是: ( ) A. ? v越高,表示温度越高 B. ?v越高,表示分子振动能越小 C. ?越高,表示分子处于激发态的百分数越小 D. ?越高,表示分子处于基态的百分数越小 C 11. 下列几种运动中哪些运动对热力学函数G与

统计热力学基础复习整理版汇总

统计热力学基础 一、单选题 1) 统计热力学主要研究(A )。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系(D) 耗散结构(E) 单个粒子的行为 2) 体系的微观性质和宏观性质是通过( C)联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3) 统计热力学研究的主要对象是:( D) (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4) 下述诸体系中,属独粒子体系的是:(D ) (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体(D) 理想气体(E) 真实气体 5) 对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:(B ) (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理(E) 能量均分原理 6) 在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:(B ) (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7) 在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:(A ) (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8) 以0到9这十个数字组成不重复的三位数共有(A ) (A) 648个(B) 720个(C) 504个(D) 495个 9) 各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:(B ) (A)?ε t > ?ε r > ?ε v > ?ε e(B)?ε t < ?ε r < ?ε v < ?ε e (C) ?ε e > ?ε v > ?ε t > ?ε r(D)?ε v > ?ε e > ?ε t > ?ε r (E)?ε r > ?ε t > ?ε e > ?ε v 10) 在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:(C ) (A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系 11) 对于定域子体系分布X所拥有的微观状态t x为:( B)

热力学统计物理 课后习题 答案

第一章 热力学的基本规律 1.1 试求理想气体的体胀系数α,压强系数β与等温压缩系数κT 。 解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数T pV nR T V V p 1 1== ??? ????= α, 压强系数T pV nR T P P V 1 1== ??? ????= β 等温压缩系数p p nRT V p V V T 1 )(112=-?? ? ??=???? ????- =κ 1.2证明任何一种具有两个独立参量T,P 的物质,其物态方程可由实验测量的体胀系数与等温压缩系数,根据下述积分求得()? -=dp dT V T καln ,如果P T T 1 ,1 = =κα,试求物态方程。 解: 体胀系数 p T V V ??? ????= 1α 等温压缩系数 T T p V V ???? ????-=1κ 以T,P 为自变量,物质的物态方程为 ()p T V V ,= 其全微分为 dp V dT V dp p V dT T V dV T T p κα-=? ??? ????+??? ????= dp dT V dV T κα-= 这就是以T,P 为自变量的完整微分,沿一任意的积分路线积分,得 ()?-=dp dT V T καln 根据题设 , 若 p T T 1,1== κα ????? ? ?-=dp p dT T V 11ln 则有 C p T V +=ln ln , PV=CT 要确定常数C,需要进一步的实验数据。 1.4描述金属丝的几何参量就是长度L,力学参量就是张力£,物态方程就是(£,L,T)=0,实验通常

在大气压下进行,其体积变化可以忽略。线胀系数定义为F T L L ??? ????= 1α ,等温杨氏模量定义为T L F A L Y ??? ????= ,其中A 就是金属丝的截面。一般来说,α与Y 就是T 的函数,对£ 仅有微弱的依赖关系。如果温度变化范围不大,可以瞧作常数。假设金属丝两端固定。试证明,当温度由T1降至T2时,其张力的增加为)T -(T -Y A £12α=?。 解: f (£,L,T)=0 ,£=F£(L,T) dT T dL L dT T d L T L ??? ????-??? ????+??? ????=££££ (dL=0) 1££-=??? ??????? ??????? ????T F L L L T T αα YA L AY L L T L T T F L -=-=??? ??????? ????-=??? ????££ dT YA d α-=£ 所以 )T -(T -Y A £12α=? 1.6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体所做 的功与所吸收的热量。 解:将气体的膨胀过程近似瞧做准静态过程。 根据? -=VB VA pdV W , 在准静态等温过程中气体体积由V A 膨胀到VB,外界对气体所做的功为 A B A B VB VA VB VA P P RT V V RT V dV RT pdV W ln ln -=-=-=-=? ? 气体所做的功就是上式的负值, - W =A B P P RT ln -= 8、31?300?ln20J= 7、47?10-3J 在等温过程中理想气体的内能不变,即?U=0 根据热力学第一定律?U=W+Q, 气体在过程中吸收的热量Q 为 Q= - W = 7、47?10-3J 1、7 在25o C 下,压强在0至1000pn 之间,测得水的体积为 V=18、066-0、715?10-3P+0、046?10-6P 2cm 3?mol -1 如果保持温度不变,将1mol 的水从1pn 加压至1000pn,求外界所作的功。 解:将题中给出的体积与压强的关系记为 V=A+BP+CP 2 由此得到 dV=(B+2CP)dP 保持温度不变,将1mol 的水从1Pn 加压至1000Pn,在这个准静态过程中,外界所作的功为

第七章、统计热力学基础习题和答案

统计热力学基础 题 择 一、选 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U 有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 3.这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 4.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 5. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律 6.时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 7.对于玻尔兹曼分布定律n i =(N/q) ·g i·exp( -εi/kT)的说法:(1) n i 是第i 能级上的 粒子分布数; (2) 随着能级升高,εi 增大,n i 总是减少的; (3) 它只适用于可区分的独 8.立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 9.对于分布在某一能级εi 上的粒子数n i ,下列说法中正确是:( ) 10.A. n i 与能级的简并度无关 B. εi 值越小,n i 值就越大 C. n i 称为一种分布 D.任何分布的n i 都可以用波尔兹曼分布公式求出 B 11. 15.在已知温度T 时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp( j/2εk T) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2 j/kεT) C 12. I2 的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2 的温度 13.是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 14.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 15. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小 D. Θv 越高,表示分子处于基态的百分数越小 C 16.下列几种运动中哪些运动对热力学函数G 与A 贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 17.三维平动子的平动能为εt = 7h 2 /(4mV2/ 3 ),能级的简并度为:( )

统计热力学基础习题课汇总

统计热力学基础习题课 一、内容提要 1、微观粒子的运动形式和能级公式 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g = 3。 (2)刚性转子 双原子分子 )1(822+= J J I h r πε 式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=,μ:分子的折合质量,2 12 1m m m m +=μ,0R :分子的平衡键长,能级r ε的简并度 g r = 2J+1 (3)一维谐振子 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1 对三维谐振子, νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。

2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级分布数,每 一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数 ∏=i i n i D n g N W i !! 离域子系统能级分布微态数 ∏=i i n i D n g W i ! 系统总的微态数 ∑=ΩD D W (2)最概然分布 等概率定理:对N ,U ,V 确定的系统,每个可能的微态出现的概率相等。 Ω =1 P ,某个分布的概率 Ω=D D W P 最概然分布:微态数最大的分布称为最概然分布。最概然分布可以用来代表平衡分布。 (3)玻耳兹曼分布 对于一个N ,U ,V 确定的系统,kT i i i e g q N n ε-=——玻耳兹曼分布 配分函数:kT i i e g q ε-∑= 式中,i g :能级i 的简并度,n :分布在能级i 上的粒子数。 3、配分函数 由于i n i e i i r i t i ,,,v ,,εεεεεε++++=,i n i e i i r i t i g g g g g g ,,v,,,????=可得: n e r t q q q q q q v = 为配分函数的析因子性质。 (1)能量零点的选择 选择各独立运动形式的基态能级作为各自能量的零点,则能级i 的能量有 00εεε-=i i , kT e q q 0 ε-= kT e q q 0 ε?=

统计热力学

第六章 统计热力学初步 单项选择 1.设N 个不同的球分配在两个盒子中,分配到A 盒中的球数为M ,则错误的是( D.E ) A .体系的总微观状态数为 ∑∑==-== ΩN M N M M N M N t 0 0)!(!! B .体系的总微观状态数为N 2=Ω C .最可几分布的微观状态数为mp t =?? ? ????? ??2!2!!N N N D .t mp

(完整word版)统计热力学--小结与习题

第9章 统计热力学初步小结与练习 核心内容:配分函数(q )及其与热力学函数(U,S …)之间的关系 主要内容:各种运动形式的q 及由q 求U,S …的计算公式 一、内容提要 1、微观粒子的运动形式和能级公式 n e r t εεεεεε++++=v 式中,ε:粒子的总能量,t ε:粒子整体的平动能,r ε:转动能,v ε:振动能, e ε:电子运动能,n ε:核运动能。 (1)三维平动子 )(8222222 2c n b n a n m h z y x t ++=ε 式中,h :普朗克常数;m :粒子的质量;a ,b ,c :容器的三个边长,n x ,n y ,n z 分别为x ,y ,z 轴方向的平动量子数,取值1,2,3……。 对立方容器 )(82 223 22z y x t n n n mV h ++= ε 基态n x = 1,n y = 1,n z = 1,简并度10,=t g ,而其他能级的简并度要具体情况具体分析,如3 2286mV h t =ε的能级,其简并度g = 3。 (2)刚性转子 双原子分子 )1(822+= J J I h r πε

式中,J :转动量子数,取值0,1,2……,I :转动惯量,20R I μ=, μ:分子的折合质量,2 12 1m m m m += μ,0R :分子的平衡键长,能级r ε的 简并度 g r = 2J+1 (3)一维谐振子 νυεh )2 1(v += 式中,ν:分子的振动频率,υ:振动量子数,取值0,1,2……,各能级都是非简并的,g v = 1 对三维谐振子, νυυυεh z y x )2 3 (v +++= 2 )2)(1(v ++=s s g , 其中s=υx + υy + υz (4)运动自由度:描述粒子的空间位置所必须的独立坐标的数目。 2、能级分布的微态数和Boltzmann 分布 (1)能级分布的微态数 能级分布:N 个粒子分布在各个能级上的粒子数,叫做能级 分布数,每一套能级分布数称为一种分布。 微态数:实现一种分布的方式数。 定域子系统能级分布微态数 ∏=i i n i D n g N W i !!

统计热力学基本方法

第五章 统计热力学基本方法 在第四章我们论证了最概然分布的微观状态数lnt m 可以代替平衡系统的总微观状态数ln Ω,而最概然分布的微观状态数又可以用粒子配分函数来表示。在此基础上,为了达到从粒子的微观性质计算系统的宏观热力学性质之目的,本章还需重点解决以下两个问题:(1)导出系统的热力学量与分子配分函数之间的定量关系;(2)解决分子配分函数的计算问题。 §5.1 热力学量与配分函数的关系 本节的主要目的是推导出系统的热力学函数与表征分子微观性质的分子配分函数间的定量关系。在此之前先证明β = - 1/(kT ) 一 求待定乘子β 对独立可别粒子系统: ln Ω = ln t m = ln (N !∏i i i ! g i N N ) = ln N ! +i i i ln g N ∑ - ∑i i !ln N 将Stirling 近似公式代入、展开得 ln Ω = N ln N +i i i ln g N ∑ - ∑i i i ln N N 代入Boltzmann 关系式 (4—6)得 S = k (N ln N +i i i ln g N ∑ - ∑i i i ln N N ) 按Boltzmann 分布律公式 N i = q N g i exp (βεi ) ,代入上式的ln N i 中,利用粒子数与能量守恒关系得 独立可别粒子系统: S = k (N ln q -βU ) (5—1a) 独立不可别粒子系统: S = k (N ln q -βU - ln N ! ) (5—1b) 上式表明S 是(U ,N ,β)的函数,而β是U ,N ,V 的函数,当N 一定时,根据复合函数的偏微分法则 N V N U N N V U S U S U S ,,,,??? ? ??????? ????+??? ????=??? ????βββ 对(5—1a,b )式微分结果均为 N V U S ,??? ????N V N V U U q N k k ,,ln ??? ??????? ?????-???? ????+-=βββ (5—2) 又 q = )ex p(g i i i βε ∑ 所以 N V q ,ln ???? ????β = N V q q ,1???? ????β= )ex p(g 1i i i i βεε∑q =N U (5—3) 代入(5—2)式得 N V U S ,? ?? ????= - k β 对照热力学中的特征偏微商关系 T U S N V 1,= ? ?? ???? 便可以得到 kT 1-=β

第七章 统计热力学基础

第七章统计热力学基础 一、选择题 1、统计热力学主要研究()。 (A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构 2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( ) (A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值 (C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值 3、最低能量零点选择不同,对哪些热力学函数值无影响:( ) (A) U (B) S (C) G (D) H 4、统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律 (B) 宏观体系的各种性质 (C) 微观粒子的运动规律 (D) 宏观系统的平衡性质 5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理 6、以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A) t > r > v > e(B) t < r < v < e (C) e > v > t > r(D) v > e > t > r 8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系 (B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系 (D) 气体属定域子体系而晶体属离域子体系 9、对于定域子体系分布X所拥有的微观状态t x为:() (A) (B)

07章统计热力学基础(1)

第七章统计热力学基础 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明: U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×, (1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少? 6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度? 7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。

第七章 统计热力学基础

第七章统计热力学基础 一、单选题 1.统计热力学主要研究()。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系 (D) 耗散结构(E) 单个粒子的行为 2.体系的微观性质和宏观性质是通过()联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3.统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4.下述诸体系中,属独粒子体系的是:() (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体 (D) 理想气体(E) 真实气体 5.对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论 (D) 统计学原理(E) 能量均分原理

6.在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:() (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7.在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:() (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8.以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 9.各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A)△e t >△e r >△e v >△e e(B)△e t <△e r <△e v <△e e (C) △e e >△e v >△e t >△e r(D)△e v >△e e >△e t >△e r (E)△e r >△e t >△e e >△e v 10.在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系(C) 气体属离域子体系而晶体属定域子体系 (B) 气体和晶体皆属离域子体系(D) 气体属定域子体系而晶体属离域子体系 11.对于定位系统分布X所拥有的微观状态t x为:(B) (A)(B)

统计热力学

课程论文(设计) 学 院 化 学 化 工 学 院 专 业 应 用 化 学 年 级 2011 级 姓 名 李俊姣 课 程 统计热力学 指导教师 成 绩 2014年6月15日

目录 摘要 (2) 关键词 (2) Abstrac (2) keywords (2) 引言 (2) 1统计热力学的发展历程 (3) 2统计热力学取得的成果 (3) 3统计热力学发展现状 (4) 4统计热力学的意义 (4) 5统计热力学的发展展望 (5) 6结语 (5) 7相关文献 (5) 1

统计热力学 学生姓名:李俊姣学号:20115052029 化学化工学院2011级应用化学 摘要:统计热力学应用统计力学方法研究平衡系统的热力学性质。统计热力学认为物质的宏观性质是大量微观粒子运动量的统计平均值的体现。统计热力学从系统内部粒子的微观性质及其结构的数据出发,在统计原理的基础上,运用力学和统计规律推求大量粒子运动的统计平均结果,从而得到宏观性质。统计力学把热运动的宏观现象和微观机制联系起来,给经典热力学的唯象理论提供了数学证明。随着计算机和量子力学的发展,统计热力学会在工程上有更为广泛的应用。 关键词:统计热力学微观经典热力学 Abstract: Statistical thermodynamics statistical mechanics method is applied to study the thermodynamic properties of balance system. Macroscopic properties of statistical thermodynamics that matter is a reflection of a large number of microscopic particles exercise statistical average. Statistical thermodynamics from inside the system the data of the microscopic properties and the structure of the particles, on the basis of the principles of statistics, applied mechanics and statistical laws derive a lot of statistical average particle movement as a result, the macroscopic properties is obtained. Statistical mechanics macroscopic phenomena and microcosmic mechanism of the thermal motion, to the classical thermodynamics of phenomenological theory provides a mathematical proof. With the development of computer and quantum mechanics, statistical thermodynamic learn to have more extensive application in engineering. Keywords: Microscopic classical statistical thermodynamics thermodynamics 引言 热力学是以热力学三定律为基础,以大量分子的集合体作为研究对象,利用热力学数据,通过严密的逻辑推理,进而讨论平衡系统的各宏观性质之间的相互关系及其变化规律,揭示变化过程的方向和限度。从热力学所得到的结论对宏观平衡系统具有高度的普适性和可靠性,但是,热力学处理问题时没有考虑物质的微观结构,而任何物质的各种宏观性质都是微观粒子运动的客观反映。人们希望从物质的微观结构出发来了解其各种宏观性质,这是经典热力学所不能满足的,而统计热力学在这点上弥补了经典热力学的不足。 统计热力学从微观粒子所遵循的量子规律出发,研究的对象是大量分子的集合体,用统计的方法推断出宏观物质的各种性质之间的联系,阐明热力学定律的微观含义,揭示热力学函数的微观属性。统计热力学可以根据统计单元的力学性质(如速率,动量,位置,振动等),用统计的方法来推求系统的宏观热力学性质(如压力,热容,熵等)。 2

南京大学《物理化学》练习 第三章 统计热力学基础

第三章统计热力学基础 返回上一页 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明:U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×, (1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少?

6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度? 7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。 (3)计算1 mol Ar气在标准状态下的统计熵值。设Ar 的核和电子的简并度均等于1。 8.Na原子气体(设为理想气体)凝聚成一表面膜 (1)若Na原子在膜内可自由运动(即二维平动),试写出此凝聚过程的摩尔平动熵变的统计表达式。 (2)若 Na原子在膜内不动,其凝聚过程的摩尔平动熵变的统计表达式又将如何? (要用相对原子质量Ar,体积V,表面积A,温度T等表示的表达式) 9. 某物X是理想气体,每个分子中含有 n个原子。在273.2K时,X(g) 与N2(g)的C(p,m)值相同,在这个温度下振动的贡献可以忽略。当升高温度后,X(g)的C(p,m)值比N2的C(p,m)值大3R,从这些信息计算n等于多少,X是什么形状的分子。 10. CO的转动特征温度为2.8 K,请找出在240 K时CO最可能出现在J等于多少的量子态上。 (J为转动量子数,取整数,转动简并度为(2J+1))

统计热力学OK

统计热力学 摘要:统计热力学应用统计力学方法研究平衡系统的热力学性质。统计热力学认为物质的宏观性质是大量微观粒子运动量的统计平均值的体现。统计热力学从系统内部粒子的微观性质及其结构的数据出发,在统计原理的基础上,运用力学和统计规律推求大量粒子运动的统计平均结果,从而得到宏观性质。统计力学把热运动的宏观现象和微观机制联系起来,给经典热力学的唯象理论提供了数学证明。随着计算机和量子力学的发展,统计热力学会在工程上有更为广泛的应用。 关键词:统计热力学微观经典热力学 Statistical Thermodynamic Abstract:Statistical thermodynamic applies statistical mechanics method to study the thermodynamic properties of balance system. On the basis of statistical principle, statistical thermodynamic starts from internal system of the micro particle properties and structure of data in view of statistics to derive a lot of particle motion statistical average results, thus obtains the macroscopic properties. Statistical mechanic makes the thermal movement of the macroscopic phenomena and microscopic mechanism connected, providing a mathematical proof to the classical thermodynamic of phenomenological theory. For the development of computer and quantum mechanics, statistical thermodynamic will be more widely used in engineering. Key words:statistical thermodynamic microscopic classical thermodynamics 1 序论 热力学是以热力学三定律为基础,以大量分子的集合体作为研究对象,利用热力学数据,通过严密的逻辑推理,进而讨论平衡系统的各宏观性质之间的相互关系及其变化规律,揭示变化过程的方向和限度[1-3]。从热力学所得到的结论对宏观平衡系统具有高度的普适性和可靠性,但是,热力学处理问题时没有考虑物质的微观结构,而任何物质的各种宏观性质都是微观粒子运动的客观反映[4]。人们希望从物质的微观结构出发来了解其各种宏观性质,这是经典热力学所不能满足的,而统计热力学在这点上弥补了经典热力学的不足[5-6]。 统计热力学从微观粒子所遵循的量子规律出发,研究的对象是大量分子的集合体,用统计的方法推断出宏观物质的各种性质之间的联系,阐明热力学定律的微观含义,揭示热力学函数的微观属性。统计热力学可以根据统计单元的力学性质(如速率,动量,位置,振动等),用统计的方法来推求系统的宏观热力学性质(如压力,热容,熵等)[7-8]。 2 统计热力学 2.1 统计力学的发展历程 统计力学产生于经典分子运动论。麦克斯韦(James Clerk Maxwell,1831—1879) 通常被认为是统计力学理论的奠基人。他率先开始寻找热力学系统的微观处理方法(表征为统计力学特性)和唯象处理方法(表征为热力学特性)之间的联系。1860年麦克斯韦题为《对气体运动论的解释》的论文,第一次提出了统计力学的基本思想。1867年麦克斯韦引入了

统计热力学习题

第六章统计热力学 一 . 选择题 1. 玻尔兹曼熵定理一般不适用于: ( ) (A) 独立子体系 (B) 理想气体 (C) 量子气体 (D) 单个粒子 2.下列各体系中属于独立粒子体系的是: ( ) (A) 绝对零度的晶体 (B) 理想液体混合物 (C) 纯气体 (D) 理想气体的混合物 3. 玻尔兹曼分布 _______ 。 (A) 是最概然分布,但不是平衡分布。(B) 是平衡分布,但不是最概然分布。 (C) 即是最概然分布,又是平衡分布。(D) 不是最概然分布,也不是平衡分布。 4. 在 N 个 NO 分子组成的晶体中,每个分子都有两种可能的排列方式,即 NO 和 ON,也可将晶体视为 NO 和 ON 的混合物,在 0K 时该体系的熵值 (A) S O = 0 (B) S O = kln2 (C) S O = Nkln2 (D) S O = 2klnN 5. 在分子运动的各配分函数中与压力有关的是: ( ) (A)电子运动的配分函数 (B)平均配分函数 (C)转动配分函数 (D)振动配分函数 6. 已知 CO 的转动惯量 I = 1.45×10-26 kg.m2,则 CO 的转动特征温度为: (A) 0.36 K (B) 2.78 K (C) 2.78×107 K (D) 5.56 K 7. 关于配分函数,下面哪一点是不正确的 ( ) (A) 粒子的配分函数是一个粒子所有可能状态的玻尔兹曼因子之和; (B) 并不是所有配分函数都无量纲; (C) 粒子的配分函数只有在独立粒子体系中才有意义; (D) 只有平动配分函数才与体系的压力有关。 8. 热力学函数与分子配分函数的关系式对于定域粒子体系和离域粒子体系都相同的是 ( ) (A) G,F,S (B) U,H,S (C) U,H,C V (D) H,G,C V 9. 粒子的配分函数 q 是 ( ) (A) 一个粒子的 (B) 对一个粒子的玻尔兹曼因子取和; (C) 粒子的简并度和玻尔兹曼因子的乘积取和; (D) 对一个粒子的所有可能状态的玻尔兹曼因子取和。 10. NHВ分子的平动、转动振动、自由度分别为: ( ) (A) 3,2,7 (B) 3,2,6 (C) 3,3,7 (D) 3,3,6 11. 双原子分子的振动配分函数 q ={1 - exp(-hν/kT)}-1是表示 ( ) (A) 振动处于基态 (B)选取基态能量为零 (C) 振动处于基态且选基态能量为零 (D)振动可以处于激发态,选取基态能量为零 12. 双原子分子以平衡位置为能量零点,其振动的零点能等于: ( ) (A) kT (B) (1/2)kT (C) hν (D) (1/2)hν

第七章 统计热力学习题解答

第七章 习题及解答 1. 设有一个体系,由三个定位的一维简谐振子所组成,体系能量为νh 2 11,这三个振子在三个固定的位置上振动, 试求体系全部的微观状态数。 解 对振动 ν υεν h )2 1 (+=,在总能量 νεν h 2 11= 时,三个一维简谐振子可能有以下四种分布方式: (1) N 0=2, N 4=1, ν εν h 2 1 20?=, νεν h 2 94 =, 3! 2!1! 31==t (2) N 0=1, N 2=2, νεν h 2 1 10 ?=, ν εν h 2 5 22?=, 3! 2!1! 32== t (3) N 0=1, N 1=1, N 3=1, ν εν h 2 1 0=, νενh 2 31 =, νεν h 2 7 3= , 6!1!1!1!33==t (4) N 1=2, N 2=1, νεν h 2 3 21 ?=, νεν h 2 52=, 3! 2!1! 34==t Ω= t 1+t 2+t 3+t 4=3+3+6+3=15 2. 当热力学体系的熵函数S 增加0.418J ·K -1时,体系的微观状态数增加多少?用1/?ΩΩ表示。 解 S 1=kln Ω1, S 2=kln Ω2, S 2-S 1=kln(Ω2/Ω1) ln(Ω2/Ω1)=(S 2-S 1)/k =(0.418J·K -1)/(1.38×10-23J ·K -1)=3.03×1022 1/Ω?Ω=(Ω2 -Ω1 )/Ω1 =(Ω2 /Ω1 )-1≈Ω2 /Ω1 = exp(3.03×1022) 3. 在海平面上大气的组成用体积百分数可表示为:N 2(g)为0.78,O 2(g)为0.21,其他气体为0.01。设大气中各种气体都符合Bolzenmann 分布,假设大气柱在整个高度内的平均温度为220K 。试求:这三类气体分别在海拔10km ,60km 和500km 处的分压。已知重力加速度为9.8m·s -2。 解 所用公式为p=p 0e -Mgh/RT ,其中M(空气) =29g·mol -1, M(N 2)=28g·mol -1, M(O 2)=32g·mol -1, M(其它)=[M(空气)-0.78M(N 2)-0.21M(O 2)]/0.01

相关文档
相关文档 最新文档