文档库 最新最全的文档下载
当前位置:文档库 › 风机水泵类节电率推算方法

风机水泵类节电率推算方法

风机水泵类节电率推算方法
风机水泵类节电率推算方法

一、现场技术参数及节能计算

1一次鼓风

风机长期在额定转速下运行,所以,根据运行电流可求出电动机市电运行时,实际消耗的有功功率:

P 1 = 1.732 I

2

U

2

cosφ×0.9= 1.732×76×0.38×0.8×0.9= 36(KW)

安装节电器后,我们将风门开度调整为100%.风机原先调节方式为通过调节入口风门开度的方式,现改为调节风机的电机运行频率,改变电机的速度来达到调节的目的。根据流量、压力、轴功率与其转速的关系

用文字表述为:流量与转速成正比、压力与转速的平方成正比、轴功率与转速的立方成正比。

●Q2/Q1 = n2/n1

●H2/H1 = (n2/n1)2

●P2/P1= (n2/n1)3

节电率计算:

现阀门开度值为38-50%,结合实际压力与额定压力,,根据风机特性,风机实际风量为额定风量的70%左右,改造后运行在35HZ以此作为节能计算标准。

安装节电器后:

根据风量与转速成正比的关系,节电全速运行时对应额定转速,根据流体学原理P

2 3

P 2 = P

e

×(n

2

/n

1

)3 = P

e

×(Q

2

/Q

1

)3 =75×(0.7)3 = 26(KW)

节电时合计消耗电能:

P 3= P

2

1

2

= P

2

/96%/95% = 28(kw.h)λ

1

为节电效率;λ

2

为传动效率

理论节电率:

η

理论=( P

1

-P

3

)/ P

1

=(36-28)/36=22%

考虑到现场实际运行工况可能与理论计算值有差异,实际节电率略低。

η

实际=η

理论

×0.8=22%×0.8=18%

2二次鼓风

风机长期在额定转速下运行,所以,根据运行电流可求出电动机工频运行时,实际消耗的有功功率:

P 1 = 1.732 I

2

U

2

cosφ×0.9= 1.732×17×6×0.84×0.9= 133(KW)

安装节电器后,我们将风门开度调整为100%.风机原先调节方式为通过调节入口风门开度的方式,现改为调节风机的电机运行频率,改变电机的速度来达到调节的目的。根据流量、压力、轴功率与其转速的关系

用文字表述为:流量与转速成正比、压力与转速的平方成正比、轴功率与转速的立方成正比。

●Q2/Q1 = n2/n1

●H2/H1 = (n2/n1)2

●P2/P1= (n2/n1)3

节电率计算:

现阀门开度值为47-50%,结合实际压力与额定压力,根据风机特性,风机改造后实

际运行在35HZ左右,以此作为节能计算标准。

安装节电器后:

根据风量与转速成正比的关系,节电全速运行时对应额定转速,根据流体学原理P

2

= P

1×(n

2

/n

1

)3可以求出低速下的实际消耗的有功功率:

P 2 = P

e

×(n

2

/n

1

)3 = P

e

×(Q

2

/Q

1

)3 = 250×(0.7)3 = 86(KW)

节电时合计消耗电能:

P 3= P

2

1

2

= P

2

/96%/95% = 94(kw.h)λ

1

为节电效率;λ

2

为传动效率

理论节电率:

η

理论=( P

1

-P

3

)/ P

1

=(133-94)/133 =29%

考虑到现场实际运行工矿可能与理论计算值有差异,实际节电率略低。

η

实际=η

理论

×0.8 =29%×0.8=23%

3空压机

1、空压机房共有6台空压机:160KW空压机6台(现运行4台,根据工艺要求又增加了2台);250KW空压机1台。6台空压机均为螺杆式空压机,通过共用管道向压力罐

加压,以满足工艺的使用要求。

2、目前正常使用的有五台空压机,包括1台250KW 空压机和5台160KW空压机,一般

情况下3开2备,根据用气量的大小,也有四开一备或五台全开的情况,单台空压机

卸载时间控制在15分钟以内。根据目前的运行状况和厂家的规划,以后有可能还要增

加用气量,故又增加了2台160KW的空压机组。

设计方案:根据上述工艺要求,空压机做成恒压闭环控制方式,压力设定值为0.6mPa。

根据工况情况,现场调试时,可以调整设定值,以满足工艺为主。

现在客户要求做一台160KW的空压机。

工艺描述:

设备长期在额定转速下运行,所以,根据运行电流可求出电动机工频运行时,实际消耗的有功功率:

P 1 = 1.732 I

2

U

2

cosφ×0.9= 1.732×280×.38×0.88×0.9= 146(KW)

安装节电器后,我们将风门开度调整为100%.风机原先调节方式为通过调节入口风门开度的方式,现改为调节风机的电机运行频率,改变电机的速度来达到调节的目的。根据流量、压力、轴功率与其转速的关系

用文字表述为:流量与转速成正比、压力与转速的平方成正比、轴功率与转速的立方成正比。

●Q2/Q1 = n2/n1

●H2/H1 = (n2/n1)

●P2/P1= (n2/n1) 2

节电率计算:

现阀门开度值为30-40%,结合实际压力与额定压力,根据风机特性,风机改造后实际运行在40HZ左右,以此作为节能计算标准。

安装节电器后:

根据风量与转速成正比的关系,节电全速运行时对应额定转速,根据流体学原理P

2

= P

1×(n

2

/n

1

)3可以求出低速下的实际消耗的有功功率:

P 2 = P

e

×(n

2

/n

1

)2 = P

e

×(Q

2

/Q

1

)2 = 800×(0.8)2 = 102(KW)

节电时合计消耗电能:

P 3= P

2

1

2

= P

2

/96%/95% = 112(kw.h)λ

1

为节电效率;λ

2

为传动效率

理论节电率:

η

理论=( P

1

-P

3

)/ P

1

=(146-112)/146 =23%

考虑到现场实际运行工矿可能与理论计算值有差异,实际节电率略低。

η

实际=η

理论

×0.8 =26%×0.8=18%

4除盐泵

设备长期在额定转速下运行,所以,根据运行电流可求出电动机工频运行时,实际消耗的有功功率:

P 1 = 1.732 I

2

U

2

cosφ×0.9= 1.732×57.5×0.38×0.8×0.9= 34(KW)

安装节电器后,我们将阀门开度调整为100%.原先调节方式为通过调节开度的方式,现改为调节风机的电机运行频率,改变电机的速度来达到调节的目的。

根据流量、压力、轴功率与其转速的关系

用文字表述为:流量与转速成正比、压力与转速的平方成正比、轴功率与转速的立方成正比。

●Q2/Q1 = n2/n1

●H2/H1 = (n2/n1)2

●P2/P1= (n2/n1)3

节电率计算:

现阀门开度值为60%,结合实际压力与额定压力,根据水泵特性,改造后实际运行在40HZ左右,以此作为节能计算标准。

安装节电器后:

根据风量与转速成正比的关系,节电全速运行时对应额定转速,根据流体学原理P

2

= P

1×(n

2

/n

1

)3可以求出低速下的实际消耗的有功功率:

P 2 = P

e

×(n

2

/n

1

)3 = P

e

×(Q

2

/Q

1

)3 = 15×(0.8)3 = 23(KW)

节电时合计消耗电能:

P 3= P

2

1

2

= P

2

/96%/95% = 25(kw.h)λ

1

为节电效率;λ

2

为传动效率

理论节电率:

η

理论=( P

1

-P

3

)/ P

1

=(34-25)/34 =26%

考虑到现场实际运行工矿可能与理论计算值有差异,实际节电率略低。

η

实际=η

理论

×0.8 =25%×0.8=21%

5清水泵1

设备长期在额定转速下运行,所以,根据运行电流可求出电动机工频运行时,实际消耗的

有功功率:

P 1 = 1.732 I

2

U

2

cosφ×0.9= 1.732×260×0.38×0.8×0.9= 123(KW)

安装节电器后,我们将阀门开度调整为100%.原先调节方式为通过调节开度的方式,现改为调节风机的电机运行频率,改变电机的速度来达到调节的目的。

根据流量、压力、轴功率与其转速的关系

用文字表述为:流量与转速成正比、压力与转速的平方成正比、轴功率与转速的立方成正比。

●Q2/Q1 = n2/n1

●H2/H1 = (n2/n1)2

●P2/P1= (n2/n1)3

节电率计算:

现阀门开度值为30-40%,结合实际压力与额定压力,根据水泵特性,改造后实际运行在40HZ左右,以此作为节能计算标准。

安装节电器后:

根据风量与转速成正比的关系,节电全速运行时对应额定转速,根据流体学原理P

2

= P

1×(n

2

/n

1

)3可以求出低速下的实际消耗的有功功率:

P 2 = P

e

×(n

2

/n

1

)3 = P

e

×(Q

2

/Q

1

)3 = 160×(0.8)3 = 82(KW)

节电时合计消耗电能:

P 3= P

2

1

2

= P

2

/96%/95% = 90(kw.h)λ

1

为节电效率;λ

2

为传动效率

理论节电率:

η

理论=( P

1

-P

3

)/ P

1

=(123-90)/123 =27%

考虑到现场实际运行工矿可能与理论计算值有差异,实际节电率略低。

η

实际=η

理论

×0.8 =25%×0.8=22%

6请水泵2

设备长期在额定转速下运行,所以,根据运行电流可求出电动机工频运行时,实际消耗的有功功率:

P 1 = 1.732 I

2

U

2

cosφ×0.9= 1.732×142×0.38×0.8×0.9= 67(KW)

安装节电器后,我们将阀门开度调整为100%.原先调节方式为通过调节开度的方式,现改为调节风机的电机运行频率,改变电机的速度来达到调节的目的。

根据流量、压力、轴功率与其转速的关系

用文字表述为:流量与转速成正比、压力与转速的平方成正比、轴功率与转速的立方成正比。

●Q2/Q1 = n2/n1

●H2/H1 = (n2/n1)2

●P2/P1= (n2/n1)3

节电率计算:

现阀门开度值为30-40%,结合实际压力与额定压力,根据水泵特性,改造后实际运行在40HZ左右,以此作为节能计算标准。

安装节电器后:

根据风量与转速成正比的关系,节电全速运行时对应额定转速,根据流体学原理P

2

= P

1×(n

2

/n

1

)3可以求出低速下的实际消耗的有功功率:

P 2 = P

e

×(n

2

/n

1

)3 = P

e

×(Q

2

/Q

1

)3 = 90×(0.8)3 = 46(KW)

节电时合计消耗电能:

P 3= P

2

1

2

= P

2

/96%/95% = 50(kw.h)λ

1

为节电效率;λ

2

为传动效率

理论节电率:

η

理论=( P

1

-P

3

)/ P

1

=(67-50)/67 =25%

考虑到现场实际运行工矿可能与理论计算值有差异,实际节电率略低。

η

实际=η

理论

×0.8 =25%×0.8=20%

风机水泵节能分析

风机水泵节能分析 LH-300型节电装置,是我公司研制生产的具有国内领先水平的最新一代中低压电动设备专用节电产品,它是目前独具特色的高智能化节电装置,可广泛用于水泵、风机、电机、制冷机、空压机、注塑机、中央空调系统等电动设备。该产品是集国际先进的可编程技术、变频技术、智能化控制技术为一体,采用专门设计的节电控制软件和节能波形,自动调节电动设备的供电参数并进行优化控制,使系统始终保持在最佳经济运行状态,最大限度的节约电能,从而达到减少电费开支的目的。 1、节电原理:当电动设备处于空载、半载、轻载、满载、超载时,通过主板控制系统,根据负载的工作状态,变频调速动态调整供给电动设备的电压、电流、有功量、无功量、频率、功率、功率因数等达到转距与负载精确匹配,使电动设备保持在最佳、最经济的运行状态。 2、设备保护 1)、节电装置本身具有软启动功能,能使电机在设置好的V/F曲线上平滑调速和起制动,保持V/F比值基本不变,这样在相当小的电流下也能达到高启动转距,保持设备正常启动,启动电流的降低,可以消除高启动电流对设备的冲击,使齿轮和传动带平稳运转,延长其使用寿命。 2)、节电装置具有完善的故障诊断系统和保护功能,其内部设有电子过热过载继电器能根据节电装置输出电流/频率时间的模拟来监视电动机的缺相、过压、过流、过载及过热,及时停止节电装置输出,保护电动机免遭过热烧毁。 3)、节电装置对电源方面的过压、欠压、缺相等进行检测并显示,可帮助维修人员及时找到故障点。 4)、可通过对载波频率的设置,有效的减少电机噪声,减少电机漏电流。 3、节电装置带有市电(正常用电,非节电状态)和节电的转换装置,当节电状态出现故障时,将开关打到市电状态,生产设备仍可正常运转,对生产不会产生影响。 低压风机水泵节能装置的节能原理 1、变频节能 由流体力学可知,P(功率)=Q(流量)╳H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即水泵电机的耗电功率与转速近似成立方比的关系。例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%. 2、功率因数补偿节能 无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S╳COSФ,Q=S╳SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用节电装置后,由于节电装置内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。 3、软启动节能 由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用节能装置后,利用变频技术的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。 系统特点: 1.输入功率因数高,在整个速度范围内典型值为95%或更高,电流谐波少,无须功率因数补偿/谐波抑制装置 2.输出阶梯正弦PWM波形,无须输出滤波装置,可接普通电机,对电缆、电机绝缘无损害,电机谐波少,减少轴承、叶片的机械震动,输出线可以长达100米 3.标准操作面板配置或LED屏操作界面 4.功率电路模块化设计,如果需要,可在数分钟内更换损坏的模块,维护简单 5.完整的故障检测电路,精确的故障报警保护

机电工程系统调试方案

机电工程系统调试方案 作者:吴国强阅读:2364次上传时间:2005-02-02 推荐人:jswgq-55 (已传论文 20 套) 简介:完整的机电系统调试方案,包括组织机构图及岗位职责,调试纪律,交接班制度,通风空调系统,空调水系统,给排水系统,热水系统,电气照明及动力系统调试过程。 关键字:机电调试组织机构图通风空调相关站中站:补水、膨胀及水处理专题 1 机电系统调试组织机构图及岗位职责 调试工作机构图 岗位职责 调试指挥小组职责: 检查调试前的准备工作的落实情况。 签发起动和停车命令。 听取各值班班长的试运转报告,协调各专业间的调试工作。 组织处理调试中的重大问题。 组织落实各项指令及及时反馈信息。 专业负责人的职责:

组织并实施各项起动前的准备。 进行技术交底、安全交底。 检查值班操作人员的操作规程、安全规程的执行情况。 复核运行记录,填写调试记录。 发生异常情况紧急停车。 组织实施检修工作。 调试值班人员职责: 严格执行操作规程和安全规程,认真进行操作。 监视设备运行情况,发现问题及时向专业负责人汇报。 如实、全面、准确、清晰的填写调试值班记录。 在专业负责人的指挥下实施运行中的检修。 2 调试纪律: 服从命令听从指挥。 精神集中、坚守岗位。 严禁违章指挥、严禁违章操作。 3 调试交接班制度: 值班人员提前15分钟进入现场,在专业人员的召集下开好班前会,交班人员必须在交班完毕后方可离去。 交班人员必须详细的介绍运行情况和运行记录,专业负责人除自己交接班外,还需检查专业内其他人员的交接情况。 交班过程中发现设备的故障,交班人员应协助接班人员排除故障。 4 给水系统调试 系统要求

变频器节能计算

变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。 变频节能 什么是变频器 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

全国民用建筑工程风机和水泵的节能措施

全国民用建筑工程风机和水泵的节能措施 1)设定控制液位、时间,控制泵的启停。 2)调节风机、泵类风门(挡板),阀门,控制风量、流量。 对于风机类、泵类负载,当流量在90%-100%范围内变化时,通过风门控制器、阀门控制器控制风门(挡板),阀门的开度,与电动机凋速的节能效果相近,不必采取电动机调速措施。 3)调速节能: ①电动机定子凋压。交流异步电动机定子调压一般采用双向晶闸管调整电压实现无级调速,为转差功率消耗型的调速系统。由于风机、泵类负载转差功率损耗系数均较小,较适用于要求风量、流量在50%—100%范围内变化、平滑启动、短时低速运行的风机、泵类负载。 电风扇、风机盘管风机等采用单相交流异步电动机,一般采用串电阻调整电动机定子电压的有级调速方法。 ②电动机变换极对数、风机是按满足风量的最大需求选用的,但实际运行并不固定布在最大风量的运行状态。例如:地下车库送排风风机、兼作火灾时排烟的风机,平时排风风量不大,只在汽车尾气浓度超过定值和火火时排烟才需要加大或在最大排风风量的工况下运行,所以采用接触器切换来改变变极电动机定子绕组接线,获得多个不通转速,改变风量,使风机平时低速运转。电动机变换极对数调速方法适用于风量、流量在50%~100%范围内变化的场合。 ③在转子回路连续调节等效电阻,线绕转子异步电动机在转子回路连

续调节等效电阻,用转子电阻斩波调速法改变晶闸管的通断比率,实现无级调速节能、转子电阻斩波调速法是一种低效调速方法,适用于风机、泵类负载风量、流量在50%-100%范围内变化。电动机低速运转比关小阀门开度的耗电还节省得多。 ④采用变频凋速、静止串级调速,内反馈串级调速。当风量,流量在80%-100%范围内坐化时;风量、流量变化大于50%-100%范围时,宜采用高效率的变频调速或静止串级调速,内反馈串级调速,不宜采用变压、转子回路串电阻、电磁转差离合器等低效率调速方法。静止串级调速、内反馈串级调速均属静止低同步串级凋速,转差功率只能从转子输出,在同步转速以下调速,取代转子串电阻调速,适用于大功率风机,泵类的变速驱动。 供水泵类负载的控制普遍采用以压力或流量.速度为参量的双闭环控制系统。YQT系列中型内反馈交流调速三相异步电动机是专门为风机、泵类调速节能设计的,可广泛用于风机、水泵的凋速拖动,取代挡板,阀门调节,具有显著的节能效果。 ⑤采用电磁调速电动机调速系统。电磁调速电动机调速系统由鼠笼型异步电动机,电磁转差离合器、测速发电机及晶闸管控制装置组成。电磁调速电动机适宜风量、流量在50%-100%范围内变化的小型风机、泵类负载的节能。YCTD系列低电阻端环电磁调速电动机较YCT系列电磁凋速电动机效率高10%以上,宜选用YCTD系列低电阻端环电磁凋速电动机。但此调速方案节能效果较低,且要求运行环境相对洁净。

污水泵调试方案

xxx工程 污水泵调试方案 编制人: 审核人: 审批人: 编制单位:xxx x年x月x日

目录 1.工程概况 (2) 2. 编制依据 (2) 3.组织架构及人员安排 (2) 4. 准备工作 (2) 5.水泵调试步骤及内容 (3) 6.水泵试运转应注意的问题 (3)

一工程概况 这个自己写了! 二编制依据 1、GB50275-98《压缩机、风机、泵安装工程施工及验收规范》; 2、产品说明书及相关技术文件; 3、施工图纸; 4、相关的规范、规程,标准、图集等。 三、组织架构及人员安排 电气调试负责人: 主要职责:电气系统调试工作的统筹和组织 调试组成员: 主要职责:调试中的专职操作实施人员,并处理调试中的技术问题 电气系统调试协助人员: 调试现场安全监督 四、准备工作 1、须准备好相应的调试工具: 工具名称数量 500V兆欧表1只 万用电表1只 钳表1只 电工工具等 2、整理好所有施工图纸,包括平面图、系统图、接线图等。 3、准备好各种调试记录表格等。 五、水泵调试步骤及内容 本节调试内容主要测试水泵及控制箱的的电气性能,潜水排污泵为离心式潜水泵,采用自动藕合安装的方式。 1、泵试运转前应具备的条件。 1)检查集水坑内垃圾有没有清理干净,保证无杂物,避免将泵卡死烧坏。

2)通电前的检查: (1)水泵控制箱进行交接试验;每路配电开关及保护装置的规格、型号,应符合设计要求;相间和相对地间的绝缘电阻值应大于0.5 MΩ;用1KV的试验电压进行交流工频耐压试验,试验持续时间1min,无击穿闪络现象;二次回路交流工频耐试验,当绝缘电阻值大于10 MΩ时,用2500V兆欧表摇测1min,应无闪络击穿现象;当绝缘电阻值大于1~10 MΩ时,用1000V兆欧表摇测1min,应无闪络击穿现象。 (2)连接电动机与控制箱的电线电缆的线间电阻绝缘值符合要求(大于0.5 MΩ)。 (3)电线电缆已经按设计图纸要求连接,且连接螺没有松动现象; 2、水泵调试试运转。 1)在水专业组调试人员的配合下,检查水泵后阀门是否处于正常状态,检查水泵耦合是否严密,各种配件是否牢固,无松动。 2)水泵手动控制的调试,把控制柜的转换开关旋至手动档,点动每台水泵,检查电机转向是否正确;检查电动机是否有异常的响声。 3)水泵自动控制系统的调试,调好液位浮球高低,把控制柜的转换开关旋至自动档,水泵应能根据水位高低自动启动停止水泵。 4)记录好水泵运转时的起动时间和起动电流值、运行时的电流值,检查是否符合设计要求。 六、水泵试运转应注意的问题 1、泵在试运转时,如出现异常情况须及时停止试运行,找出产生异常情况出现的原因并进行妥善处理,处理完成后方可继续进行试运转。 2、严禁在集水坑内无水的情况下,长时间启动水泵检查电机转向。

变频器节能效率计算

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。 1.1变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。电机定子绕组内部感应电动势为 式中-定子绕组感应电动势,V; -气隙磁通,Wb; -定子每相绕组匝数; -基波绕组系数。

在变频调速时,如果只降低定子频率,而定子每相电压保持不变,则必然会造成增大。由于电机制造时,为提高效率减少损耗,通常在,时,电动机主磁路接近饱和,增大势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。 若在降低频率的同时降低电压使保持不变则可保持不变从而避免了 主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 π 式中-电动机转矩,N.m; —电源极对数; —磁极对数; —转差率; —转子电阻; —转子电抗; 由于转差率较小,则有 其中 由此可知:若频率保持不变则;若转矩不变则; 电动机临界转差率其中 电动机最大转矩=常数 最大转速降=常数 由此可知:保持常数,最大转矩和最大转矩处的转速降落均等于常数, 与频率无关。因此不同频率的各条机械特性曲线是平行的,硬度相同。

风机水泵变频节能计算

■风机水泵工作特性 风机水泵特性: H=H0-(H0-1)*Q2 H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力: R=KQ2 R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标准值,以额定值为基准,数值为1 表示实际值等于额定值风机水泵轴功率P: P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3 ■变阀控制 变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。 ■变频控制 变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流电机的无级调速。泵和风机采用变速调节时,其效率几乎不变,流量随转速按一次方规律变化,而轴功率按三次方规律变化。同时采用变频调节,可以降低泵和风机的噪声,减轻磨损,延长使用寿命。 ■节能计算示例 假设电动机的效率=98% IPER 高压变频器的效率=97%(含变压器) 额定风量时的风机轴功力:1000kW 风机特性:风量Q 为0 时,扬程H 为标么值,以额定值为基准) ;设曲 线特性为H=年运行时间为:8000 小时 风机的运行模式为:风量100%,年运行时间的20% 风量70%,年运行时间的50% 风量50%,年运行时间的30% 变阀调节控制风量时 假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗 P100=1000/ = 1020kW P70=1000 x x = 860kW P50=1000 x x = 663kW

水泵安装、调试方案

Pump Commissioning Plan 安德里茨智慧流水泵调试方案 一、 安装调试步骤: 1. 智慧流水泵的吊装 1.1. 吊装时,千斤顶及所用的绳索/吊链不能超过许用载荷以确保吊装物不掉下。不能在吊 装物下通过,绝对禁止站在吊装物下方。绝对避免急牵。 1.2. 起吊设备(吊带)放到进出水口端的法兰下部,才能起吊整台水泵,起吊装置一定尽量 短以防止泵倾斜。出水口端要比进水口端要重些,最好能配上导链。 a) 智慧流TM 水泵整泵的起吊 b) 上半泵壳的起吊:泵的上壳吊耳只能起吊泵盖,绝对不能用来起吊整台泵,否则 容易造成人员伤害或损坏水泵 只能用来起吊上泵壳,不能用来起吊整台泵。

Pump Commissioning Plan c)下半泵壳的起吊 2. 智慧流水泵与电机的安装 2.1. 准备工作: a) 基础应符合佛山安德里茨技术有限公司提出的基础方案及工作环境是安全的

Pump Commissioning Plan b) 在基础标上位置及标高 c) 安装前检查基础表面精度 2.2. 安装步骤: 2.2.1. 水泵安装 a) 将联轴器通过用油浴方式分别套入泵轴及电机轴(联轴器油浴温度为120℃~ 140℃) ,天气较冷的地区温度可以略高些,但不超过180℃。请注意联轴器油浴 前,修配好联轴器,轴和键上的毛刺或其他缺陷,并进行预装;在轴与键上涂抹些 油脂;热套时尽可能快的安装联轴器,使联轴器的的大平面端与轴末端齐平。 b) 预埋地脚螺栓的基础孔留个斜口便于灌浆。如下图 c) 在智慧流水泵底座的地脚螺栓孔下必须设置厚度为20~30mm的铁板(具体长度与 宽度视现场情况由安装单位定),铁板相应位置开比地脚螺栓直径稍大的孔,将地脚 螺栓插入智慧水泵的底座的地脚螺栓孔及铁板孔内,并带上螺母及垫片。如下图所 示: d) 将带有地脚螺栓的智慧流水泵按照1.2所述方法吊装到基础上,地脚螺栓进入基础

空调调试方案 通用版

上海市第一建筑有限公司 机电设备安装公司 调试方案 业主方 : 设计单位 : 监理单位 : 空调测试说明及程序(目录) 章节内容页数 第一章: 空调系统调试说明 第二章: 分体式空调调试程序 第三章: 加湿器调试程序 第四章: 风量平衡调试程序 第五章: 楼梯及前室加压风扇及排烟扇调试程序 第六章: 水泵调试程序 第七章: 风机盘管调试程序 第八章: 冷却水塔调试程序 第九章: 风机(风扇)调试程序 第十章: 新风机/空气处理机调试程序 第十一章: VAV/CAV箱调试程序 第十二章: 冷冻及采暖水系统的平衡调试程序 第十三章: 新风系统平衡调试程序 第十四章: 电动机控制屏测试程序 第十五章:设备噪音测试方案

第十六章: 空调系统调试测试仪表 第一章 空调系统调试说明 通过测试、调整和试运转,使空调系统及设备各方面性能达到设计要求及符合规范。 一、调试准备工作 A.资料准备: 1.设计图纸和设计说明书,清楚设计意图和设计参数; 2.主要设备产品安装使用说明书,了解各种设备的性能和使用方法; 3.清楚风系统、水系统和电气及BMS系统以及相互间的关系。 B.现场准备: 1.工具:绝缘表、万用表、钳型电流表、温湿度表、风速仪、冷媒表、噪音表、转 数表、压力表、干湿球表; 2.检查设备、系统结构是否符合设计要求及规范规定; 3.检查系统和设备安装质量是否符合设计要求和施工验收规范要求; 4.检查电源、水源、冷热源情况是否具备调试条件。 5.检查及确保各管道、设备的保温完整无损。 C.调试说明: 1.调试依据:设计文件、产品说明以及设计、施工规范等; 2.调试项目和调试程序参照各种设备的程序及表格; 3.使用仪表及精度要经过计量部门校验,取得合格证明;‘ 4.调试时间和进度按进度表格; 5.预期提供调试报告汇报业主、设计、监理等有关单位。 二、调试主要项目和程序 根据XXX项目空调系统的性质和控制精度,主要调试项目可按以下各项进行。 1.空调设备机械部份调试及GMCC箱检查测试; 2.空调设备单机无负荷运转,并同时测试各有关连锁控制的操作,安全自保护的测

我们当前水泵节能工作中存在的问题

我们当前水泵节能工作中存在的问题 火力发电厂中,厂用电约占总发电量的8%~10%,泵与风机的耗电量约占厂用电的70%~80%,因此,降低泵与风机的功耗对于提高电厂经济效益有很大作用。循环水泵的耗电量与季节和负荷都有关系,对其进行变频改造,既可以保证其有效地工作,又可以保证其在低负荷和不同季节的最低功耗,运用灵活、节能效果明显。 一、水泵节能技术在我国发展的趋势 目前,国内外许多电力拖动场合已将矢量控制的变频器广泛应用于通用机械、纺织、印染、造纸、轧钢、化工等行业中交流电动机的无级调速,已明显取得节能效果并满足工艺和自动调速要求。但在风机、水泵应用领域仍没有得到充分应用。其主要原因是对风机、水泵类负载可大量节能了解不够。故此,我们将风机、水泵的节能原理和应用状况向客户介绍。全国风机、水泵用电量占工业用电的60%以上,如果能在这个领域充分使用变频器进行变频无级调速,对我们发展加工制造业又严重缺电的国家,是兴国之策。风机,是传送气体装置。水泵,是传送水或其它液体的装置。就其结构和工作原理而言,两者基本相同。现先以风机为例加以说明。自然通风冷却塔、循环水泵、循环水管道及管道附件是电厂循环水系统的重要组成部分,在电厂初步设计中研究系统方案确定最优化系统配置,对于降低工程建设造价具有积极意义。循环水系统设计中最核心部分就是自然通风冷却塔、

循环水泵的合理选择配置,在循环水系统建设中它们的投资费用最多、施工最复杂,对电厂总投资影响最大。直接影响电力工程建设的单位造价与电厂投资回收年限。供水系统优化设计是系统方案选择的基础,其中对方案设计影响最大的是循环水泵电动机的年费用。在保证汽轮机运行安全满负荷发电的前提下,如何降低电动机的年费用,值得每一位工程设计人员思考。 二、水泵在使用过程中的问题 1、水泵本身设计技术含量不高 现阶段我国水泵设计主要是沿袭传统的模型换算法和速度系数法,这些设计方法从某种程度上来说已经过时,因为这是建立在旧的水泵设计经验的基础上的,在设计过程中无法超越过去的设计水平,无法在效率提升上有所突破。再加上水泵设计单位对技术的资金投入和人员投入不足,水泵设计人员的创新动力不足、缺乏创新意识,从而导致了水泵产品的技术含量得不到一个质的提升,水泵本身的技术含量无法提升,节能工作自然也做不到。再加上水泵制造企业片面着重经济效益,而忽视了水泵的节能工作,国家也没有这方面的政策扶持和财政优惠,造成了水泵制造企业对水泵节能、提高水泵效率也没有积极性。 2、水泵节能存在误区 我们过去对水泵节能的理解主要是提高水泵的各项效率指标,其实这是对水泵节能理解的一个误区,是一种片面的理解。我们所说的节能范围不只是一个效率指标,而且也包含水泵的性能的稳定性、水

2MW风机调试方案

电场工作方案 风电场风机调试方案 批准: 审核: 编制: 二O一五年十一月

风电场风机调试方案 一、目的 为保证风电场100台风机能够在2015年12月31日前全部顺利调试完成并网发电,现根据风电场实际情况特制定本风机调试方案。 本方案适用风电设备有限公司风力发电机组的风场调试。 二、时间安排 因风电场暂时还未接入电网风机没有正常电源供应,所以考虑在风机安装验收的同时,利用验收时的发电机供电合理安排人员完成部分风机静态调试的项目。因其它部分风机静态调试项目需要提供AC690V电源,所以计划将需要提供AC690V电源才能完成静调的项目并入动态调试一同开展。具体时间安排如下: 10月8日——12月5日完成100台风机静态调试工作; 12月10日——12月25日完成100台风机动态调试且并网发电。 三、人员要求 风机调试人员要求 1 .调试人员需持有电工证、登高证。 2 .调试人员应能正确使用逃生装置。 3. 调试人员应能正确使用灭火器、并知道风机内灭火器摆放位置。 4 .调试人员必须熟悉调试软件、风力发电机组硬件;具有相应的故障处理和紧急情况处理能力。 5 .所有参加调试人员必须熟知并遵守风机调试安全规范。 风电场生产人员要求

1.生产人员应持有登高证。 2.生产人员应配备齐全相应的检查工具。 3.生产人员应能正确使用灭火器、并知道风机内灭火器摆放位置。 4.生产人员配合开展调试工作,对调试工作进行监督检查、对调试人员的不安全行为进行纠正。 5.生产人员有权利对调试中出现的不科学、不合理调试项目提出异议,并要求调试人员给予合理解答。 四、组织机构 1.领导小组 组长: 副组长: 成员:、相关施工单位项目经理和厂家专业人员。 职责:全面协调调试工作,定期参加调试工作专题会议。审核调试方案、检查调试质量、审核调试报告。 2.调试协调工作组 组长: 副组长: 成员: 职责:协调调试具体工作、解决调试工作问题,定期组织召开调试工作专题会议。 3.风机调试工作组 组长: 副组长:

风机变频调速节能改造的分析及计算

风机变频调速节能改造的分析及计算 张恒谢国政张黎海 (昆明电器科学研究所,云南昆明 650221) 摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。在变频器未投运之前,计算节能量是比较困难的。本文通过分析变频节能的原理,介绍了针对阀门及液力耦合器调节流量系统的变频改造的节能估算的一些思考及方法。 关键词:风机变频节能原理调速节能阀门液力耦合器节能估算 一、 引言 在工业生产、发电、居民供暖(热电厂)和产品加工制造业中,风机水泵类设备应用范围广泛。其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。 由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能量是困难的,这在一定程度上影响了变频调速节能改造的实施。

二、 变频器节能的调速实质和原理 节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提供多少!” 变频器本身不是发电机。在变频器应用到风机等平方转矩负载的工业场合中,其节能原因不是由变频器本身带来的,而是通过变频器的调速特性来减小风机输出流量以适应工况中实际所需流量。 叶片式风机水泵的负载特性属于平方转矩型,即负载的转矩与转速的二次方成正比。风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:流量 (Q)与转速(n)的一次方成正比;扬程(压力)H 与转速的二次方成正比;轴功率 (P)则与转速的三次方成正比。即: ''n n Q Q = ; 2''(n n H H = 2''(n n p p = ; 3''(n n P P = 当风机、水泵的转速变化时,其本身性能曲线的变化可由比例定律作出,如图1所示。因管路阻力曲线不随转速变化而变化,故当流量由Q1变至Q2时,运行工况点将由A 点变至C 点。 图1风机流量、压力特性

风机水泵的变频调速节能分析

风机水泵的变频调速节能分析 节能降耗、增加效益是全社会应为之努力的方向。我国的电动机用电量占全国发电量 的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。应用于风机、水泵等设备的传统方法是通过调节出口或入口的挡板、阀门开度来控制给风量和给水量,其输出功 率大量消耗在挡板、阀门地截流过程中。另外,由于在通常的设计中为了满足峰值需求, 水泵选型的裕量往往过大,也造成了不应有的浪费。根据风机、水泵类的转矩特性,采用 变频调速器来调节流量、风量,将大大节约电能。下面就分析一下在风机水泵类负载中使 用变频器所能达到的效果。 一,通过变频调速达到的一次节能。 下面以水泵为例来说明,由图1可以看到: 流量Q正比于转速n 压力H正比于n2 转矩T正比于n2 功率P正比于n3 图1 水泵流量、压力、功率曲线…

在普通的水泵流量控制中使用阀门来调节,如图2所示: 图2 阀门控制水泵流量 管道阻力h与流量Q的关系为h正比于RQ2,其中R为阻力系数 电机在恒速运行时,流量为100%情况下(工作点为A),水泵轴功率相当于Q1AH1O 所包容的面积。 电机在恒速运行时,采取调节阀门的办法获得70%的流量(工作点为B),将导致 管阻增大,水泵轴功率相当于Q2BH2O所包容的面积,所以轴功率下降不大。 采用变频调速控制流量时,由于管道特性没有改变,水泵特性发生变化(工作点为C),轴功率与Q2CH3O所包容的面积成正比。故其节能量与CBH2H3所包容的面积成正比, 输入功率大大减小。如图3所示: 图3 变频调节水泵流量

正如前面提到的,轴功率P与转速n的三次方成正比。采用变频器进行调速,当流量 下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果流量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效 率降低及附加控制装置的效率影响等.即使这样,这个节能数字也是很可观的,因此在装有风机水泵的机械中,采用转速控制方式来调节风量或流量,在节能上是个有效的方法。 二,变频调速所实现的二次节能 变频调速自动根据负载情况调整输出电压,通过对电机的最佳励磁,有效地降低了无 功损耗,提高系统功率因数,降低电机工作噪音, 延长电机使用寿命。 电动机的总电流(IS)为电机励磁电流(IM)与电机力矩电流(IT)的矢量和, IS和IM夹角的余弦值即为电动机的功率因数; 电机励磁电流决定于加在电机线圈上的电压, 在工频状态下, 交流电压为380V恒定不变, 因此励磁电流也不会改变; 在变频状态下, 变频器自动检测负载力矩, 根据实际负载决定输出电压, 因此在负载较低的时候自动降低输出电压, 以维持最高的功率因数. 由于变频器自动降低了电机励磁电流, 使得输出总电流明显低于工频工作的总电流, 节约了线路中的损耗和无功功率的损失; 这个功能在丹佛斯VLT系列变频器中称为AEO功能(Automatic Energy Optimization, 自动节能功能). 声明:上海津信电气有限公司拥有此篇技术文档的所有权,任何人如需转载,必须表明出处。

引风机调试方案

锅炉引风机及其系统调试措施 1 编制目的 1.1 为了指导及规范系统及设备的调试工作,保证系统及设备能够安全正常投入运行,制定本措施。 1.2 检查电气、热工保护联锁和信号装置,确认其动作可靠。 1.3 检查设备的运行情况,检验系统的性能,发现并消除可能存在的缺陷。 1.4 通过引风机试转的调试,对施工、设计和设备质量进行考核,检查引风机电流、振动及其轴承温度的数值是否符合标准,并将这些数值记录备案,以此确定其是否满足以后正常生产的需求。 2 编制依据 2.1 《火力发电厂基本建设工程启动及竣工验收规程》(1996年版) 2.2 《电力建设施工及验收技术规范》锅炉机组篇(1996年版) 2.3 《火电工程调整试运质量检验及评定标准》(1996年版) 2.4 《电力建设安全健康与环境管理工作规定》(2002年版) 2.5 《电站锅炉风机选型和使用导则》(DL/T468-2004) 2.6 《电站锅炉风机现场性能试验》(DL/T469-2004) 2.7 《锅炉启动调试导则》DL/T 852-2004 2.8 《火电机组达标考核标准》(2006年版) 2.9 《工程建设标准强制性条文》,电力工程部分2006年版 2.10 《电力建设安全工作规程》(火力发电厂部分)DL5009.1-2002 2.11 设计图纸及设备说明书 3 职责分工 3.1 陕西电力建设第三工程公司 3.1.1 负责分系统试运的组织工作。 3.1.2 负责系统的隔离工作。 3.1.3 负责试运设备的检修、维护及消缺工作。 3.1.4 准备必要的检修工具及材料。 3.1.5 负责有关系统及设备的临时挂牌工作。 3.1.6 配合调试单位进行分系统的调试工作。 3.1.7 负责该系统分部试运后的验收签证工作。 3.2 凯越动力车间 3.2.1 负责系统试运中设备的启、停,运行调整及事故处理。 3.2.2 负责有关系统及设备的正式挂牌工作。 3.2.3 负责试运期间水质的常规化验分析。

大功率风机水泵调速节能运行技术经济分析

大功率风机水泵调速节能运行的技术经济分析(5) 徐甫荣 (国家电力公司热工研究院,陕西西安710032) 摘要:指出了发电厂风机水泵调速运行的必要性和巨大的节能潜力;讨论了各种调速方式的优缺点,并作出了详细的技术经济分析。 关键词:风机;水泵;液力耦合器;变频调速;串级调速;无刷双馈电机 图32各种电动机调速方式适用范围 5各种调速方式的综合性能分析 51不同的调速方式适用的电动机容量和转速 范围 各种电动机调速方式所适用的容量和转速范围是不同的。无换向器电动机适用于大、中容量和高、中转速场合。对于大容量?gt;5000kW)、高转速(>4000r/min)的电厂锅炉给水泵的电动机调速方式,目前只有无换向器电动机能适应这个工作要求,其最大容量达50MW,最高转速可达6000r/min。晶闸管串级调速系统适用于大、中容量和中、低转速场合,目前国外生产的最大容量达25MW,最高转速为2000r/min。鼠笼式电动机变频调速系统适用于中、小容量和中等转速(目前国外生产的最大容量已超过3MW,转速低于电动机同步转速)。其它如电磁调速电动机、异步电动机定子变压调速以及绕线式电动机转子串电阻调速等均适用于容量较小、转速不高的场合。图32为各种电动机调速方式的容量和转速的大致适用范围,可供在初步选择调速装置时参考。 52各种调速方式的电动机及其调速装置的综合 效率 适用于中、小型电动机的调速装置,有鼠笼式异步电动机PWM型变频调速、鼠笼式异步电动机电压型变频调速、鼠笼式异步电动机电流型变频调速、电磁调速电动机、绕线式异步电动机转子串电阻调速等。其综合效率ηz以鼠笼式异步电动机PWM型变频调速最高;鼠笼式异步电动机电流型、电压型变频

风机、水泵变频器选型原则

风机、水泵变频器选型方法 一、首先需要注意,1.罗茨风机及潜水泵及齿轮泵等不是平方转矩的风机水泵类负载,是恒转矩负载,平方转矩类风机水泵负载一般都是针对于离心风机及水泵来的,这种负载在出口关闭情况下出口压力升到额定压力后就不升高了,因为没有流量所以负荷降低。 2.风机水泵类负载一般在设计时是按照最大需量设计的,存在富余功率。对于这类负载使用变频器按需使用就有节能的空间。 二、正确的把握变频器驱动的机械负载对象的转速——转矩特性,是选择电动机及变频器容量、决定其控制方式的基础。风机、泵类的负载为平方转矩负载。 随着转速的降低,所需转矩以平方的比例下降,低频时负载电流小,电机过热现象不会发生;但有些负载的惯量大,必须设定长的加速时间,或再启动时的大转矩引起的冲击,因此选型时需考虑裕量;另:当电机以超出基频转速以上的转速运行时,负载所需的动力随转速的提高而急剧增加,易超出电机与变频器的容量,将导致运行中断或电机发热严重。

对于恒转矩负载,要选用G型的变频器;P型变频器适用于普通的风机和离心式水泵等负载。(罗茨风机、螺杆泵、泥浆泵、往复式柱塞泵等则要用G型) --------------百度文库及工控网、自动化网,总结的选型方法摘抄如下:1) 根据负载特性选择变频器,如负载为恒转矩 负载需选变频器,如负载为风机、泵类负载应选择风机、泵类变频器。因为风机、水泵会随着转速增大力矩。而刚启动时力矩较小。 2) 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。因此用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。 3) 变频器若要长电缆运行时,此时应该采取措 施抑制长电缆对地耦合电容的影响,避免变频 器出力不够。所以变频器应放大一、两档选择或在变频器的输出端安装输出电抗器。

送风机调试方案

1 概述 1.1 系统概述 三岳集团小火电技改工程,锅炉由锅炉制造有限责任公司制造。型号为UG-220/9.8-M型的高温高压自然循环汽包炉,п型布置、单炉膛、燃烧器四角布置,切圆燃烧,平衡通风、固态排渣、全钢架结构。锅炉点火及助燃采用0号轻柴油,燃用烟煤。 锅炉烟风系统配备离心式送风机两台,离心式引风机两台。除灰系统设置一台布袋除尘器,采用浓相正压气力除灰。除渣系统采用埋刮板除渣设备除渣。 锅炉配有两台NG320/470型中速钢球磨煤机,两台全封闭耐压胶带式称重给煤机。制粉系统采用中间储仓室式制粉系统。 工程建设单位为三岳集团,华能建设工程集团公司负责安装,震宁电力工程负责启动调试。 1.2送风机设备规及特性参数 锅炉送风机是由大通风机股份风机厂制造的SFG16D-C5A型离心式风机,送风机设备主要参数见表1。 2 调试目的 通过送风机试转的调试,对施工、设计和设备质量进行考核,检测送风机电流、振动及轴承温度的数值是否符合标准,并将这些数值记录备案。以确定其是否具备参加以后各项目的调试试运。 3编写依据 3.1 《火力发电建设工程启动试运及验收规程》(DL/T5437-2009) 3.2 《电力建设施工及验收技术规》锅炉机组篇(DL/T 5047-95) 3.3 《火电工程调整试运质量检验及评定标准》(1996年版) 3.4 《电力建设安全健康与环境管理工作规定》(2002年版) 3.5 《电站锅炉风机选型和使用导则》(DL/T468-2004) 3.6 《电站锅炉风机现场性能试验》(DL/T469-2004) 3.7 《火电工程启动调试工作规定》(1996年版) 3.8 《锅炉启动调试导则》(DL/T 852-2004) 3.9 《送风机说明书》大通风机股份风机厂 送风机性能数据表1

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理 相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。 流量 按照相似定律,由连续运动方程流量公式: φπη η ????? =?? =d D A v m v m v v v q 流速公式: 60 π ??= n D v m 式中: q v ——体积流量,s m 3 ; η v ——容积效率,实际容积效率约为0.95; A ——有效断面积(与轴面速度v m 垂直的断面积),m2; D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ; v m ——圆周速度,m/s ; φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95; 按照电机学的基本原理,交流异步电动机转速公式: p f s n ??-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。 流量、转速和频率关系式: f n q v ∞∞? 可见流量和转速的一次方成正比,和频率的一次方成正比。 扬程 按照流体力学定律,扬程公式:22 1 v m H ??= ρ 扬程、转速和频率关系式: 可见扬程和转速的二次方成正比,和频率的二次方成正比。 式中:H ——水泵或风机的扬程,m ; 功率 风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。 水泵:H g q P v e ???=ρ 或 风机: P q P v e ?= 可见有效功率和转速的三次方成正比,和频率的三次方成正比。 式中: P e ——有功功率,w ; ρ——流体质量密度,m Kg 3 ;

风机水泵节能改造方案(创杰)

专项节电解决技术方案 ——风机、水泵 FROM: 版本号V1.0 方案编号ACT000175 日期2009年06月29日 节电=省钱降低成本提高企业竞争力

风机水泵ACT节能控制系统 一、产品简介 银定庄污水处理厂3台179kw风机和1台110kw、1台 100kw水泵,电动机均为直接启动方式、实际负荷率 50%-70%。一方面启动电流对电机、电网冲击大,增加 了设备维修成本及人力成本;另一方面,电机始终处于 恒速运行状态,从而多增加了电费开支。 ACT恒压节能系统,应用变频调速节能原理,对风机、水泵进行闭环调速控制,使电机的运行功率随系统的需求进行自动的调整。并根据需要的压力进行恒压变量控制,使压力精确匹配到负载需要,避免电机运行过程出力过度,以达到最佳的节能效果。 二、产品性能 1、具有增效节能运行模式(改变电机负载率低,效率低的状况) 置节能运算模式,按标准电机的系数预先设定,实时检测电机负载率,在不改变即时速度情况下,通过对输出电压微变进行控制,使电机实时达到最佳的效率运行状态: 2、置PID控制,实时在线功率调整,确保高效率运行(最佳匹配输出) ◆迅速适应负载变动,精确匹配功率输出,免去阀门档板的节流损失,获得极大的节能 效益 ◆先进的自动转矩补偿功能设计,可使系统性能达到最佳

3、强劲的硬件、软件(进口品质,国产价格) ◆90%的元件直接选用国外知名品牌 ◆用进口知名品牌软件,保证节能系统稳定可靠运行,控制精度高 4、独立分风道设计(适合安装场所广) ◆全封闭独立风道设计,防尘、防气、防腐蚀,适应恶劣环境 ◆极大提升节能系统在机械、石材、冶金、矿山、纺织、化工、塑胶、造纸、印染、水 泥、等恶劣环境行业长期可靠运行。 5、高度集成一体,现场安装方便 ◆可选置专用功能模块,高度集成一体。 ◆具有旁路功能,确保设备安全连续生产(可选) ◆一体化立柜式设计,用户现场安装十分方便 三、节能改造带来的益处 1)节能降耗 使风机、水泵压力上下限控制方式变为恒压控制,使系统输出与所需功率精确匹配,减少压力偏高区域的无谓高能耗损失,节电率可达30%。 2)电网增容、提高有功功率 将功率因数由0.7~0.8提高到0.96以上,大大减少了无功电流,降低了线路损耗,提高了电网质量和供电效率。对供电设备而言,相当于起到了增容的作用。 3)软起动、保护电动机设备 使用专用高效智能节电系统可实现电动机的软起动,起动平滑无冲击。这样一方面可以减小起动时对电动机和电网的冲击,既保护了电动机,延长了其使用寿命,对电网而言又可以算是增加了系统的装机容量。 另一方面,由于减轻了电动机启动和加载时的电流冲击,从而延长了机械和模具的使用

相关文档
相关文档 最新文档