文档库 最新最全的文档下载
当前位置:文档库 › K2.01-z变换定义及收敛域

K2.01-z变换定义及收敛域

国家精品课程,国家精品资源共享课

离散系统z域分析

z变换定义及收敛域

z

z变换定义及收敛域

z变换定义及收敛域

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

拉普拉斯变换

拉普拉斯变换 定义式:设有一时间函数f(t) [0,∞] 或0≤t≤∞单边函数,其中,S=σ+jω是复参变量,称为复频率。左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。 以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。 z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。 拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。 FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分,LT[f(t)]=从零到正无穷对 [f(t)exp(-st)]积分,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数: s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减 因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。但随着CAD的兴起,这一作用已不怎么受重视了,

拉普拉斯变换的物理意义

拉普拉斯变换的物理意义 关于拉普拉斯变换的很好教程,见麻省理工学院的公开课-拉普拉斯变换简介。网上一搜索就找到了。 仔细研读过郑君里的信号与系统,曾经一度达到可以背诵上下两本书的程度。 后又熟读程佩青的数字信号处理,对其中的前八章达到背诵的程度。 最后有熟读奥本海默的信号与系统与离散信号处理两本书,这两本书实在是厚啊,总共1000+页! 楼上很多人都说拉普拉斯变换没有实际的物理意义,相对于傅立叶变换明确的物理意义来说,拉普拉斯变换只是一个算子。 这种说法未免有失偏颇。 首先承认拉普拉斯变换确实起到算子的运用,然而其物理意义长期没有被人发现。 简单的说,大家都认可傅立叶变换的本质是一个信号可以表示成正弦信号的叠加,即无法进行傅立叶变换。 大家如果注意到傅立叶变换与拉普拉斯变换的关系可以发现,当s=jw时,傅拉普拉斯变换便等于傅立叶变换。可见傅立叶变换是拉普拉斯变换的特例。那么重点来了,如果一个是增长型的,比如e^2t,这个信号指数增长,是无法表示成 等幅的正弦信号的叠加的。注意,傅立叶变换的物理意义是一个信号可以表示成等幅的正弦信号的叠加!! 这个等幅的概念有多少人忽略了!!! 那么,推广一下,不等幅的正弦信号(e^at*sint)便出现了! 数学波形是很容易想象的。 回到e^2t的问题,这个信号无法表示成等幅的正弦信号的叠加(傅立叶变换),那么它为何不能表示成增幅的正弦信号的叠加呢? 这就是拉普拉斯变换的物理意义!!! 上面这个信号在拉普拉斯变换中有一个收敛域,s>2.复频域如何表示自行想象。其意义是啥呢? 因为收敛域包括s=4这条纵轴,这就意味着这个信号可以表示成∑e^4t*sinkwt 这种增幅信号的叠加形式。 因为收敛域包括s=5这条纵轴,这就意味着这个信号可以表示成∑e^5t*sinkwt 这种增幅信号的叠加形式。 s=6,7,8等等,道理如上。 那么可以发现,在拉普拉斯变换的收敛域内有无数条纵轴,在每一条纵轴上都可

拉普拉斯变换公式总结

拉普拉斯变换公式总结 The following text is amended on 12 November 2020.

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ?

(2) 定义域 若0σσ>时,lim ()0t t f t e σ-→∞=则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则 11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

拉普拉斯变换分析

第四章 拉普拉斯变换分析 1.拉普拉斯收敛域的意义是什么? 拉普拉斯变换定义为: ()()st X s x t e dt ∞ --∞=? 是广义积分,其中变量s j σω=+是复变量,因而积分是否存在将取决于变量s , 那么使得广义积分存在的s 的值所组成的集合就是拉氏变换的定义域。这说明,拉氏变换的收敛域确定了拉氏变换存在范围。收敛域不同,说明信号不同。对于单边拉变换来说,其收敛域的一般形式为0σσ>。 2.极点和零点的意义是什么?它们有什么作用? 如果 l i m ()s p X s →=∞, 则称s p =是()X s 的极点; 如果 l i m ()0s z X s →=, 则称s z =是()X s 的零点。 极点的位置决定了信号波形变化参数,如单调性(增长或衰减)和振荡快慢(频率);而零点确定了信号波形的不变参数,如振幅和初相位。 3.拉普拉斯变换的初值定理和终值定理的应用条件是什么? 拉普拉斯变换的初值定理为: 若 () (f t F s ? , 且()f t 连续可导 则 0l i m ()(0)l i m () s t f t f s F s ++→∞→== 其应用的条件为()F s 必须是有理真分式; 如果不是,则必须利用长除法,将()F s 表示为 : 0()()() F s B s F s =+ 其中,B (s )是s 的多项式,0()F s 是有理真分式。则有 000lim ()(0)(0)lim ()s t f t f f sF s +++→∞ →=== 拉普拉斯变换的终值定理为: 若 () (f t F s ? , 且()f t 连续可导 则 0l i m ()()l i m ()t s f t f sF s →∞→=∞=

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- == ? # 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ ==? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域 若0σσ>时,lim () 0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分 0()st f t dt e +∞ -- ? 存在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换 的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 ^ 若 11[()]() f t F S ζ=, 22[()]() f t F S ζ=, 1 κ, 2 κ为常数时,则 11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑

相关文档