文档库 最新最全的文档下载
当前位置:文档库 › iData_稀土镧对纯净钢中夹杂物及抗拉强度的影响_李峰

iData_稀土镧对纯净钢中夹杂物及抗拉强度的影响_李峰

iData_稀土镧对纯净钢中夹杂物及抗拉强度的影响_李峰
iData_稀土镧对纯净钢中夹杂物及抗拉强度的影响_李峰

稀土镧对纯净钢中夹杂物及抗拉强度的影响

李峰1,刘向东1,任慧平2,刘宗昌2,刘亚丽1

(1.内蒙古工业大学材料科学与工程学院,内蒙古呼和浩特010051;

2.内蒙古科技大学材料与冶金学院,内蒙古包头014010)

摘 要:为了掌握稀土镧对纯净钢中夹杂物的影响,采用扫描电镜、能谱分析仪、等离子光谱分析仪等对加入稀土镧的纯净钢中夹杂物形态和尺寸及钢的抗拉强度进行了研究。结果表明:当稀土镧加入量在0~0.100%之间时,随着加入量的增加,镧的固溶量增加到0.0226%,夹杂物中的镧含量增加到0.0200%;随着镧含量的增加,夹杂物由硅酸盐、铝酸盐转变为稀土镧的氧化物、硫氧化物,而且夹杂物形状也由不规则的形状转变为规则的球形;稀土夹杂物的尺寸都小于3 m,夹杂物中的稀土镧含量及钢的硬度、抗拉强度随着钢中稀土镧含量的增加而增加。

关键词:镧;纯净钢;夹杂物

中图分类号:T G115.21 文献标识码:A 文章编号:1000-3738(2008)12-0059-04

Effects of Rare Earth Element La on Inclusions and Tensile Strength

of Clean Steel

LI Feng1,LIU Xiang-dong1,REN Hu-i ping2,LIU Zong-chang2,LIU Ya-li1

(1.Inner M ongolia U niv ersity o f Technolog y,H uhhot010051,China;

2.Inner M ong olia U niversity of Science and Technolog y,Baotou014010,China)

Abstract:In or der to g et ho ld of the effect of L a on inclusio ns o f the clean steel,SEM,EDS and ICP wer e used t o study the shapes and sizes of inclusions and t he tensile strengt h of the steel.T he r esults show t hat w ith the incr ease o f L a content fr om0to0.10%in t he st eel the La solution amo unt and it s content in t he inclusions increased from0to0.0226%and fr om0to0.0200%,r espectively.T he inclusions tr ansfo rmed o bvio usly fro m silicat e and aluminate into LaA lO3,L aS,L a2O2S and L a x S y,and their shapes fro m ir regular shape into reg ular sphericit y. T heir sizes wer e less t han3 m.T he content o f La in inclusions har dness and tensile str eng th o f the steel increased wit h the increase of L a content.

Key words:L a;clean steel;inclusion

0 引 言

钢中夹杂物的存在对钢的力学性能影响很大,控制钢中夹杂物的形态、尺寸和数量是提高其力学性能的重要措施。虽然在冶炼过程中,采取了各种措施来减少钢中夹杂物的含量,但由于钢液在高温下易氧化,加上冶炼技术水平和净化效果所限,钢中仍然存在着一定数量的夹杂物。因此控制夹杂物的形态和尺寸就尤为重要。稀土是具有高表面活性的元素,能与钢中的氧、硫等元素发生反应,减小这些元素对钢力学性能的影响。稀土还可以起到变质夹

收稿日期:2007-10-19;修订日期:2008-02-22

作者简介:李峰(1974-),男,山西大同人,讲师,博士。杂物的作用,改善其形态和尺寸[1-3],使这类稀土夹杂物周围不易产生大的应力集中,提高钢的疲劳性能[4,5]。虽然稀土在钢中的作用已经做了很多的研究,但单一稀土元素镧在纯净钢中的作用规律还未见报道。所以,作者在纯净钢中加入一定量纯稀土镧,研究单一稀土镧对纯净钢中夹杂物和力学性能的影响规律。

1 试样制备与试验方法

1.1 试样制备

用25kg真空感应炉冶炼纯镧单一合金化的纯净钢,稀土镧的加入量(质量分数/%,下同)分别为0,0.01,0.02,0.06,0.10。相应试样编号分别为S0,S1,S2,S3和S4。具体的冶炼工艺如下:称料、

59

第32卷第12期2008年12月

机 械 工 程 材 料

M aterials for M echanical Eng ineering

Vo l.32 No.12

Dec. 2008

装料、放模 抽真空(10-3Pa) 充入氩气保护 加热熔化 加入铝脱氧 电磁搅拌保温30s 加入纯稀土镧 电磁搅拌保温30s 氩气保护浇铸 氩气保护冷凝 出钢 脱模。切去冒口后,锻造成14 mm 125mm的薄板,在薄板的中部取样,加工成 10mm标距为100mm的拉伸试样,在SX0-4-10箱式电阻炉加热到950 ,分别在空气(正火)和冰盐水中冷却。

1.2 试验方法

用WE-60液压式万能材料试验机进行拉伸试验。用H V-50(载荷为98N,保压时间为10s)对正火与淬火试样进行维氏硬度测量。在薄板中部取样,用JEM-2010型扫描电镜(SEM)和EDAX GENESIS型能谱分析仪(EDS)对稀土夹杂物进行形貌和成分分析。用非水电解液低温电解-等离子体光谱分析法对试验钢的化学成分、钢中稀土镧的总量和夹杂物中的稀土镧的含量进行测定。

2 试验结果及分析

2.1 化学成分

由表1可见,稀土镧加入后,由于在高温下有一部分稀土镧会烧损,还有一部分会形成化合物与其它化合物一起上浮形成钢渣,因此冶炼的纯净钢中稀土镧的残留量要比实际加入量少。

表1 试验钢的化学成分(质量分数/%)

Tab.1 Chemical compositions of the test steel(mass/%)

试样C Si M n P S La Al N O

S0<0.010.0340.0600.0090.00600.1010.00170.0011 S1<0.01<0.0300.0500.0080.0060.00800.1340.00130.0024 S2<0.01<0.0300.0600.0090.0040.01300.0990.00140.0022 S3<0.010.0300.0500.0090.0040.02900.0990.00140.0022 S4<0.010.0480.0500.0080.0030.04260.1120.00140.0020

2.2 镧含量与硫、氧含量的关系

由表2和图1、图2可见,随着钢中稀土镧残留量的增加,当钢中w(La)/w(S+O)<2时,钢中镧的固溶量由0.0015%增加到0.0028%,固溶量增加不明显;而当w(La)/w(S+O)>2后,稀土镧的固溶量由0.0028%显著增大。在S1试样中,稀土镧的固溶量为1.5 10-5,而在S4试样中稀土镧的固溶量达到2.26 10-4。文献[6]报道,当硫含量小于0.006%,氧含量小于0.0024%时,稀土镧的固溶量能够达到2.26 10-4;在钢中稀土的残留量小于2.9 10-4时,稀土在钢中夹杂物中的含量大于在钢中的固溶量;而当钢中稀土镧含量达到2.9 10-4时,稀土在夹杂物中的含量却小于在钢中的固溶量。一般稀土加入钢中主要起脱氧、脱硫和变质夹杂的作用,反应产物主要是稀土夹杂物。随着稀土加入量的增加,完成脱氧、脱硫和变质夹杂作用后,富余的稀土会固溶在钢中,起到微合金化的作用。在本试验中,由于钢中的杂质比较少,硫含量也很低,只有60 10-6左右,通过铝脱氧后,钢中氧含量也只有11 10-6。因此当钢中加入的稀土较少时,稀土镧主要与钢中的氧、硫等发生反应,生成稀土氧化物或氧硫化物。所以,加入的稀土镧除与氧、硫反应生成稀土硫氧化物外,只有小部分稀土镧固

表2 试验钢中的稀土镧加入量与含量(质量分数/%) Tab.2 La contents of the test steel(mass/%)试样加入量残余量夹杂物中含量固溶量

S00000

S10.0100.00800.00650.0015

S20.0200.01300.01020.0028

S30.0600.02900.01300.0160

S40.1000.04260.02000.022

6

图1 稀土镧固溶量与w(La)/w(S+O)的关系

Fig.1 Relationship between soild solu tion content of La

and ratio of w(La)/w(S+O)

溶在钢中;而当钢中稀土加入量高时,由于钢中的夹杂物含量比较少,所以除与氧、硫等发生反应外,大部分稀土镧固溶在钢中,这部分稀土将起到微合金化、固溶强化的作用。

2.3 稀土镧对钢中夹杂物的影响

由图3~6可见,未加稀土前,钢中夹杂物主要

60

图2 硫与氧含量与钢中稀土镧含量的关系

Fig.2 Relationship between w(La)and w(S+O)

是不规则形状的MnS、Al2O3和铝酸盐夹杂物的混合物(图3);加入稀土后,随稀土加入量的增加,混合的M nS、A l2O3夹杂物出现了分离,夹杂物中的铝含量显著减少(图4)。而且夹杂物的形状由不规则的尖角形转变为规则的球形。由于稀土镧与Al2O3发生反应,把夹杂物中的铝置换出来,生成球状稀土镧的铝酸盐和稀土硫氧化物。但由图4(a)可见,钢中还有不规则的铝酸盐夹杂物存在。随着钢中镧含量的升高,镧与钢中的MnS发生反应,生成La2O2S 进而甚至出现LaS,并把M nS夹杂吸附在自己周围,不规则的Al2O3夹杂物基本消失,形成了细小的圆形或椭圆形的稀土硫化物、稀土硫氧化合物(图5)。当钢中的稀土达到0.0426%时,钢中的夹杂物当中已经不能测定出铝元素的存在,M nS、A l2O3夹杂物完全被镧夹杂物取代,转变为不变形或难变形的La2O2S和La2S3(图6)。所以在纯净钢中,加入稀土镧后生成镧夹杂物的顺序为LaAlO3、La2O2S、La x S y。这与叶文等[7,8]研究的稀土铈在16M n钢中铈夹杂物的生成顺序是一致的。而且稀土夹杂物的尺寸全部小于3 m,弥散分布于钢中,阻碍晶界的移动,起到了细化晶粒作用。同时,稀土使夹杂物变成球状,使钢的各向异性变小,钢材的等向性能提高。由表2和图3~5还可见,钢中稀土夹杂物中的镧含量也随着钢中稀土镧含量的增加而增大。

2.4 拉伸性能

由图7可见,随着钢中稀土含量的增加,正火和淬火试样的抗拉强度都呈上升趋势。但稀土含量对正火试样的抗拉强度提高较小;对于淬火试样,试样S4的抗拉强度为518M Pa,几乎是不加稀土试样S0的抗拉强度281M Pa的两倍。硬度测试结果发现纯净钢的显微硬度随着稀土镧含量的增加而增加。正火试样的硬度由S0的136H V增加到S4的167H V,淬火试样由S0的128H V增加到S4的207H V。由此可见,稀土镧的加入,通过改变夹杂物的存在形态、固溶在钢中强化基体组织,

对钢的抗

(a) SEM

形貌

(b) EDS谱

图3 试样S0中夹杂物SEM形貌及E DS谱

Fig.3 SEM and EDS of inclus ions in sample

S0

(a) SEM

形貌

(b) EDS谱

图4 试样S1中夹杂物SEM形貌及E DS谱

Fig.4 SEM and EDS of inclus ions in sample S1

拉强度、硬度的提高有一定的促进作用。稀土镧纯净钢的淬火工艺与正火工艺相比其抗拉强度受镧加入量影响程度要显著,这是因为在快冷条件下稀土镧对钢的晶粒细化作用更明显。

3 结 论

(1)钢中的固溶镧含量随着镧的加入量的增加而增加,其显微硬度也随之增加。

(2)在纯净钢中,随着稀土镧含量的增加,夹杂物由不规则的硅酸盐、铝酸盐转变为球状的含镧的

61

(a) S EM

形貌

(b) EDS 谱

图5 试样S3中夹杂物S EM 形貌及EDS 谱Fig.5 SEM and E DS of inclusions in sample

S3

(a) S EM

形貌

(b) EDS 谱

图6 试样S4中夹杂物S EM 形貌及EDS 谱Fig.6 SEM and E DS of inclusions in sample

S4

图7 稀土镧含量对纯净钢抗拉强度的影响

Fig.7 Effect of La content on tensile strength of the clean steel

铝酸盐、硫氧化物、硫化物;是以LaA lO 3、La 2O 2S 、La X S Y 主要形式存在,其尺寸都小于3 m 。(3)钢中稀土夹杂物中的镧含量随着钢中稀土镧残留量的增加而增大。

(4)加入稀土镧后的纯净钢经正火和淬火热处理后,其抗拉强度均得到提高。

参考文献:

[1] 张英建,李文学,李春龙,等.稀土对BNbRE 钢夹杂物的影响

[J].包头钢铁学院学报,2003,22(1):46-49.

[2] Lin qin,Ye wen,Li Shuantu.Rar e earth dissolved in solid so -lution of steel and its effect on micr os tructure [J ].Rare Earths,1990,8(1):55-60.

[3] Zh u Xiangyuan ,Zeng J ing,Liu Jixiong,et al .Beh avior of rare

earths in low sulphar Nd -T-i b earing steel[j].Journal of the Chinese Rar e Earth Society,2002,20(2):182-185.

[4] 林国荣,陈东,顾泉佩,等.稀土对ZG60CrM nSiM o 钢冲击疲

劳抗力的影响[J].稀土,1999,20(6):31-35.

[5] Wang Rong.Application of rar e earths in heavy rail s teel[J].

Proc C on t on RE App in Steel,1999,8:52-56.

[6] 周兰聚.稀土在钢中的应用和应注意的问题[J ].山东冶金,

1999,22(12):39-41.

[7] 郭锋,林勤,孙学义.稀土碳锰纯净钢中夹杂物形成与转化的

热力学计算及观察分析[J ].中国稀土学报,2004,22(5):614

-618.

[8] 叶文,林勤,李文超.铈在低硫16M n 钢中的物理化学行为

[J].中国稀土学报,1985,3(1):55-61.

机械工程材料 网上远程投稿启事

为适应当今期刊网络化、数字化的发展趋势,我刊从2007年开始正式启用远程在线投稿、审稿系统,原则上所有来稿都要从网上进行投稿。投稿网站为 材料与测试网(http://w w w.mat https://www.wendangku.net/doc/656019621.html,) ,请在网站

首页的 在线投/审稿 进入,注册成功后就可以进行投稿,您可以方便地在网上查询稿件的处理进度与状态。具体使用方法可以查阅投稿页面上的 使用指南 。为了方便您的稿件被我刊录用,投稿前请务必按照我刊稿件格式要求对稿件进行检查、补充和修订。欢迎您在我刊投稿,感谢您订阅本刊!提前祝您在新的一年里身体健康、工作顺利、阖家幸福!

62

钢中夹杂物控制原理修订稿

钢中夹杂物控制原理 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

钢中夹杂物控制原理钢中氧的存在形式 T[O]=[O]溶+[O]夹 (1)转炉吹炼终点: [O]夹=>0,T[O]→[O]溶=200~1000ppm [O]溶决定于: l 钢中[C],转炉吹炼终点钢中[C]与a[O] 关系如图 l 渣中(FeO); l 钢水温度。 1 顶底复吹转炉炉龄 C–Fe的选择性氧化平衡点 根据式 [C] + [O] = {CO} (1) lg (Pco/ac* [%O])= 1149/T–2.002 以及反应 [Fe] + [O] = (FeO) (2) lg aFeo/[%O] = 6317/T – 2.739 得到反应(FeO)+ [C] = [Fe] + {CO} (3) lg (Pco/ac* aFeo)= –5170/T+4.736 结论钢液中C-Fe的选择性氧化平衡点为[C]=0.035%,也就是说终点[C] < 0.035%时,钢水的过氧化比较严重。图1-1的统计数据也说明了这点。同时由式(1)可以求出此时熔池中的平衡氧含量为740ppm。 理论分析

1)终点 时钢水的 当终点[C]在0.02~0.04Ⅰ)有些 2)温度对氧含量的影响 200400 600800100012001400 16001800160016201640166016801700172017401760 终点温度(℃)终点氧含量(p p m )

在终点[C] = 0.025~0.04%时,终点氧含量虽然较分散,但总的趋势是随着终点温度的升高,终点氧基本呈上升趋势。 渣中(FeO+MnO )增加,终点[O]有增加趋势;

炼钢、铸锭过程中产生非金属夹杂物的原因

炼钢、铸锭过程中产生非金属夹杂物的原因 摘要:论述钢中非金属夹杂物对钢锭质圣的影响,分析了非金属夹杂物在冶炼和铸锭过程中产生的原因,提出了控制夹杂物产生的几点行之有效的措施。 关键词:非金属夹杂物冶炼浇注电弧炉精炼炉质,控制 非金属夹杂物,一般是指钢锭在冶炼和浇注过程中产生或混人的非金属相,都是一些金属元素(Fe、Mn、Al等)及51与非金属元素(0、S、N、P、C 等)结合而生成的氧化物和硫化物(如Feo、Si02、Mno、A12O3、MnS、MnC)等。非金属夹杂物按来源分为内生夹杂物和外来夹杂物。内生夹杂物是钢内部发生的反应产物或者因为温度降低而形成夹杂析出。外来夹杂物是由炉料带人,耐火材料及炉渣混人的颗粒。内生夹杂物可以以外来夹杂物为核心聚集到后者的颗粒上。外来夹杂物也可能与钢液反应被还原。钢中如果有非金属夹杂物的存在,即使在钢中含量极少(通常是小于万分之一)也会给钢的质量带来极为有害的影响。从2002年1~7月份重点产品的投料统计情况看,锻钢支承辊共生产68支,经探伤发现其中2支因有密集夹杂物缺陷而报废,有4支因有夹杂物等缺陷造成锻造裂纹。电站锻件钢共生产41支,经探伤发现其中4支有严重的条状缺陷,缺陷性质为夹杂物。半钢辊钢共生产27支,其中14支因夹杂物造成不同程度的裂纹。可见夹杂物对钢锭质量造成的经济损失是非常巨大的。 1 冶炼过程中产生非金属夹杂物的原因 造渣材料碱性电弧炉常用的造渣材料采用石灰、萤石。石灰,主要成份为CaO,其含量不应小于85%,SiO2含量不大于2%,硫含量应小于0.15%。石灰易吸收水分而变成粉末,所以,造渣时要使用刚烧好的、烧透的石灰,或对石灰进行预热后再使用,这样能防止石灰给钢液带人过多的水分,否则就会使钢液氢含量增加,影响钢的质量,严重时会使钢报废。萤石,主要成份为CaF2,含量为85%、95%, SiO2含量约为6%。石中若掺杂硫化物矿石,必须将这种萤石排除掉,否则会降低炉渣的脱硫能力,易造成硫化物(MnS)夹杂。 铁合金在冶炼时,如果使用烘烤时间短、烘烤温度低、甚至根本未经烘烤的铁合金材料,势必会增加外来夹杂物和气体带人钢液中的机会。经过烘烤的铁合金上到炉台,在寒冷的冬季,露天摆放的铁合金会很快凉下来,将这些凉的铁合金

实验五 非金属夹杂物的分析与评定

实验五 非金属夹杂物的分析与评定 (验证性) 一、实验目的及要求 1.掌握钢中非金属夹杂物的分类与形态特征。 2.掌握使用标准评定钢中非金属夹杂物的级别。 二、实验原理 钢铁中的非金属夹杂物的出现是不可避免。钢中非金属夹杂物的金相检验主要包括夹杂物类型的定性和定量评级。夹杂物的检验评定可按照GB/T10561-2005《钢中非金属夹杂物显微评定方法》执行。 1、检验钢中的非金属夹杂物的必要性 因为非金属夹杂物破坏了金属基体的连续性、均匀性,易引起应力集中,造成机械性能下降,导致材料的早期破坏,其影响程度主要取决于夹杂物的形状、大小、分布和聚集状态。 钢中夹杂物的检验一般在出厂前钢厂检验或者收货单位验收时检验。 2、钢中非金属夹杂物的来源 a)内在的:包括①铁矿石②钢厂在冶炼时,用Si、Al脱氧造成,反应式: 3FeO + 2Al → 3Fe + Al2O3 2FeO + Si → 2Fe + SiO2 b)外来的:浇铸过程卷入的耐火材料、炉渣等。 3、制样要求 a、取样时沿轧制方向,磨制纵向截面观察夹杂物大小、形状、数量,横向截面观察夹杂物从边缘到中心的分布。试样表面无划痕、无锈蚀点、无扰乱层。 b、淬火以提高试样的硬度,保留夹杂物的外形。 c、试样表面不浸蚀。 4、非金属夹杂物的分类 a、氧化物:FeO、MnO、Cr2O3、Al2O3; b、硫化物:FeS、Mn S及其共晶体; c、硅酸盐:2FeO·SiO2、2MnO·SiO2; d、氮化物:TiN、VN; e、稀土夹杂物 5、非金属夹杂物的金相鉴别方法

主要是指利用光学显微镜中的明场、暗场和偏振光灯照明条件下夹杂物的光学反映差异,以及在标准试剂中腐蚀后,夹杂物发生化学反应而出现色差及侵蚀程度的不同来区分鉴别。 a明场:检验夹杂物的数量、大小、形状、分布、抛光性和色彩。不透明夹杂物呈浅灰色或其他颜色,透明的夹杂物颜色较暗。 b暗场:检验夹杂物的透明度、色彩。透明夹杂物发亮,不透明夹杂物呈暗黑色、有时有亮边。 c偏光:检验夹杂物的各向同性和各向异性,色彩、黑十字现象。 金相法鉴定夹杂物的优点是简单直观,易与钢材的质量联系起来;缺点是不能确定夹杂物的成分和晶体结构。 6、非金属夹杂物的特征 具体形貌如图: a)硫化物主要有硫化铁(FeS)和硫化锰(MnS),以及它们的共晶体等。在钢材中,硫化物常沿钢材伸长方向被拉长呈长条状或者纺锤形,塑韧性较好。在明场下,硫化铁呈淡黄色,硫化锰呈灰蓝色,而两者的共晶体为灰黄色;在暗场下一般不透明但有明显的界限,硫化锰稍呈灰绿色;在正交偏光下都不透明,转动载物台一周,硫化铁有四次明亮、四次消光,呈各向异性,硫化锰及其共晶体都为各向同性。图3-2-20,3-2-21,3-2-23,3-2-27 b)氧化物常见氧化物有氧化亚铁(FeO)、氧化亚锰(MnO)、氧化铬(Cr2O3)、氧化铝(Al2O3)等。压力加工后,它们往往沿钢材延伸方向呈不规则的点状或细小碎块状聚集成带状分布。在明场下,它们大多呈灰色;在暗场下,FeO不透明,沿边界有薄薄的亮带;MnO透明呈绿宝石色;Cr2O3不透明,有很薄一层绿色;Al2O3透明,呈亮黄色。在偏光下,FeO、MnO呈各向同性,Cr2O3、Al2O3呈各异性。二氧化硅(SiO2)也是常见的氧化物。在明场下呈球形,深灰色;在暗场下无色透明,在偏光下呈各向异性、透明,并称黑十字现象。 图3-1-1,3-1-4,3-1-7,3-1-8,3-1-10,3-1-11,3-1-16,3-1-17,3-1-183-1-19,3-1-20,3-1-36,3-1-34 c)硅酸盐夹杂物来源于炼钢时加入Si-Ca脱氧剂或者与耐火砖发生作用。常见的硅酸盐夹杂物有铁橄榄石(2FeO·SiO2)、锰橄榄石 (2MnO·SiO2)、复合铁锰硅酸盐(nFe·mMnO·pSiO2)以及硅酸铝(3Al2O3·2SiO2)等。在明场下均呈暗灰色,带有环状反光和中心两点;在暗场下,一般均透明,并带有不同的色彩;在偏光下,除多数铁

钢夹杂物危害及应对措施

钢夹杂物危害及应对措施 一、前言 钢铁业是几乎所有重工业的基础与支柱,在国民经济中的重要性不言而喻。钢铁材料是人类社会最主要使用的结构材料,也是产量最大应用最广泛的功能材料,在经济发展中发挥着举足轻重的作用。钢铁材料是人类社会的基础材料,是社会文明的标志。从纪元年代前后,世界主要文明地区陆续进入铁器时代以后,钢铁材料在人类生产、生活、战争中起到了举足轻重的作用。一直到今天,钢铁材料的这种作用不但没有减弱,而是在不断增强。房屋建筑、交通运输、能源生产、机器制造等都是立足于钢铁材料的应用基础之上;钢铁材料是诸多工业领域中的必选材料,既是许多领域不可替代的结构材料,也是产量最大覆盖而极广的功能材料。钢铁工业长期以来是世界各国国民经济的基础产业,在国民经济中具有重要的地位,钢铁工业发展水平如何历来是一个国家综合国力的重要指标。 洁净钢是一个相对概念,一般认为:洁净钢指钢中五大杂质元素(S 、P 、H 、N 、O) 含量较低,且对夹杂物(主要指氧化物和硫化物) 进行严格控制的钢种, 主要包括:钢中总氧含量低,夹杂物数量少、尺寸小、分布均匀,脆性夹杂物少及其合适的夹杂物形态。钢的纯净化技术是生产高性能、高质量产品的基础,代表钢铁冶金企业的技术装备水平。20 世纪80 年代以来,钢的洁净度不断提高。日本2000年批量生产的洁净钢中,有害元素(P、S、N、O、H) 总量可达0.005 %,中国宝钢可达0.008 %,国内外钢厂生产洁净钢水平见表1 表1 国内外一些钢厂生产的洁净钢水平单位: ×10 - 6

随着现代科技的进步和现代工业的发展对钢的质量要求越来越高,钢中夹杂物(主要是氧化物夹杂)严重影响钢材质量,随着洁净钢和纯净钢概念的提出,更是对钢中夹杂物的控制提出苛刻的要求。钢中夹杂物能降低钢的塑性,韧性和疲劳寿命,使钢的加工性能变坏,对钢材表面光洁度和焊接性能有直接影响。 钢中的夹杂物对于钢材性能影响很大例如钢中夹杂物可导致汽车和电气产品用薄钢板的表面缺陷、DI罐用薄钢板裂纹、管线钢氢致裂纹、轮胎子午线加工过程断线、轴承钢疲劳性能恶化,同时钢中非金属夹杂物对于钢板抗撕裂性能和低温冲击韧性也有不利影响。随着钢铁工业的不断发展,对钢的性能及其化学成分、组织均匀性的要求越来越高。钢铁产品将按着钢液洁净度高、成分控制精度高和产品性能稳定性能高的方向发展,其中洁净度钢的生产是2l世纪钢铁企业面临的重大课题。 二、钢中夹杂物的分类 分类方法很多,但常见的有以下四种: 1.按来源分类,可分为两类: (1)外来夹杂物:耐火材料、熔渣或两者的反应产物混入钢中并残留在钢中的颗粒夹杂称为外来夹杂。包括从炉衬或包衬、或从汤道砖、中包绝热板、保护渣进入钢水中的夹杂物(有人还将钢水二次氧化生成的夹杂物包括在内)。这类夹杂颗粒较大,易于上浮,但在钢中,它们的出现带着偶然性且不规则。 (2)内生夹杂物:在冶炼、浇注和凝固过程中,钢液、固体钢内进行着各种化学反应,对于在冶炼过程中所形成的化合物、脱氧时产生的脱氧产物、或在钢水凝固过程产生的化合物,当这些化合物来不及从钢水中彻底排出而残存在钢中者,叫做内在的非金属夹杂物。内生夹杂物形成的时间可分为四个阶段: ①一次夹杂:钢液脱氧反应时生成的脱氧产物; ②二次夹杂:在出钢和浇注过程中温度下降平衡移动时生成的夹杂物; ③三次夹杂:凝固过程中生成的夹杂; ④四次夹杂:固态相变时因溶解度变化生成的夹杂。 一般说来外来夹杂物颗粒较大,在钢中比较集中,而内生夹杂物则与此相反。从组成来看,内生夹杂物可以是简单组成,也可以是复杂组成;可以是单

钢中夹杂物的类型及控制技术发展

钢中夹杂物的类型及控制技术发展 XX (河北联合大学冶金与能源学院,唐山,063009) 摘要:综合论述了钢中非金属夹杂物的按化学成分、形态、粒度、来源的分类以及控制夹杂物含量时所采用的气体搅拌-钢包吹氩、中间包气幕挡墙、电磁净化-钢包电磁搅拌、中间包离心分离和结晶器电磁制动、过滤器技术、超声处理技术和渣洗技术,并针对钢中夹杂物的控制技术的优、缺点进行了简要的归纳。随着氧化物冶金工艺纯净钢产品的开发,夹杂物去除技术的不断进步,非金属夹杂物的控制技术仍面临着新任务。 关键词:非金属夹杂物;夹杂物类型;控制技术 Types and Progress on Technique for Removel of inclusions in steel XX (College of Metallurgy and Energy Hebei United University, Tangshan 063009) Abstract:The behavior of inclusions in molten steel includes physical processes such as nucleation, growth, polymerization and transmission. The removal of inclusions can be seen as the result of transmission, which involves inclusion growth, floating and separating. The key progress on technique for removal of inclusions in steel is gas stirring-ladle argon blowing, gas shielding weir and dam in tundish, electromagnetic cleaning-ladle electromagnetic stirring, tundish centrifugal separating and mold electromagnetic braking, slag washing, ultrasonic technique ,and filter technique. Key words:non-metallic inclusions Typesof inclusions, Technique for Removel of inclusions 1引言 钢中非金属夹杂物是指钢中不具有金属性质的氧化物、硫化物、硅酸盐或氮化物。它们是钢在冶炼过程中加入脱氧剂而形成的氧化物、硅酸盐和钢在凝固过程中由于某些元素溶解度下降而形成的硫化

钢中夹杂物浅析

钢中夹杂物浅析 1. 钢中夹杂物的分类 1.1 根据钢中非金属夹杂物的来源分类 (1)内生夹杂物钢在冶炼过程中,脱氧反应会产生氧化物和硅酸盐等产物,若在钢液凝固前未浮出,将留在钢中。溶解在钢液中的氧、硫、氮等杂质元素在降温和凝固时,由于溶解度的降低,与其他元素结合以化合物形式从液相或固溶体中析出,最后留在钢锭中,它是金属在熔炼过程中,各种物理化学变化而形成的夹杂物。内生夹杂物分布比较均匀,颗粒也较小,正确的操作和合理的工艺措施可以减少其数量和改变其成分、大小和分布情况,但一般来说是不可避免的。 (2)外来夹杂物钢在冶炼和浇注过程中悬浮在钢液表面的炉渣、或由炼钢炉、出钢槽和钢包等内壁剥落的耐火材料或其他夹杂物在钢液凝固前未及时清除而留于钢中。它是金属在熔炼过程中与外界物质接触发生作用产生的夹杂物。如炉料表面的砂土和炉衬等与金属液作用,形成熔渣而滞留在金属中,其中也包括加入的熔剂。这类夹杂物一般的特征是外形不规则,尺寸比较大,分布也没有规律,又称为粗夹杂。这类夹杂物通过正确的操作是可以避免的。 1.2 根据夹杂物的形态和分布,标准图谱分为A、B、C、D和DS五大类。 这五大类夹杂物代表最常观察到的夹杂物的类型和形态: (1)A类(硫化物类):具有高的延展性,有较宽范围形态比(长度/宽度)的单个灰色夹杂物,一般端部呈圆角; (2)B类(氧化铝类):大多数没有变形,带角的,形态比小(一般<3),黑色或带蓝色的颗粒,沿轧制方向排成一行(至少有3个颗粒); (3)C类(硅酸盐类):具有高的延展性,有较宽范围形态比(一般>3)的单个呈黑色或深灰色夹杂物,一般端部呈锐角; (4)D类(球状氧化物类):不变形,带角或圆形的,形态比小(一般<3),黑色或带蓝色的,无规则分布的颗粒; (5)DS 类(单颗粒球状类):圆形或近似圆形,直径>13μm的单颗粒夹杂物。 2. 钢中夹杂物主要类型及特征 2.1 硫化物

夹杂物去除方法

钢中夹杂物去除技术的主要进展有:气体搅拌-钢包吹氩、中间包气幕挡墙和NK-PERM法;电磁净化-钢包电磁搅拌、中间包离心分离和结晶器电磁制动;渣洗技术;过滤器技术。 1.气体搅拌 1)钢包吹氩吹氩搅拌是钢包炉重要的精炼技术手段之一。通过产生氩气泡去除夹杂物,最佳气泡直径为2-15mm。为去除钢中的细小夹杂物颗粒,需要钢液中制造直径更小的气泡。研究发现,在钢包和中间包之间的长水口吹氩,该处湍流强度很高,产生的剪切力将气泡击碎,将大气包分成0.5-1mm的细小气泡。这种方法可以提高去除夹杂物的效率。 2)中间包气幕挡墙通过埋设于中间包底部的透气管或透气梁向钢液中吹入气泡,与流经此处钢液中的夹杂物颗粒相互碰撞聚合吸附,同时也增加了夹杂物的垂直向上运动,从而达到净化钢液目的。该法在德国NMSC公司得到应用, 50-200μm大尺寸夹杂物全部去除,小尺寸夹杂物去除效率提高50%。此外,新日铁对其进行了改进,研制了一种旋转喷嘴,借助耐火材料的旋转叶轮,使气泡变得更小,50μm以下夹杂物颗粒明显得到减少。 3)NK-PERM法该法是日本钢管公司开发的精炼法,采用顶吹喷枪和包底透气砖吹氩和氢至(150-400)×10-6,然后在RH真空循环脱气装置中脱气去夹杂。与传统的钢包吹氩相比,钢中夹杂物平均尺寸明显减少,且直径在10μm以上的夹杂物颗粒全部去除。 2.电磁净化 1)钢包电磁搅拌由瑞典的ASEA与SKF公司开发,电磁搅拌在降低20μm 以下的非金属夹杂物与吹氩搅拌相比具有显著的优越性,此外,电磁搅拌流场基本无死角,另外该法生产的钢总氧含量小于20×10-6。 2)中间包分离技术夹杂物和钢液之间存在密度差,可以用离心场分离夹杂物。日本进行了这方面研究,离心流场中间包分为圆筒形旋转室和矩形室,钢水由钢包长水口进入旋转室,在旋转区受电磁力驱动进行离心流动,然后从旋转区底部出口进入矩形室浇铸。离心搅拌后总氧含量小于15×10-6,夹杂物总量减少约一半。 3)结晶器电磁制动利用向上的电磁力阻止从浸入式水口流出的钢液并改变其方向,借此减小钢液的穿透深度,促使夹杂物上浮分离。近年来,日本川崎公司开发出了全幅三段电磁制动技术,将下段磁场应用于二次制动,采用后,即使在2.5m/min以上的高速浇铸时,也不会有卷渣发生。 3.渣洗

钢中夹杂物含量评定的标准试验方法

ASTM E45-2013 钢中夹杂物含量评定的标准试验方法 Standard Test Methods for Determining the Inclusion Content of Steel ①本标准的固定编号为E45;其后面的数字表示最初釆用或最后修订的年份。括号里的数字表示此标准 的最后重新批准时间。上标希腊字母(ε)表示最后一次修订或复审后的编辑修改。 本标准已经美国国防部认可采用。 1. 范围 1.1 本标准的试验方法为测定锻钢中非金属夹杂物含量的方法。宏观试验法包括低倍腐蚀、断口、台阶和磁粉法。显微试验法通常包括5 种检测。依据夹杂物形状而不以化学特点,显微法将夹杂物划分为不同类型。这里主要讨论了金相照相技术,它允许形状类似的夹杂物之间略有不同。这些方法在主要用来评定夹杂物的同时,某些方法也可以评估诸如碳化物、氮化物、碳氮化物、硼化物和金属间化合物的组成。除了钢以外,其它合金在有些情况下也可以应用这些方法的一种或多种。根据这些方法在钢中的应用情况,将分别给予介绍。 1.2 本标准介绍了依据显微试验方法A 和方法D,使用JK 评级图评定夹杂物的程序。 1.3 按照钢的类型和性能要求,可以采用宏观法或显微法,也可以将二者结合起来,以得到最佳结果。 1.4 这些试验方法仅仅为推荐方法,对任何级别的钢而言,这些方法都应不能作为合格与否的判据。

1.5 该标准以国际单位制规定的单位为标准单位,圆括号里的内容为转化的近似值。 1.6 本标准未注明与安全相关的事项,如果有的话,也只涉及本标准的使用。标准使用者应建立适当的安全和健康操作规程,并且在使用标准前应确定其适用性。 2. 引用文件 2.1 ASTM 标准: ② E3 制备金相试样指南 E7 金相显微检测相关术语 ①本试验方法由ASTM 的E04《金相》委员会管辖,并由E04.09《夹杂物》分委员会直接负责。 现版本于2013 年5 月1 日批准,2013 年5 月出版。原版本在1942 年批准。前一个最新版是2011 年批准 的E45-11a。DOI: 10.1520/E0045-13。 ②对于ASTM 的参考标准,可登陆ASTM 网站,https://www.wendangku.net/doc/656019621.html, 或联系service@https://www.wendangku.net/doc/656019621.html, 的ASTM 客户服务 部。ASTM 标准年报资料,参见ASTM 网站的本标准的文件概要页。 ASTM E45-2013 钢中夹杂物含量评定的标准试验方法 2 E381 钢棒,钢坯,钢锭和锻件的宏观试验法 E709 磁粉检测指南 E768 自动测定钢中夹杂物的试样的制备和评定操作规程 E1245 用自动图像分析法确定金属中夹杂物或第二相含量的操作规程 E1444 磁粉探伤法的操作规程 E1951 十字线和光学显微镜放大倍率的校准指南

钢中的非金属夹杂物分类方法如何

钢中的非金属夹杂物分类方法如何?来源何处 2009-05-21 11:17 评论(0)浏览(289)一)分类方法很多,但常见的有以下四种: 1.按来源分类,可分为两类: (1)内在的:包括在冶炼过程中所形成的化合物、脱氧时产生的脱氧产物、或在钢水凝固过程产生的化合物,当这些化合物来不及从钢水中彻底排出,而残存在钢中者,叫做内在的非金属夹杂物。 (2)外来的:包括从炉衬或包衬、或从汤道砖、中包绝热板、保护渣迸人钢水中的夹杂物(有人还将钢水二次氧化生成的夹杂物包括在内)。 一般说来外来夹杂物颗粒较人,在钢中比较集中,而内在夹杂物则一与此相反。 2.按化学成分分类,一般分三类。 (1)氧化物:如FeO, Si02 , Al2O3等,有时它们各自独立存在,有时形成尖晶石(如MnO.Al203)或固溶体 (如FeO 和MnO)。 (2)硫化物:如FeS、MnS及(Fe. Mn) S的固溶体。当加Al过多时可能以A12S3出现。 (3)氮化物:如TiN, ZrN 等 3.按夹杂物的变形性能分类,当钢进行热加工时,例如:轧制时,夹杂物此时是否也变形,它对钢的性能有明显的影响。为此,把夹杂物分为三类:(1)脆性:这类夹杂物完全没有塑性,在热加工时,尺寸和形状都没有变化,属于这一类的主要是A1203、Cr203等,‘它们属于高熔点

的夹杂物。 (2)塑性:钢在加工变形时,夹杂物也能随之变形,形成条状,属于这类的有硫化物以及含 SiO240--60%的铁、锰硅酸盐。 (3)球状(或点状)不变形:属于这类的有Si02 及SiO2 >70%的硅酸盐。 4.按尺寸大小分类,可分三类:(1)大型:尺寸> 100微米。 (2)中型:也叫显微型,尺寸1-100微米。(3)小型:也叫超显微型,尺寸<100微米。 (二)钢中非金属夹杂物主要来源于: 1.钢中杂质氧化的产物、脱氧产物和钢在浇注与凝固过程中的反应产物、因溶解度下降的析出物; 2.原材料带人的杂质; 3.混人的炉渣或炉衬与浇注设备的耐火材料等。 来源:中国钢铁新闻网

钢中夹杂物分析方法探讨

钢中夹杂物分析方法探讨 钢中夹杂物主要以非金属化合态存在,如氧化物、硫化物、氮化物等,造成钢的组织不均匀。夹杂物的几何形状、化学成分、物理性能等不仅影响钢的冷热加工性能和理化性能,而且影响钢的力学性能和疲劳性能。随着产品对夹杂物的分析提出更高的要求,需要建立适合生产现场的快速检测钢中夹杂的分析方法,以便降低钢中的夹杂含量,因此,对各种夹杂分析方法进行调研,并从单一和综合两方面进行分析。 单一方法 (1)金相显微镜观测法(MMO)。金相显微镜观测法是一种传统的方法,用光学显微镜检测二维钢样薄片,并且用肉眼定量。通过观察夹杂物的形状、光学特征或用化学法辅助,可以测定夹杂物类型,直接观测夹杂物的尺寸与分布情况,判断夹杂物的生成。 (2)图像扫描法(IA)。采用高速计算机显微镜扫描图像,根据灰度的断续分辨明暗区,比肉眼观测的MMO法大有改进,容易测定较大面积和较多数量的夹杂物,自动化程度高,可获得体积分数、粒度分布直方图、定量等信息,但有时易将非金属夹杂物引起的划痕、麻点和凹坑分析错,且易受尘埃干扰,细小夹杂可能从磨面脱落。 (3)硫印法。通过对富硫区进行腐蚀,区分宏观夹杂和裂纹。 (4)电解(蚀)法。该方法精确度高但费时,以钢样作为电解池的阳极,电解槽为阴极,通电后钢的基体呈离子状态进入溶液溶解,非金属夹杂物不被电解呈固相保留。较大的钢样(2~3kg)被电解,然后对电解泥淘洗、磁选、氢气还原分离铁,最后称量分级;较小的钢样(50~120g)被电解或稀酸溶解,将残渣经碳化物处理、过滤、灼烧,得到氧化物总量。马钢钢研所和北京科技大学成人教育学院运用大样电解法对钢样进行测定,并得到夹杂物不同粒度分布的百分含量。 (5)电子束熔炼法(EB)。在真空条件下,用电子束熔化钢样,夹杂物上浮到钢水表面。通常电子束熔炼查找的是上浮夹杂物特定区域。电子束熔炼的升级法(EB-EV)用来评估夹杂物尺寸分布,根据测定区域的上浮夹杂物尺寸,推断所有夹杂物的上浮结果,从而计算夹杂物尺寸分布指数。 (6)水冷坩埚熔炼法(CC)。在电子束熔炼的条件下,先将熔融钢样表面的夹杂物浓缩,冷却后,样品被分解,夹杂物被分离出来。 (7)扫描电子显微镜法(SEM)。将电子束用电磁透镜聚焦照射于试样表面,同时用电子束扫描,在显像管上显示出试样发出的信号,可清晰地观测到各种夹杂物的主体像,了解其分布和形态,用电子探针分析仪(EPMA)测定其组成及含量,特别是鉴定夹杂物局部组成最有效,可分析的元素范围4Be~92U,对0.1μm以上的区域进行定性分析,对2μm以上的区域进行定量分析。 (8)单火花光谱分析法(SSA)即原位分析仪。对被分析对象原始状态的化学和结构进行分析。通过对无预燃、连续扫描激发的火花放电所产生的光谱信号进行高速的数据采集和解析,测定样品表面不同位置的原始状态下的化学成分分布、缺陷判别和夹杂状态分析,可获得夹杂物数量、组成、分布和粒度等多方面的信息;一次扫描即可得到元素成分、偏析、疏松和夹杂的定量分布结果,扫描范围达300mm×200mm,分析灵敏度优于常规火花光谱分析,样品无需抛光及处理,分析结果显示方式丰富,除了以列表方式显示各项分析数据和计数外,还同时以二维和三维多种图形显示成分、偏析、疏松和夹杂的分析结果,可直接应用于冶金炉前分析,实现临线快速分析,当样品太少时不能反映大型夹杂。 (9)曼内斯曼夹杂物检测法(MIDAS)。又名LSHP法,先使钢样波动,以排除气泡,然后超声扫描检测固态夹杂物和固气复合夹杂物。 (10)激光衍射颗粒尺寸分析法(LDPSA)。采用激光技术检测其他方法(如定泥法)已检测出夹杂物的尺寸分布。

钢中常见的元素、夹杂物对钢性能的作用及影响

钢中常见的元素、夹杂物对钢性能的作用及影响 常见元素主要有C、Si、Mn、P、S、N、H、O及其他非金属夹杂物。 碳(C): 是对钢的性能影响最大的基本元素。不同的碳含量依据钢中杂质元素含量和轧后冷却条件的不同对于钢的性能影响是不同的,随着钢中碳含量的增加,碳钢在热轧状态下的硬度直线上升,塑性和韧性降低。在亚共析范围内,碳对抗拉强度的影响是,随着碳含量增加,抗拉强度不断提高,超过共析范围后,抗拉强度随碳含量的增加减缓,最后发展到随碳含量的增加抗拉强度降低。另外,含碳量增加时碳钢的耐蚀性降低,同时碳也使碳钢的焊接性能和冷加工(冲压、垃拔)性能变坏。 硅(Si): 硅在碳钢的含量≤0.50%。硅也是钢中的有益元素。在沸腾钢中,含硅量很低,硅是作为脱氧元素加入到钢中。在镇静钢中硅的含量一般为0.12~0.37%。硅增大了钢液的流动性,除了形成非金属夹杂外,硅溶于铁素体中。随着硅含量的提高,钢的抗拉强度提高,屈服点提高,伸长率下降,钢的面缩率和冲击韧性显著降低。 锰(Mn): 在碳钢中,锰是有益元素。锰是作为脱氧除硫的元素加入到钢中的。对于镇静钢来说,锰可以提高硅和铝的脱氧效果,可以同硫形成硫化锰,相当程度上降低硫在钢中的危害。锰对碳钢的力学性能有良好的影响,它能提高钢热轧后的硬度和强度,原因是锰溶入铁素体中引起固溶强化。因此,精炼过程中要按照技术要求严格稳定控制各炉次的锰含量。 磷(P): 一般来说,磷是钢中的有害元素。它来源于矿石和生铁等炼钢原料。磷能提高钢的强度,但使塑性和韧性降低,特别是使钢的脆性转折温度急剧上升,即提高钢的冷脆性(低温变脆)。由于磷的有害影响,同时考虑到磷有较大的偏析,因而对其含量要严格的控制。但是在含碳量比较低的钢种中,磷的冷脆危害比较小。在这种情况下,可以用磷来提高钢的强度,如鞍钢生产的高强度IF钢就需要加入磷。另外,在适当的情况下,还利用磷的其他一些有益作用,如增加钢的抗大气腐蚀能力,如集装箱用钢;提高磁性,如电工硅钢;改善钢材的易切削加工性,减少热轧薄板的粘结等。 硫(S): 一般来说,硫是有害元素,他主要来自于炼铁、炼钢时加入的原材料和燃烧产物,二氧化硫。硫最大的为危害是引起钢在热加工时开裂,即产生所谓的热脆。硫能提高钢材的切削加工性,这是硫的有益作用。 氮(N): 钢中的氮来自炉料,同时,在冶炼、浇铸时钢液也会从炉气和大气中吸收氮。氮引起碳钢的淬火时效和形变时效,从而对碳钢的性能发生显著的影响。由于氮的时效作用,钢的硬度、强度固然提高,但是塑性和韧性降低,特别是在形变时效的情况下,塑性和韧性的降低比较显著。因此,对于普通低合金钢来说,时效现象是有害的,因而氮是有害元素。但对于一些细晶粒钢以及含钒、铌钢,由于氮化物的强化细化晶粒作用,氮成为有益元素。另外,作为合金元素,氮在不锈耐酸钢中得到应用,此外,氮化处理方法能使机器零件获得极好的综合力学性能,从而使零件的使用寿命延长。 氢(H):

钢中非金属夹杂物特征

钢中非金属夹杂物特征 钢中氧和硫分别以氧化物和硫化物夹杂形式存在,很早以前就发现,钢的洁净度取决于上述氧化物和硫化物夹杂,这些夹杂物的尺寸、形状、物理性质、出现频率对钢的质量有很大的影响。 钢中常见的内在夹杂物有脆性夹杂物(氧化物及脆性硅酸盐)塑性夹杂物(硫化物及塑性硅酸盐)、点状不变形夹杂物和氮化物等。 一、氧化物: 1.氧化铝夹杂物:Al2O3(脆性) 这种夹杂物热加工后不变形、而是沿加工方向分布成短线状颗粒带,在明场下呈灰色。过多的Al2O3会使钢的疲劳强度和其他力学性能下降。 2.SiO2夹杂物 除了氧化铝夹杂物外,在钢中还有硅脱氧产物SiO2,也称石英。 二、硫化物:FeS、MnS(塑性) 这类属于塑性夹杂物,具有很高的塑性,热加工后沿加工方向延伸成条状分布,在明场下呈灰色。 三、氮化物: 在含钛、锆、钒的合金中,钛、锆和钒容易和氮结合成稳定的氮化物夹杂,氮化物热加工中不变形,多呈方形、长方形,在明场下有淡黄和金黄色彩。四、点状不变形夹杂物: 铬轴承钢中的点状不变形夹杂物主要由镁尖晶石和含钙的铝酸盐所构成,此外还有含铝、钙、锰的硅酸盐,点状不变形夹杂物加工后仍不变形,仍保持较规则的图形。 五、硅酸盐: 硅酸盐是金属氧化和硅酸根的化合物,是钢中常见的夹杂物,在使用硅锰、硅铁合金脱氧时,形成可变形的硅酸盐,最常见的硅酸盐是硅酸亚铁和硅酸亚锰。 钢中常见的硅酸盐有硅酸亚铁(2FeO.SiO2)、硅酸亚锰(2MnO.SiO2),硅酸盐分脆性硅酸盐和塑性硅酸盐。脆性硅酸盐热加工后沿加工方向成为短线状颗粒带,类似氧化物,塑性硅酸盐热加工后沿加工方向延伸成条状。但硅酸盐一

GB10561-89“钢中非金属夹杂物显微评定方法”标准的执行与理解

GB10561-89“钢中非金属夹杂物显微评定方法”标准的执行与理解 钟传珍潘淑红 (大连钢厂中心试脸室116031) 非金属夹杂物是钢中不可避免的夹杂,它的存在使金属基体的连续性受到破坏,非金属夹杂物在钢中的形态、含量和分布都不同程度地影响了钢的各种性能,诸如常规力学性能、疲劳性能、加工性能等。因此,正确测定与评价钢中非金属夹杂物是提高钢材质量不可忽视的环节。 测量非金属夹杂物的方法虽已标准化,但长期以来我国-直没有相应的国家标准。1989年由于新标准GB/T10561-1989取代YB25-77而使非金属夹杂物的评定更趋详细和全面。为了更好地执行和掌握新标准的评级原则,保证新旧标准的衔接,在实际检验工作中,我们针对具体试样加深对新标准的学习与理解,现将GB/T10561-1989所需检验的氧化物、硫化物、硅酸盐及点状不变形夹杂物的有关问题分述如下。 1 钢中非金属夹杂物的分类 钢中非金属夹杂物种类很多,按其来源和大小大体分为两大类: 1)显微夹杂物或称内在夹杂物,这类夹杂物是钢在冶炼或凝固过程中,由-系列物理和化学反应所生成。例如,在冶炼的过程中,由于脱氧剂的加入,而形成氧化物和硅酸盐等,这些夹杂物来不及完全上浮进入钢渣而残留于钢液中,即为内在夹杂物。 2)宏观夹杂物或称外来夹杂物,这类夹杂物是在钢的冶炼或浇注过程中,由于耐火材料的混入造成的,其特点是大而无固定形状。其次,非金属夹杂物还可按化学成分分类,分为氧化物、硫化物和氮化物,而氧化物又可分为简单氧化物,复杂氧化物和硅酸盐详见图1。 图1 2 非金属夹杂物的测定 2.1 A类夹杂物和C类夹杂物 标准YB25-77其检验项目只有脆性夹杂物和塑性夹杂物之分,对检验中出现的硅酸盐夹杂物按塑性变形能力和形态确定其归属。新标准GB10561-89则不仅有硫化物(A类夹杂物)评级图片,而且明确制定了塑性硅酸盐,C类夹杂物(粗系和细系)的评级图片。硫化物和硅酸盐有其相似的地方,往往容易混淆。A类夹杂物(硫化物)具有良好塑性,在加工方向被拉长,在明场中反光能力较强,

钢液夹杂物的行为及去除

冶金熔体 题目:钢液夹杂物的行为及去除 姓名: 王接喜 学号: 103511050 序号: 20 学院: 冶金科学与工程学院 专业: 有色金属冶金 完成时间: 2010- 12- 29 Central South University

钢液夹杂物的行为及去除 王接喜 (中南大学冶金科学与工程学院,长沙,410083) 摘要:钢液中夹杂物的行为涉及的内容很广,其基本的物理过程大致包括:形核、生长、聚合、传递等,夹杂物去除可以视为传递过程的结果。钢中夹杂物去除的主要环节为夹杂物的长大、上浮和分离。钢中夹杂物去除技术有:气体搅拌-钢包吹氩、中间包气幕挡墙和RH-NK-RERM法;电磁净化-钢包电磁搅拌、中间包离心分离和结晶器电磁制动;渣洗技术;过滤器技术。 关键词:钢液;夹杂物;生长;去除;中间包;电磁场 Behavior and removal of inclusions in molten steel WANG Jiexi, ZHOU Yongmao (School of Metallurgical Science and Engineering, Central South University, Changsha, China 410083) Abstract:The behavior of inclusions in molten steel includes physical processes such as nucleation, growth, polymerization and transmission. The removal of inclusions can be seen as the result of transmission, which involves inclusion growth, floating and separating. The key progress on technique for removal of inclusions in steel is gas stirring-ladle argon blowing, gas shielding weir and dam in tundish, RH-NK-RERM method, electromagnetic cleaning-ladle electromagnetic stirring, tundish centrifugal separating and mold electromagnetic braking, slag washing and filter technique. Key words:molten steel, inclusions, growth, removal, tundish, electromagnetic field 引言 钢中非金属夹杂物事氧化物、硫化物、氮化物、硅酸盐等以及由它们组成的各种复杂化合物的统称[1]。根据国家标准,金属夹杂物分为五类,分别为以硫化物为主的A类、以氧化铝为主的B类、以硅酸盐为主的C类、以球形氧化物为主的D类和以单颗粒球为主的Ds类。 夹杂物的主要来源为内生夹杂和外来夹杂。内生夹杂包括四个方面:脱氧时的脱氧产物;钢液温度下降时S、O、N等杂质元素溶解度下降而以非金属夹杂形式出现的生成物;凝固过程中因溶解度降低、偏析而发生反应的产物;固态钢镶边溶解度变化生成的产物[2]。 钢的内在质量与钢液的纯净度有很大的关系。钢液中的非金属夹杂物可导致产品性能的恶化、内在品质的下降,同时非金属夹杂物有助于气孔的形成,降低铸件的致密度[3];夹杂物的存在破坏了基体的连续性,造成金属组织的不均匀,使金属的力学性能变差,对材料的加工(拉拔和深冲)性能、疲劳性能、表面质量和耐腐蚀性能等产生不利影响[4-5];另外还使钢的冷热加工性能变坏。夹杂物还容易在壁面沉积,造成结晶器水口、RH上升和下降管堵塞,不仅降低冶金容器的寿命,而且直接危及生产的连续性和稳定性[6]。 由于非金属夹杂对钢的性能影响严重,因此在炼钢、精炼和连铸过程中,应最大限度地降低钢液中夹杂物的含量,控制其形状和尺寸。减少钢中夹杂物,提高钢的洁净度可以显著改善钢材的延展性、韧性、抗腐蚀性等。

连铸钢中的夹杂物

《山东冶金》 2005年第1期 连铸钢中的夹杂物 张立峰1,王新华2 (1 Department Mechanical and Industrial Engineering, University of Illinois at Urbana Champaign; 2 北京科技大学 冶金与生态工程学院,北京 100083) 摘 要:首先论述了连铸过程中夹杂物的来源,包括内生与外来夹杂,着重于二次氧化产物、卷渣、内衬侵蚀以及在内衬耐火材料上的夹杂物聚集;其次,论述了由夹杂物导致产品的各类缺陷,总结了目前评估钢洁净度的“技术状况”,讨论了多种直接和间接的方法。最后论述了在中间包和连铸机方面改善钢的洁净度的操作实践。 关键词:夹杂物;缺陷;板坯连铸机;工厂测试;检测方法 中图分类号:TG143.1+3文献标识码:A文章编号:1004-4620(2005)01-0001-05(接2004年第6期第5页) 夹杂物在内衬耐火材料表面上的聚集最明显的例子就是浇铸过程中的水口堵塞。 图17 气泡表面的点簇状夹杂物 图18 接触角、半径和压力对钢水中两个固体颗粒浸润力的影响 0.3m深钢液+1atm 1.0m深钢液+1atm 1.875m深钢液+1atm 图19 RH精炼加Al后3min和18min时 钢水中的夹杂物比较

2.4 钢液流动和凝固对夹杂物的影响 钢液流动、热传递与凝固均对连铸坯中夹杂物的分布有影响。对夹杂物的捕捉形成,一个应用较为普遍的指数是凝固前沿的临界生长速度,夹杂物捕捉有以下影响因素:夹杂物形状、密度、表面能、热传导性、冷却速率(凝固速率)以及凝固前沿的凸起条件。有文献称捕捉受拉应力和界面力(范德华力)控制。凝固速率越快,捕捉的可能性就越大。随着凝固时间的延长、偏析的减少和凝固前沿凸起度减小,捕捉的可能性降低。树枝晶间的空间大小对夹杂物捕捉有很大影响,与夹杂物的冲入、卷进和捕捉现象相关联。图20表示二次枝晶臂间距随时间和至ESR 铸锭表面距离的变化情况。当尺寸小于枝晶间距的颗粒接触凝固前沿时容易被捕捉。 图20 1800mm ESR 铸锭二次枝晶臂间距 3 钢材缺陷 连铸生产过程中与夹杂物有关的缺陷包括以下几种。 3.1 易拉罐飞边裂纹 低碳铝镇静钢易拉罐用钢如果冲压性能不好容易造成边部裂纹,同样轴和轴承存在疲劳寿命问题。在易拉罐制造加工过程中(冲压)造成飞边裂纹的夹杂物典型尺寸为50~150μm ,成分为CaO-Al 2O 3(图21a )。这些夹杂物的主要来源是连铸中间包覆盖渣,在换钢包时卷入钢液。这类夹杂物的成分和低碳铝镇静钢连铸板坯中其他夹杂物的比较见图21b 。 图21 夹杂物造成的飞边裂纹 (a) 夹杂物形态和成分(夹杂物A 和B :CaO 15%~30%, Al 2O 365%~85%, SiO 2<3.6%, MgO< 1.0%, Na 2O2%~8%); (b)连铸板坯分离出的夹杂物相图关系(夹杂物类型出现的比率: 类型A (Ca-Al-Si-(Na)-O):25%;类型B(Ca-Al-Si-(Na)-O):10%; 类型C (Ca-Al-(Na)-O):26%;类型D( Si-Ti-Ca-Al-Mn-O):32%;类型E (Si-O):8%) Byrne 和Cramb 认为,在这种缺陷中有两种类型的外来夹杂物。第一种含有较高的

钢中非金属夹杂物的分类

钢中非金属夹杂物的分类 (一) 夹杂物的来源 钢中非金属夹杂物按其形成原因可分为两类:即内生夹杂物和外来夹杂物。 内生夹杂物的来源主要有以下几个方面: (1) 脱氧剂及合金添加剂和钢中元素化学反应的产物,在钢液凝固前未浮出而残留在钢中。 (2) 出钢、浇注过程中钢水与大气接触,钢水中易氧化、氮化元素的二次氧化、氮化产物。 (3) 出钢至铸锭过程中,随钢水温度的下降,造成氧、硫、氮等元素及化合物溶解度的降低,因而产生或析出各种夹杂物。 一般的讲,内生夹杂物较为细小,合适的工艺措施可减少其含量,控制其大小和分布,但不可能完全消除。 外来夹杂物的主要来源有二个途径: (1) 冶炼、出钢及浇注过程中,钢水、炉渣及耐火材料相互作用而被卷入的耐火材料或炉渣等。 (2) 与原材料同时进入炉中的非金属夹杂物。 这类夹杂物一般较粗大,只要工艺、操作适当是可以减少和避免的。钢中常规检验遇到的夹杂物多数是内生夹杂物。 (二) 夹杂物的分类 1. 按夹杂物的化学组成分类 通常根据夹杂物的化学组成可分为简单氧化物(如AlO,SiO);复杂氧化物(如232

FeO?AlO,CaO?AlO);硅酸盐及硅酸盐玻璃(如2FeO?SiO);硫化物(如MnS,FeS);氮23232 化物(如TiN);复杂夹杂如硫氧化物(CeOS),氟氧化物(LaOF),氮碳化物(TiCN),硫碳22 化物(TiCS)等。 422 钢中实际存在的夹杂物与钢的成分、冶炼过程、脱氧方法等因素有关。 2. 按夹杂物的塑性及分布分类 在生产检验中又根据夹杂物的塑性及分布特性分为脆性夹杂物、塑性夹杂物、点状不变形夹杂物。 (1) 塑性夹杂物热变形时具有良好的范性,沿变形方向延伸成条带状。属于 这类的夹杂物有硫化物及含SiO量较低的铁锰硅酸盐等。 2 (2) 脆性夹杂物热加工时形状和尺寸都不变化,但可沿加工方向成串或点链 状排列。属于这类的夹杂物有AlO,CrO等。 2323 (3) 点状(或球状)不变形夹杂物铸态呈球状,热加工后形状保持不变,如SiO 及2SiO含量较高的硅酸盐等。 2 (4)半塑性夹杂物指各种复相的铝硅酸盐夹杂。基底铝硅酸盐有范性,热加工时延伸变形,但其中包含着的析出相如AlO等是脆性的,加工时保持原状或只是拉开距离。 23 除此之外,夹杂物还可根据化学稳定性的不同,分为易溶于稀酸,甚至在水中就能分解的不稳定夹杂物和在热的浓酸中才能溶解的稳定夹杂物。或按照钢的类型和成分分类等。

相关文档
相关文档 最新文档