文档库 最新最全的文档下载
当前位置:文档库 › 空间中的位置关系1:平面及公理

空间中的位置关系1:平面及公理

空间中的位置关系1:平面及公理
空间中的位置关系1:平面及公理

平面

在《西游记》中,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,如果把孙悟空看作是一个点,他的运动成为一条线,大家说如来佛的手掌像什么?

1.平面

通常把水平的平面画成一个__平行四边形__,并且其锐角画成45°,且横边长等于

其邻边长的__2__倍,如图1所示;如果一个平面被另一个平面遮挡住,为了增强

立体感,被遮挡部分用__虚线__画出来,如图2所示

(1)用一个__希腊字母__α,β,γ等来表示,如上图1中的平面记为平面α

[归纳总结]习惯上,用平行四边形表示平面;在一个具体的图形中也可以用三角形、圆或其他平面图形表示平面.

2.点、线、面的位置关系的表示

A是点,l,m是直线,α,β是平面.

[归纳总结]从集合的角度理解点、线、面之间的位置关系

(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“?”表示.

(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“?”表示.

(3)直线和平面都是点集,它们之间的关系可看成集合与集合的关系,故用“?”或“?”表示.

3.公理1

A∈l,B∈l,且A∈α,B∈α?__l?α__ 4.公理2

A,B,C三点__不共线__?有且只有一个平面α,使A∈α,B∈α,C∈α

[归纳总结](1)公理2的条件是“过不在一条直线上的三点”,结论是“有且只有一个平面”.

(2)公理2中“有且只有一个”的含义要准确理解,这里的“有”是说图形存在,“只有一个”是说图形惟一,强调的是存在和惟一两个方面,因此“有且只有一个”必须完整地使用,不能仅用“只有一个”来代替,否则就没有表达出存在性.确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和惟一性这两个方面,这个术语今后也会常常出现.5.公理3

P∈α∩β?α∩β=l且__P∈l__

论是“两面共一线,且线过点,线唯一”.

公理3强调的是两个不重合的平面,只要它们有一个公共点,其交集就是一条直线.以后若无特别说明,“两个平面”是指不重合的两个平面.

预习自测

1.下列命题:

(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一个平面的长是50 m,宽是20 m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为(A)

A.1B.2

C.3D.4

[解析]因为平面是无限延展的,故(1)错;平面是无厚度的,故(2)错;平面是无限延展的,不可度量,故(3)错;平面是平滑、无厚度、无限延展的,故(4)正确.2.(2018·永春一中高一期末)下列说法正确的是(D)

A.三点确定一个平面

B.四边形一定是平面图形

C.共点的三条直线确定一个平面

D.梯形一定是平面图形

[解析]A中三点共线时为直线,故A错误;B中四边形可为空间四边形,故B错误;

C中共点的三条直线可能共面,也可能确定三个平面,故选D.

3.已知直线m?平面α,P?m,Q∈m,则(D)

A.P?α,Q∈αB.P∈α,Q?α

C.P?α,Q?αD.Q∈α

[解析]∵Q∈m,m?α,∴Q∈α.

∵P?m,∴有可能P∈α,也可能有P?α.

4.空间5点,其中有4点共面,它们没有任何3点共线,这5个点最多可以确定__7__个平面.

[解析]可以想象四棱锥的5个顶点,它们总共确定7个平面.

命题方向1?文字、图形、符号三种语言的转化

典例1 用符号语言表示下列语句,并画出图形.

(1)三个平面α、β、γ相交于一点P,且平面α与平面β交于P A,平面α与平面γ交于PB,平面β与平面γ交于PC;

(2)平面ABD与平面BCD交于BD,平面ABC与平面ADC交于AC.

[解析](1)符号语言表示:α∩β∩γ=P,α∩β=P A,α∩γ=PB,β∩γ=PC.

图形表示:如图1所示.

(2)符号语言表示:平面ABD∩平面BCD=BD,平面ABC∩平面ADC=AC.

图形表示:如图2所示.

『规律方法』学习几何问题,三种语言间的互相转换是一种基本技能.要注意符号语言的意义,如点与直线、点与平面间的位置关系只能用“∈”或“?”,直线与平面间的位置关系只能用“?”或“?”.由图形语言表示点、线、面的位置关系时,要注意实线和虚线的区别.

〔跟踪练习1〕

(1)若点M在直线a上,a在平面α内,则M、a、α间的关系可记为__M∈a,a?α,M ∈α__;

(2)根据右图,填入相应的符号:A__∈__平面ABC,A__?__平面BCD,BD__?__平面ABC,平面ABC∩平面ACD=__AC__;

(3)根据下列条件画出图形:平面α∩平面β=MN,△ABC的三个顶点满足条件A∈MN,B∈α,B?MN,C∈β,C?MN.

[解析]如图所示

命题方向2?点共线问题

典例2 已知△ABC在平面α外,AB∩α=P,AC∩α=R,BC∩α=Q,如图.求证:P、Q、R三点共线.

[思路分析](1)P、Q、R三点分别在哪几个平面上?

(2)在两个相交平面上的点,有什么特点?

[解析]证法一:∵AB∩α=P,∴P∈AB,P∈平面α.

又AB?平面ABC,∴P∈平面ABC.

∴由公理3可知:

点P在平面ABC与平面α的交线上

同理可证Q、R也在平面ABC与平面α的交线上.

∴P、Q、R三点共线.

证法二:∵AP∩AR=A

∴直线AP与直线AR确定平面APR.

又∵AB∩α=P,AC∩α=R

∴平面APR∩平面α=PR.

∵B∈面APR,C∈面APR,∴BC?面APR.

又∵Q∈面APR,Q∈α

∴Q∈PR.∴P、Q、R三点共线.

『规律方法』证明多点共线的方法:(一)选择两点确定一条直线,然后证明其它点在这条直线上;(二)证明这些点都在两个平面内,而两平面相交,因此这些点都在两平面的交线上.

〔跟踪练习2〕

如图,正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:C1、O、M三点共线.

[解析]由AA1∥CC1,则AA1与CC1确定一个平面A1C.

∵A1C?平面A1C,而O∈A1C,∴O∈平面A1C.

又A1C∩平面BC1D=O,∴O∈平面BC1D.

∴O点在平面BC1D与平面A1C的交线上.

又AC∩BD=M,∴M∈平面BC1D且M∈平面A1C.

又C1∈平面BC1D且C1∈平面A1C

∴平面A1C∩平面BC1D=C1M,∴O∈C1M,即C1、O、M三点共线.

命题方向3?点线共面问题

典例3 求证:如果两两平行的三条直线都与另一条直线相交,那么这四条直线共面.

[解析]已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.

求证:直线a、b、c和l共面.

证明:如图所示,因为a∥b,由公理2可知直线a与b确定一个平面,设为α.

因为l∩a=A,l∩b=B,所以A∈a,B∈b,则A∈α,B∈α.又因为A∈l,B∈l,所以由公理1可知l?α.

因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理可知l?β.

因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公理2知:经过两条相交直线,有且只有一个平面,所以平面α与平面β重合,所以直线a,b,c和l共面.

『规律方法』(1)证明点线共面的主要依据:公理1、公理2.

(2)证明点线共面的常用方法

①纳入平面法:先由公理2或其推论确定一个平面,再由公理1证明有关点线在此平面内.

②辅助平面法:先证明有关的点线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.

〔跟踪练习3〕

已知E 、F 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 的中点.求证:A 1、C 1、E 、F 四点共面.

[证明] 在正方体ABCD -A 1B 1C 1D 1中,AA 1綊CC 1,∴四边形ACC 1A 1为平行四边形 ∴A 1C 1∥AC .

∵E 、F 分别为AB 、BC 的中点 ∴EF ∥AC . ∴A 1C 1∥EF .

∴直线A 1C 1与EF 确定一个平面α ∴A 1、C 1、E 、F 四点共面于平面α. 命题方向4 ?线共点问题

典例4 已知:如图,空间四边形ABCD 中,E 、H 分别为BC 、AB 的中点,F 在CD 上,G 在AD 上,且有DF ∶FC =DG ∶GA =1∶2.

求证:直线EF 、BD 、HG 交于一点.

[思路分析] 先证EF 、HG 一定相交于一点,再证这一点在直线BD 上. [解析] 连接EH 、AC 、FG .

∵E 、H 分别为BC 、AB 的中点,∴EH 綊1

2AC .

∵DF ∶FC =1∶2,DG ∶GA =1∶2

∴FG ∥AC ,FG =1

3

AC ,∴EH ∥FG 且EH ≠FG

∴E 、F 、G ,H 四点共面且EF ∥\ GH .∴EF 与GH 相交. 设EF ∩GH =O ,则O ∈GH ,O ∈EF .

∵GH ?平面ABD ,EF ?平面BCD ,∴O ∈平面ABD ,O ∈平面BCD . ∵平面ABD ∩平面BCD =BD ,∴O ∈BD ,即直线EF 、BD 、HG 交于一点.

『规律方法』 证明三线共点时,首先证明两条直线相交于一点,再证这一点在另一条直线上.要证这一点在另一条直线上,可证这一点在以这条直线为交线的两个平面上.

〔跟踪练习4〕

三个平面α、β、γ两两相交,交于三条直线,即α∩β=c ,β∩γ=a ,γ∩α=b ,已知直

线a和b不平行.

求证:a、b、c三条直线必过同一点.

[解析]∵α∩γ=b,β∩γ=a,∴a?γ,b?γ

∵a、b不平行

∴a、b必相交,设a∩b=P

∵P∈a,a?β

∴P∈β,同理P∈α

而α∩β=c,∴P∈c.∴a、b、c相交于一点P

即a、b、c三条直线过同一点.

易错系列对于条件所给的点的位置关系考虑不全面

典例5 已知A、B、C、D、E五点中,A、B、C、D共面,B、C、D、E共面,则A、B、C、D、E五点一定共面吗?

[错解]因为A、B、C、D共面,所以点A在B、C、D所确定的平面内,因为B、C、D、E共面,所以点E也在B、C、D所确定的平面内,所以点A、E都在B、C、D所确定的平面内,即A、B、C、D、E五点一定共面.

[错因分析]错解忽略了公理2中“不在一条直线上的三点”这个重要条件,实际上B、C、D三点还可能共线.

[正解](1)如果B、C、D三点不共线,则它们确定一个平面α.因为A、B、C、D共面,所以点A在平面α内,因为B、C、D、E共面,所以点E在平面α内,所以点A、E都在平面α内,即A、B、C、D、E五点一定共面.

(2)如果B、C、D三点共线于l,若A、E都在l上,则A、B、C、D、E五点一定共面;

若A、E中有且只有一个在l上,则A、B、C、D、E五点一定共面;

若A、E都不在l上,则A、B、C、D、E五点可能不共面.

转化思想在立体几何中的应用

文字语言、符号语言、图形语言三种语言的相互转换是立体几何学习中需逐步培养的重要基本功.这项基本功扎实,就为立体几何学习打下了坚实的基础.例如:下面是一些文字语言与符号语言的转换:

A∈l,“点A在直线l上”,“直线l经过点A”

a?α,“直线a在平面α内”,“平面α经过直线a”;

a?α,“直线a在平面α外”.

α∩β=l,“两平面α与β相交于直线l”,“l是平面α与β的交线”;

a∩b=P,“两直线a,b相交于点P”,“P是直线a与直线b的交点”;

A∈α,“点A在平面α内”,“平面α经过点A”.

学习过程中要训练用准确规范的语言描述几何图形的位置关系.

典例6 已知:a、b、c、d是两两相交且不共点的四条直线.求证:a、b、c、d共面. [解析](1)有三线共点的情况,如图.

设b、c、d三线相交于点K

与a分别交于N、P、M且K?a.

∵K?a

∴K和a确定一个平面,设为α.

∵N∈a,a?α,∴N∈α

∴NK?α,即b?α.

同理,c?α,d?α,∴a、b、c、d共面.

(2)无三线共点情况,如图.

设a∩d=M,b∩d=N,c∩d=P,a∩b=Q,a∩c=R,b∩c=S.

∵a∩d=M,∴a,d可确定一个平面α.

∵N∈d,Q∈a,∴N∈α,Q∈α.

∴NQ?α,即b?α.

同理,c?α,∴a、b、c、d共面.

由(1)(2)可知,a、b、c、d共面.

课堂检测

1.如右图所示的平行四边形MNPQ表示的平面不能记为(A)

A.平面MN B.平面NQP

C.平面αD.平面MNPQ

[解析]MN是平行四边形MNPQ的一条边,不是对角线,所以不能记作平面MN.2.用符号表示“点A在直线l上,l在平面α外”,正确的是(B)

A.A∈l,l?αB.A∈l,l?α

C.A?l,l?αD.A?l,l?α

3.下面是一些命题的叙述语(A,B表示点,a表示直线,α,β表示平面):

(1)∵A∈α,B∈α,∴AB∈α;

(2)∵A∈α,A∈β,∴α∩β=A;

(3)∵A?α,a?α,∴A?a;(4)∵A∈a,a?α,∴A?α.

其中命题和叙述方法都正确的个数是(B)

A.0B.1

C.2D.3

[解析](3)正确.(1)错,其中的AB∈α应为AB?α.(2)错,其中α,β应该交于一条过A 点的直线.(4)错,因为点A可能是直线a与平面α的交点.

4.看图填空:

(1)AC∩BD=__O__;

(2)平面AB1∩平面A1C1=__A1B1__;

(3)平面A1C1CA∩平面AC=__AC__;

(4)平面A1C1CA∩平面D1B1BD=__OO1__.

A级基础巩固

一、选择题

1.若一直线a在平面α内,则正确的图形是(A)

[解析]选项B、C、D中直线a在平面α外,选项A中直线a在平面α内.

2.如图所示,下列符号表示错误的是(A)

A.l∈αB.P?l

C.l?αD.P∈α

[解析]观察图知:P?l,P∈α,l?α,则l∈α是错误的.

3.下面四个说法(其中A、B表示点,a表示直线,α表示平面):

①∵A?α,B?α,∴AB?α;

②∵A∈α,B?α,∴AB?α;

③∵A?a,a?α,∴A?α;

④∵A∈a,a?α,∴A∈α.

其中表述方式和推理都正确的命题的序号是(C)

A.①④B.②③

C.④D.③

[解析]①错,应写为A∈α,B∈α;②错,应写为AB?α;③错,推理错误,有可能A ∈α;④推理与表述都正确.

4.三条两两平行的直线可以确定平面的个数为(D)

A.0 B.1

C.0或1 D.1或3

[解析]当三条直线是同一平面内的平行直线时,确定一个平面,当三条直线是三棱柱侧棱所在的直线时,确定三个平面.

5.下列命题中,正确的是(B)

A.经过正方体任意两条面对角线,有且只有一个平面

B.经过正方体任意两条体对角线,有且只有一个平面

C.经过正方体任意两条棱,有且只有一个平面

D.经过正方体任意一条体对角线与任意一条面对角线,有且只有一个平面

[解析]因为正方体的四条体对角线相交于同一点(正方体的中心),因此经过正方体任意两条体对角线,有且只有一个平面,故选B.

6.如图所示,平面α∩β=l,A、B∈α,C∈β且C?l,AB∩l=R,设过A、B、C三点的平面为γ,则β∩γ等于(C)

A.直线AC B.直线BC

C.直线CR D.以上都不对

[解析]由C,R是平面β和γ的两个公共点,可知β∩γ=CR.

二、填空题

7.在长方体ABCD-A1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有__5__条.

[解析]如图

由图可知,既与AB共面又与CC1共面的棱有CD、BC、BB1、AA1、C1D1共5条.8.在正方体ABCD-A1B1C1D1中,下列说法正确的是__(2)(3)(4)__(填序号).

(1)直线AC1在平面CC1B1B内.

(2)设正方形ABCD与A1B1C1D1的中心分别为O、O1,则平面AA1C1C与平面BB1D1D 的交线为OO1.

(3)由A、C1、B1确定的平面是ADC1B1.

(4)由A、C1、B1确定的平面与由A、C1、D确定的平面是同一个平面.

[解析](1)错误.如图所示,点A?平面CC1B1B,所以直线AC1?平面CC1B1B.

(2)正确.如图所示.

因为O∈直线AC?平面AA1C1C,O∈直线BD?平面BB1D1D,O1∈直线A1C1?平面AA1C1C,O1∈直线B1D1?平面BB1D1D,所以平面AA1C1C与平面BB1D1D的交线为OO1.

(3)(4)都正确,因为AD∥B1C1且AD=B1C1

所以四边形AB1C1D是平行四边形

所以A,B1,C1,D共面.

三、解答题

9.在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为AA 1的中点,求证:

(1)E 、C 、D 1、F 、四点共面; (2)CE 、D 1F 、DA 三线共点. [解析]

(1)分别连接EF 、A 1B 、D 1C ∵E 、F 分别是AB 和AA 1的中点 ∴EF ∥A 1B 且EF =1

2A 1B .

又∵A 1D 1綊B 1C 1綊BC

∴四边形A 1D 1CB 是平行四边形 ∴A 1B ∥CD 1,从而EF ∥CD 1. EF 与CD 1确定一个平面. ∴E 、F 、D 1、C 四点共面.

(2)∵EF 綊1

2

CD 1

∴直线D 1F 和CE 必相交.设D 1F ∩CE =P

∵D 1F ?平面AA 1D 1D ,P ∈D 1F ,∴P ∈平面AA 1D 1D . 又CE ?平面ABCD ,P ∈EC ,∴P ∈平面ABCD 即P 是平面ABCD 与平面AA 1D 1D 的公共点. 而平面ABCD ∩平面AA 1D 1D =直线AD

∴P ∈直线AD (公理3),∴直线CE 、D 1F 、DA 三线共点.

B 级 素养提升

一、选择题

1.空间中四点可确定的平面有( D ) A .1个 B .3个

C .4个

D .1个或4个或无数个

[解析] 当四个点在同一条直线上时,经过这四个点的平面有无数个;当这四个点为三

棱锥的四个顶点时,可确定四个平面;当这四个点为平面四边形的四个顶点时,确定一个平面;当其中三点共线于l,另一点不在直线l上时,也确定一个平面,故选D.2.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是(D)

①P∈a,P∈α?a?α

②a∩b=P,b?β?a?β

③a∥b,a?α,P∈b,P∈α?b?α

④α∩β=b,P∈α,P∈β?P∈b

A.①②B.②③

C.①④D.③④

[解析]当a∩α=P时,P∈a,P∈α,但a?α,∴①错;

a∩β=P时,②错;如图∵a∥b,P∈b,∴P?a,∴由直线a与点P确定唯一平面α

又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b?α,故③正确;

两个平面的公共点必在其交线上,故④正确,选D.

3.如图,α∩β=l,A∈α,C∈β,C?l,直线AD∩l=D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过(D)

A.点A B.点B

C.点C,但不过点D D.点C和点D

[解析]A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.

4.下列各图均是正六棱柱,P、O、R、S分别是所在棱的中点,这四个点不共面的图形是(D)

[解析]在选项A、B、C中,由棱柱、正六边形、中位线的性质,知均有PS∥OR,即在此三个图形中P、O、R、S共面,故选D.

二、填空题

5.若直线l与平面α相交于点O、A、B∈l、C、D∈α,且AC∥BD,则O、C、D三点的位置关系是__共线__.

[解析]∵AC∥BD

∴AC与BD确定一个平面,记作平面β,则α∩β=直线CD.

∵l∩α=O,∴O∈α.

又∵O∈AB?β

∴O∈直线CD,∴O、C、D三点共线.

6.已知α、β是不同的平面,l、m、n是不同的直线,P为空间中一点.若α∩β=l,m?α、n?β、m∩n=P,则点P与直线l的位置关系用符号表示为__P∈l__.

[解析]因为m?α,n?β,m∩n=P,所以P∈α且P∈β.又α∈β=l,所以点P在直线l上,所以P∈l.

C级能力拔高

1.如图,在四面体A-BCD中作截面PQR,若PQ、CB的延长线交于点M,RQ、DB 的延长线交于点N,RP、DC的延长线交于点K.

求证:M、N、K三点共线.

[解析]∵M∈PQ,直线PQ?平面PQR

M ∈BC ,直线BC ?平面BCD

∴M 是平面PQR 与平面BCD 的一个公共点 ∴M 在平面PQR 与平面BCD 的交线上.

同理可证,N 、K 也在平面PQR 与平面BCD 的交线上. ∴M 、N 、K 三点共线.

2.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .

(1)画出直线l 的位置;

(2)设l ∩A 1B 1=P ,求线段PB 1的长.

[解析] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为直线l 的位置.

(2)∵M 为AA 1的中点,AD ∥ED 1 ∴AD =A 1E =A 1D 1=a . ∵A 1P ∥D 1N ,且D 1N =1

2a

∴A 1P =12D 1N =1

4

a

于是PB 1=A 1B 1-A 1P =a -14a =3

4a .

点、直线、平面之间的位置关系知识点总结

点、直线、平面之间的位置关系 一、线、面之间的平行、垂直关系的证明 书中所涉及的定理和性质可分为以下三类: 1、平行关系与平行关系互推; 2、垂直关系与垂直关系互推; 线面垂直判定定理 线面垂直的定义 两平面的法线垂 直则两平面垂直 面面垂直判定定理 线面平行判定定理 线面平行性质定理 线面平行转化 面面平行判定定理 面面平行性质定理

3、平行关系与垂直关系互推。 以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。 线线平行传递性:b c c a b a //////?? ??; 面面平行传递性:γαβγβα//////?? ??; 线面垂直、线面垂直?线面平行: ααββα//a a a ??? ????⊥⊥; 线面垂直?线线平行(线面垂直性质定理):b a b a //?? ??⊥⊥αα; 线面垂直?面面平行:βαβα//?? ??⊥⊥a a ; 线面垂直、面面平行?线面垂直:βαβα⊥?? ??⊥a a //; 线线平行、线面垂直?线面垂直:αα⊥?? ??⊥b a b a //; 线面垂直、线面平行?面面垂直:βααβ⊥?? ??⊥a a //。 备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。 符号化语言一览表 ①线面平行ααα////a a b b a ????????;αββα////a a ?????;ααββα//a a a ??? ????⊥⊥; ②线线平行:////a a a b b α βαβ??????=?;b a b a //????⊥⊥αα;////a a b b αβαγβγ??=???=? ;b c c a b a //////????; ③面面平行:,////,//a b a b O a b αααβββ????=????;βαβα//????⊥⊥a a ;γαβγβα//////????;

平面与平面地位置关系

平面和平面的位置关系 一、知识梳理 1.两个平面的位置关系 (1)两个平面平行:如果两个平面没有公共点,我们就说这两个平面互相平行. (2)两个平面相交:如果两个平面有公共点,它们就相交于一条过该公共点的直线,称这两个平面相交. (3)两个平面的位置关系只有两种:①两个平面平行:没有公共点;②两个平面相交:有一条公共直线. (4)两个平面平行的画法:画两个互相平行的平面时,要注意使表示平面的两个平行四边形的对应边平行(图1,而不应画成图2那样).平面α和β平行,记作βα//. 图1 图2 2.两个平面平行的判定 工人师傅将水平仪在桌面上交叉放置两次,如果水平仪的气泡都在中央,就能判断桌面是水平的。该检测原理就是: (1)[两个平面平行的判定定理]:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.用符号表示为:若,,a b a b A αα??=I ,且//,//,a b ββ则//αβ。(线线平行,则线面平行)。 (2)垂直直于同一直线的两平面平行。 (3)平行于同一平面的两平面平行。 3.两个平面平行的性质 (1)两平行平面被第三个平面所截,则交线互相平行。 (2)直线垂直于两平行平面中的一个,必垂直于另一个。 (3)过平面外一点,有且只有一个平面与之平行。 (4)两平面平行,则在其中一个平面内的所有直线必平行于另一个平面。

(5)两平行平面中的一个垂直于一个平面,则另一个也垂直于这个平面。 4.两个平行平面的距离 (1)两个平面的公垂线及公垂线段:直线a 与两个平面α、β都垂直,我们把与两个平行平面都垂直的直线称作两个平行平面的公垂线。公垂线夹在两个平行平面之间的线段称为这两个平行平面的公垂线段。 注意:两个平面不平行时,由于不可能存在同时与它们垂直的直线,因此此时没有公垂线可言,换句话说,当论及公垂线时,就隐含着两个平面平行。 (2)两个平行平面的距离 我们把公垂线段的长度叫做两个平行平面的距离. 说明:两个平行平面的公垂线段都相等. 5、二面角 半平面:平面内的一条直线把这个平面分成两部分,其中的每一部分都叫做半平面。 (1) 二面角的定义:一条直线和由这条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱为AB ,面为,αβ的二面角,记作二面角AB αβ-- (2)、二面角的画法:分直立式与平卧式两种 ①直立式 ②平卧式 (3)、二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. 如图,二面角l αβ--, AOB ∠是二面角的平面角. 注意: i )二面角的平面角的范围是[]0,π,当两个半平面重合时,平面角为0o ;当两个半平面合成一个平面时,

空间中直线与直线之间的位置关系

2.1.2 空间中直线与直线之间的位置关系 整体设计 教学分析 空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念. 三维目标 1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系. 2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用. 3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质. 重点难点 两直线异面的判定方法,以及两异面直线所成角的求法. 课时安排 1课时 教学过程 导入新课 思路1.(情境导入) 在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样. 教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系. 思路2.(事例导入) 观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何? 图1 推进新课 新知探究 提出问题 ①什么叫做异面直线? ②总结空间中直线与直线的位置关系. ③两异面直线的画法. ④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗? ⑤什么是空间等角定理? ⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直?

平面之间的位置关系

第二章 点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.1.1 平面 1.以下是一些命题的叙述语言 ① 点αα平面点平面??B A ,,∴ 直线α平面?AB ; ② 点αα平面点平面∈∈B A ,,∴ 直线α平面∈AB ; ③ 点βα平面点平面∈∈B A ,,∴ 平面AB =βα ; ④ 直线βα平面直线平面∈∈a a ,,∴ 平面a =βα ; 则其中命题和叙述方法都正确的个数是 【 】 A.1个 B. 2个 C. 3个 D. 4个 2.给定下面四个命题: (1)如果两个平面有三个公共点,那么这两个平面重合; (2)两条直线可以确定一个平面; (3)若b M M =∈∈βαβα ,,,则b M ∈; (4)空间中,相交于同一点的三条直线在同一个平面内; 其中真命题的个数是 【 】 A.1 B.2 C.3 D.4 3.空间三条直线交于同一点,它们中的两条确定的平面个数记为n ,则n 的可值可能为 【 】 A.1 B.1,3 C.1,2,3 D.1,2,3,4 4.ABC ?在平面α外,AB P α=,BC Q α=,AC R α=,求证:P ,Q ,R 三点 共线. 2.1.2 空间中直线与直线之间的位置关系 1.正方体1111D C B A ABCD -的各面的对角线中,与1AB 成?60角的异面直线有【 】 A.4条 B.6条 C.8条 D.12条 2.空间四边形ABCD 中AB BC CD ,,的中点分别是P Q R ,,,且3,5,2===PR QR PQ , 那么异面直线AC 和BD 所成的角是 【 】 A .?90 B .?60 C .?45 D .?30 3.已知异面直线a ,b 所成的角为60°,直线l 与a ,b 所成的角都为θ,那么θ的取值范 围是什么? 4.P是△ABC所在平面外一点,D,E分别是△PAB和△PBC的重心. 求证:D E∥AC.

空间中点线面位置关系(经典)

第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

两个平面的位置关系

三.两个平面得位置关系 知识提要 1.空间两个平面有相交(有一条公共直线)与平行(无公共点)两种位置关系. 2.(1)定义如果两个平面没有公共点,则称这两个平面互相平行. (2)判定如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面 平行。 (3)性质如果两个平行平面同时与第三个平面相交,那么它们得交线平行。 3.(1)定义如果两个平面相交,所成得二面角就是直二面角,则称这两个平面互相垂 直. (2)判定如果一个平面经过另一个平面得一条垂线,则这两个平面互相垂直. (3)性质(1)如果两个平面互相垂直,那么在一个平面内垂直于它们交线得直线,垂直于另一个平面. (2)如果两个平面互相垂直,那么在一个平面内垂直于另一个平面得直线,也垂 直于交线. 4.二面角平面内一条直线把这个平面分成两个部分,其中得每一部分都叫做半平 面.一条直线与由这条直线出发得两个半平面所组成得图形叫做二面角。这条直线叫做二面角得棱,这两个半平面叫做二面角得面。 5.二面角得平面角以二面角棱上得任意一点为端点,在两个面内分别作垂直于棱得两 条射线,这两条射线所成得角叫做二面角得平面角,二面角得平面角就是900时称直二面角。 6.作二面角得平面角有:定义法,三垂线(或其逆)定理法,垂面法.把平面角放入相关三 角形中求解。 课前练习 1.α、β就是两个不同得平面,m,n就是平面α及β之外得两条不同直线,给出四个论断:①m ⊥n,②α⊥β,③n⊥β,④m⊥α.以其中三个论断作为条件,余下得一个论断作为结论,写出您认为正确得一个命题,并证明它. 解析:m⊥α,n⊥β,α⊥βm⊥n(或m⊥n,m⊥α,n⊥βα⊥β) 证明如下:过不在α、β内得任一点P,作PM∥m,PN∥n, 过PM、PN作平面r交α于MQ,交β于NQ。 , 同理PN⊥NQ. 因此∠MPN+∠MQN= 180°, 故∠MQN= 90°∠MPN = 90° 即m⊥α,n⊥β,α⊥βm⊥n

平面与平面之间地位置关系(附问题详解)

平面与平面之间的位置关系 [学习目标] 1.了解直线与平面之间的三种位置关系,会用图形语言和符号语言表示.2.了解平面与平面之间的两种位置关系,会用符号语言和图形语言表示. 知识点一 直线与平面的位置关系 1.直线与平面的位置关系 2.直线与平面的位置关系的分类 (1)按公共点个数分类 ?? ? 有无公共点??? ?? 直线和平面相交——有且只有一个公共点 直线在平面内——有无数个公共点无公共点——直线和平面平行 (2)按直线是否在平面分类 ??? 直线在平面内——所有点在平面内 直线在平面外? ?? ?? 直线与平面相交直线与平面平行 思考 “直线与平面不相交”与“直线与平面没有公共点”是相同的意义吗? 答 不是.前者包括直线与平面平行及直线在平面这两种情况;而后者仅指直线与平面平行. 知识点二 两个平面的位置关系

思考分别位于两个平行平面的两条直线有什么位置关系? 答这两条直线没有公共点,故它们的位置关系是平行或异面. 题型一直线与平面的位置关系 例1下列命题中,正确命题的个数是() ①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面; ②如果直线a和平面α满足a∥α,那么a与平面α的任何一条直线平行; ③如果直线a,b满足a∥α,b∥α,那么a∥b; ④如果平面α的同侧有两点A,B到平面α的距离相等,那么AB∥α. A.0 B.2 C.1 D.3 答案 C 解析如图,在长方体ABCD-A′B′C′D′中, AA′∥BB′,AA′却在过BB′的平面AB′,故命题①不正确;AA′∥平面B′C,BC?平面B′C,但AA′不平行于BC,故命题②不正确;AA′∥平面B′C,A′D′∥平面B′C,但AA′与A′D′相交,所以③不正确;④显然正确.故答案为C. 跟踪训练1以下命题(其中a,b表示直线,α表示平面),①若a∥b,b?α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b?α,则a∥b.其中正确命题的个数是() A.0 B.1 C.2 D.3 答案A 解析如图所示在长方体ABCD-A′B′C′D′中,AB∥CD,AB?平面 ABCD,但CD?平面ABCD,故①错误; A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交, 故②错误; AB∥A′B′,A′B′∥平面ABCD,但AB?平面ABCD,故③错误; A′B′∥平面ABCD,BC?平面ABCD,但A′B′与BC异面,故④错误.

空间图形的基本关系的认识

空间图形的基本关系的认识 【学习目标】 1.通过长方体这一常见的空间图形,了解空间中点、线、面的基本位置关系,并会用符号语言进行表述。 2.掌握空间图形的公理1、2。 【学习重点】 以长方体为载体,直观认识和理解空间点、线、面之间的位置关系,加强符号语言的运用能力和推理论证能力。 【学习难点】 异面直线的理解,公理1、2的应用。 【课前预习案】

一、空间图形的基本关系,注关于异面直线 (1)若直线α,b是异面直线,则在空间中找不到一个平面,使其同时经过这两条直线. (2)不可以误解为分别在不同平面的两条直线. (3)异面直线既不平行又不相交. (4)直线a交平面α于点A,直线b在平面α内且不过点A,则直线α,b异面.

l ,A ∈α, B α∈,则__________. 公 理 2 经过__________上的三点,有且_____一个平面 (即可以确定一个平面). 若A 、B 、C 三点不共线,则____________一个平面α使A α∈,B α∈,C α∈. 【课堂探究案】 学法指导:根据题意画出直观图,利用直观图分析点、线、面之间的位置关系。 1.用符号语言表示下列语句,并画出图形 (1)直线 经过平面α内两点A 、B (2)直线 在平面α外,且经过平面α内一点P (3)直线 是平面α与平面β的交线,平面α内有一条直线m 与 平行 2.如图,在三棱锥S —ABC 的六条棱所在的直线中,异面直线共有( ) A.2对 B.3对 C.4对 D.6对 3.若直线m α平面?=P ,则下列结论中正确的是( ) A.平面α内的所有直线与直线m 异面 B.平面α内不存在与直线m 平行的直线 C.平面α内存在唯一的直线与m 平行 D.平面α 内的所有直线与直线m 相交 4.如图在长方体1111ABCD A B C D -所有棱中 (1)与11B A 异面的直线有_________________ (2)与1BD 异面的直线有_________________ A B C S A B C D

检验平面与平面的位置关系

8.5 检验平面与平面的位置关系 上海师范大学第三附属中学吴珍英教学目的:1、掌握检验平面与平面垂直、平行的几种方法;会用合适的工具进行简单的检验操作;能从长方体中找到现成检验的工具。 2、从直线与平面的位置关系检验到平面与平面的位置关系检验的学习,体验观 察、比较和归纳,初步培养学生运用类比的思想。 3、通过学生动手进行简单的实践操作,提高学习兴趣,学会团队合作的精神,同时也深刻 体会到“学以致用”的道理。 教学重点:掌握检验平面与平面垂直、平行的几种方法并会进行简单地检验操作。教学难点:在学习新知的过程中能够培养学生实验操作的意识,学会从实践中去掌握新知识,从旧知识中类比得到新知识。 教学用具:多媒体、铅垂线、长方形纸片、合页型折纸 教学过程:一、新课引入吴老师家新买了一个书柜,但是摆放好之后,总觉得书柜左右倾斜,连放书的搁板都是左高右低的,你作为售后服务员知道问题出在哪里吗?能不能消除吴老师的顾虑呢? (现实问题的提出引发学生学习的兴趣。)引导学生指出,其实问题的关键就在 于“书柜的左右倾斜” 只要能检验出书柜的左右两个面都与地面是垂直的,那么就不可能倾 斜;而“搁板的左高右低”只要检验两块板是平行的,就不会出现这样的情况。那么怎么去检 验呢?这就是我们今天所要学的内容。 二、新课展开怎么去检验面与面的垂直、平行关系呢?整节都是带着这样一个问题展开。为了 和检验直线与平面的垂直和平行关系相类比提出了以下的问题: 1、我们学过检验的方法吗?(有,直线和平面垂直、平行关系的检验。) 2、那么直线和平面垂直、平行关系是如何检验的? (一)复习直线和平面垂直检验方法:铅垂线、一副三角尺、合页型折纸过程描述:铅垂 线——如果铅垂线与被检测的直线紧贴,那么直线与水平面垂直;一副三角尺——两把三角 尺相交放置,如果两把三角尺各有一条边紧贴面,且另一条直角边都能紧贴直线则直线与平面 垂直;合页型折纸——合页型折纸直立于平面,如果折痕与直线紧贴,则直线与平面垂直。 (二)平面与平面垂直的检验那么平面与平面的垂直检验可能用什么方法呢?可能用以上的 三种方法。 1、铅垂线实践操作:观察可得课桌的侧面是垂直于地面的,接着用自制的铅垂线检验,观 察铅垂线与课桌侧面的情况;继续观察相邻的两个墙面;老师准备的两个不垂直的平面。 (四人一小组,一人操作,两人观察,一人记录。观察铅垂线是否紧贴课桌侧 面。)

点直线平面之间的位置关系知识点总结

点直线平面之间的位置关系知识点总结 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

点、直线、平面之间的位置关系 一、线、面之间的平行、垂直关系的证明 书中所涉及的定理和性质可分为以下三类: 1、平行关系与平行关系互推; 2、垂直关系与垂直关系互推; 线面垂直判定定线面垂直的定面面垂直性质定理(需加线线 两平面的法线 垂 面面垂直判定定垂直的两平面的法线互相线面平行判定定线面平行性质定面面平行定义(交线面平行转面面平行判定定 面面平行性质定 两平面内分别垂直于交线的直线互相 两平面内分别垂直于交线的直线互相垂直,则两 面面垂直定

3、平行关系与垂直关系互推。 以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。 线线平行传递性:b c c a b a //////?? ??; 面面平行传递性:γαβγβα//////?? ??; 线面垂直、线面垂直?线面平行: ααββα//a a a ??? ????⊥⊥; 线面垂直?线线平行(线面垂直性质定理):b a b a //?? ??⊥⊥αα; 线面垂直?面面平行:βαβα//?? ??⊥⊥a a ; 线面垂直、面面平行?线面垂直:βαβα⊥?? ??⊥a a //; 线线平行、线面垂直?线面垂直:αα⊥?? ??⊥b a b a //; 线面垂直、线面平行?面面垂直:βααβ⊥?? ??⊥a a //。 备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。 符号化语言一览表 ①线面平行ααα////a a b b a ????????;αββα////a a ?????;ααββα//a a a ??? ????⊥⊥;

空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系''' x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积:各个面面积之和 ②圆柱的表面积③圆锥的表面积2 S rl r ππ =+ ④圆台的表面积22 S rl r Rl R ππππ =+++⑤球的表面积2 4 S R π = ⑥扇形的面积公式 21 3602 n R S lr π == 扇形 (其中l表示弧长,r表示半径) 2、空间几何体的体积 ①柱体的体积V S h =? 底 ②锥体的体积1 3 V S h =? 底 ③台体的体积1) 3 V S S S S h =+? 下下 上上 (④球体的体积3 4 3 V R π = 2 π 2 π 2r rl S+ =

点直线平面之间的位置关系知识点归纳

第二章点、直线、平面之间的位置关系 知识点总结 1、平面的性质 一、空间点、直线、平面之间的位置关系 四个公理: 公理1 文字语言: 符号语言: 公理2: 文字语言: 符号语言: 公理3: 文字语言: 符号语言: 推论: (1)过一条直线及直线外一点,有且只有一个平面。 (2)过两条相交直线,有且只有一个平面。 (3)过两条相互平行的直线,有且只有一个平面。 2、空间中直线与直线之间的位置关系 异面直线: 空间中两条直线有且只有三种位置关系(它们的特征): 相交直线:

平行直线: 异面直线: 公理4 :(平行线的传递性) 文字语言: 符号语言: 等角定理: 异面直线所成的角: 3、空间中直线与平面与直线间的位置关系 (1)直线在平面内: (2)直线与平面相交: (3)直线与平面平行: 4、平面与平面之间的位置关系 (1)两个平面平行: (2)两个平面相交: 二、直线、平面平行的判定的判定及其性质 1、直线与平面平行的判定及其性质 (1)直线与平面平行的判定(线线平行,则线面平行): 符号语言: (2)直线与平面平行的性质(线面平行,则线线平行):

符号语言: 2、平面与平面平行的判定及其性质 (1)平面与平面平行的判定(线线平行,则面面平行): 符号语言: (2)平面与平面平行的性质(面面平行,则线线平行): 符号语言: 三、直线、平面垂直的判定及其性质 1、直线平面垂直的的判断及其性质 (1)直线与平面垂直的定义: (2)直线与平面垂直的判定2、2(线线垂直,则线面垂直): 符号语言: (3)直线与平面垂直的性质: 符号语言: (4)平面与直线所成角的角:

空间平面与平面的位置关系教案

(1)空间平面与平面的位置关系 一、教学内容分析 二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义. 二、教学目标设计 理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题. 三、教学重点及难点 二面角的平面角的概念的形成以及二面角的平面角的作法. 四、教学流程设计 五、教学过程设计 一、 新课引入 1.复习和回顾平面角的有关知识. 平面中的角 定义 从一个顶点出发的两条射线所组成的图形,叫做角 图形 复习回顾 引入新课 类比引导 提出问题 定理证明 会用反证法 例题选讲 定理应用 巩固练习 小结方法 课堂总结 作业布置

结构射线—点—射线 表示法∠AOB,∠O等 2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角) 3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容. 二、学习新课 (一)二面角的定义 平面中的角二面角 定义从一个顶点出发的两条射线 所组成的图形,叫做角 课本P17 图形 结构射线—点—射线半平面—直线—半平面 表示法∠AOB,∠O等二面角α—a—β或α-AB-β (二)二面角的图示 1.画出直立式、平卧式二面角各一个,并分别给予表示. 2.在正方体中认识二面角. (三)二面角的平面角 平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大

1.2.4 平面与平面的位置关系

1.2.4 平面与平面的位置关系 重难点:了解直线与平面的位置关系,在判定和证明直线与平面的位置关系时,除了能熟练运用判定定理和性质定理外,还要充分利用定义;线面关系的判定和证明,要注意线线关系、线面关系的转化. 经典例题:如图,在四面体S-ABC中, SA⊥底面ABC,AB⊥BC.DE垂直平分SC, 且分别交AC、SC于D、E. 又SA=AB,SB=BC.求以BD为棱, 以BDE与BDC为面的二面角的度数. 当堂练习: 1.下列命题中正确的命题是() ①平行于同一直线的两平面平行; ②平行于同一平面的两平面平行; ③垂直于同一直线的两平面平行; ④与同一直线成等角的两平面平行. A.①和②B.②和③C.③和④D.②和③和④ 2.设直线,m,平面,下列条件能得出的是() A.,且B.,且 C.,且 D.,且 3.命题:①与三角形两边平行的平面平行于是三角形的第三边; ②与三角形两边垂直的直线垂直于第三边;③与三角形三顶点等距离的平面平行这三角形所在平面.其中假命题的个数为() A.0 B.1 C.2 D.3 4.已知a,b是异面直线,且a平面,b平面,则与的关系是() A.相交 B.重合 C.平行 D.不能确定 5.下列四个命题:①分别在两个平面内的两直线平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行另一个平面,则这两个平面平行. 其中正确命题是() A.①、② B.②、④ C.①、③ D.②、③

6.设平面,A,C是AB的中点,当A、B分别在内运动时,那么 所有的动点C () A.不共面B.当且仅当A、B分别在两条直线上移动时才共面 C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面 7.是两个相交平面,a,a与b之间的距离为d1,与之间的距离为d2, 则() A.d1=d2 B.d1>d2 C.d1

平面与平面之间的位置关系(附答案)

平面与平面之间得位置关系 [学习目标]1、了解直线与平面之间得三种位置关系,会用图形语言与符号语言表示、2。了解平面与平面之间得两种位置关系,会用符号语言与图形语言表示。 知识点一直线与平面得位置关系 1。直线与平面得位置关系 (1)按公共点个数分类 错误! (2)按直线就是否在平面内分类 错误! 思考“直线与平面不相交”与“直线与平面没有公共点”就是相同得意义吗? 答不就是、前者包括直线与平面平行及直线在平面内这两种情况;而后者仅指直线与平面平行、 知识点二两个平面得位置关系

答这两条直线没有公共点,故它们得位置关系就是平行或异面. 题型一直线与平面得位置关系 例1 下列命题中,正确命题得个数就是( ) ①如果a,b就是两条直线,a∥b,那么a平行于经过b得任何一个平面; ②如果直线a与平面α满足a∥α,那么a与平面α内得任何一条直线平行; ③如果直线a,b满足a∥α,b∥α,那么a∥b; ④如果平面α得同侧有两点A,B到平面α得距离相等,那么AB∥α。 A、0 B.2C、1 D.3 答案C 解析如图,在长方体ABCD—A′B′C′D′中, AA′∥BB′,AA′却在过BB′得平面AB′内,故命题①不正确;AA′∥平面B′C,BC?平面B′C,但AA′不平行于BC,故命题②不正确;AA′∥平面B′C,A′D′∥平面B′C,但AA′与A′D′相交,所以③不正确;④显然正确.故答案为C、 跟踪训练1 以下命题(其中a,b表示直线,α表示平面),①若a∥b,b?α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b?α,则a∥b、其中正确命题得个数就是() A。0B、1C、2D。3 答案A 解析如图所示在长方体ABCD-A′B′C′D′中,AB∥CD,AB?平面ABCD,但CD?平面ABCD,故①错误; A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故②错误; AB∥A′B′,A′B′∥平面ABCD,但AB?平面ABCD,故③错误; A′B′∥平面ABCD,BC?平面ABCD,但A′B′与BC异面,故④错误、

两个平面的位置关系

三.两个平面的位置关系 知识提要 1. 空间两个平面有相交(有一条公共直线)和平行(无公共点)两种位置关系. 2. (1)定义 如果两个平面没有公共点,则称这两个平面互相平行. (2)判定 如果一个平面有两条相交直线都平行于另一个平面,那么这两个平面 平行. (3)性质 如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 3. (1)定义 如果两个平面相交,所成的二面角是直二面角,则称这两个平面互相垂 直. (2)判定 如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直. (3)性质 (1)如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线,垂直于 另一个平面. (2)如果两个平面互相垂直,那么在一个平面垂直于另一个平面的直线,也垂直 于交线. 4. 二面角 平面一条直线把这个平面分成两个部分,其中的每一部分都叫做半平面.一 条直线和由这条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 5. 二面角的平面角 以二面角棱上的任意一点为端点,在两个面分别作垂直于棱的两条 射线,这两条射线所成的角叫做二面角的平面角,二面角的平面角是900 时称直二面角。 6. 作二面角的平面角有:定义法,三垂线(或其逆)定理法,垂面法.把平面角放入相关 三角形中求解. 课前练习 1.α、β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ,②α⊥β,③n ⊥β,④m ⊥α.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题,并证明它. 解析:m ⊥α,n ⊥β,α⊥β?m ⊥n (或m ⊥n ,m ⊥α,n ⊥β?α⊥β) 证明如下:过不在α、β的任一点P ,作PM ∥m ,PN ∥n , 过PM 、PN 作平面r 交α于MQ ,交β于NQ . MQ PM PM m PM m ⊥?⊥?? ??⊥αα//, 同理PN ⊥NQ . 因此∠MPN +∠MQN = 180°,

空间平面与平面的位置关系沪教版高三上教案

14.4(1)空间平面与平面的位置关系 一、教学内容分析 二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义. 二、教学目标设计 理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题. 三、教学重点及难点 二面角的平面角的概念的形成以及二面角的平面角的作法. 四、教学流程设计 五、教学过程设计 一、 新课引入 1.复习和回顾平面角的有关知识. 平面中的角 定义 从一个顶点出发的两条射线所组成的图形,叫做角 图形 复习回顾 引入新课 类比引导 提出问题 定理证明 会用反证法 例题选讲 定理应用 巩固练习 小结方法 课堂总结 作业布置

结构射线—点—射线 表示法∠AOB,∠O等 2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角) 3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容. 二、学习新课 (一)二面角的定义 平面中的角二面角 定义从一个顶点出发的两条射线 所组成的图形,叫做角 课本P17 图形 结构射线—点—射线半平面—直线—半平面 表示法∠AOB,∠O等二面角α—a—β或α-AB-β (二)二面角的图示 1.画出直立式、平卧式二面角各一个,并分别给予表示. 2.在正方体中认识二面角. (三)二面角的平面角 平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大

高中数学空间点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 D C B A α L A · α C · B · A · α

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为 简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; P · α L β 共面直线 =>a ∥c 2

两平面的位置关系

一、选择题 1.已知直线m、n与平面α、β,给出下列三个命题: ①若m∥α,n∥α,则m∥n;②m∥α,n⊥α,则n⊥m;③m⊥α,m∥β,则α⊥β.其中真命题的个数是() A.0 B.1 C.2 D.3 2.下列命题中正确的是() A.一个平面内两条直线都平行于另一个平面,那么这两个平面平行 B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行 C.平行于同一直线的两个平面一定相互平行 D.如果一个平面内的无数条直线都平行于另一个平面,那么这两个平面平行 3.已知a,b,c是三条不重合的直线,α,β,γ是三个不重合的平面,下面六个命题: ①a∥c,b∥c?a∥b;②a∥γ,b∥γ?a∥b;③α∥c,β∥c ?α∥β;④α∥γ,β∥γ?α∥β;⑤a∥c,α∥c?a∥α;⑥a∥γ,α∥γ?a∥α. 其中正确的命题是()

A.①④B.①④⑤ C.①②③D.①⑤⑥ 4.(优质试题·北京大兴区期末)已知直线l⊥平面α,直线m ?平面β,有下列四个命题: ①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β; ④若l⊥m,则α∥β. 其中,正确命题的序号是() A.①②B.③④ C.①③D.②④ 5.下列命题中错误的是() A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 6.在三棱锥S—ABC中,AB⊥BC,SA⊥平面ABC,则在三棱锥的四个面中,两两垂直的平面有() A.1对B.2对 C.3对D.4对

点、直线、平面之间的位置关系知识点

点、直线、平面之间的位置关系 1、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用:判断直线是否在平面内。用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈?? 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a ,记作α∩β=a 。符号语言:,P A B A B l P l ∈?=∈ 公理2的作用:①它是判定两个平面相交的方法。 ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 公理3:经过不在同一条直线上的三点,有且只有一个平面。 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理3及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理4:平行于同一条直线的两条直线互相平行 2、空间直线与直线之间的位置关系 ① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。 ③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线 ④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是 (0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。 3、求异面直线所成角步骤: A 、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B 、证明作出的角即为所求角 C 、利用三角形来求角 4、等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 5、空间直线与平面之间的位置关系 直线在平面内——有无数个公共点. 三种位置关系的符号表示:a ?α a ∩α=A a ∥α 6、平面与平面之间的位置关系 平行——没有公共点;α∥β。相交——有一条公共直线。α∩β=b

相关文档
相关文档 最新文档