文档库 最新最全的文档下载
当前位置:文档库 › 利用CuZn原电池给手机充电的实验探究

利用CuZn原电池给手机充电的实验探究

利用CuZn原电池给手机充电的实验探究
利用CuZn原电池给手机充电的实验探究

“V杯赛参赛作品”

利用Cu-Zn原电池给手机充电的实验探究

浙江省杭州二中史宗翔

内容摘要:高中化学选修4《化学反应原理》中对原电池盐桥部分的实验和介绍枯燥无味,理论味道过浓,造成学生很难理解,笔者基于新课程的理念,结合具体的“能否利用Cu-Zn 原电池给手机充电”的课例阐释了如何利用数字化实验传感器,创设探究情景进行教学。关键词:数字化实验情境创新

一、背景分析

高中化学选修4《化学反应原理》中对原电池盐桥部分的实验和介绍枯燥无味,理论味道过浓,造成学生很难理解,因此很多电化学的知识学生只能靠记忆去掌握,学生对化学的兴趣在这种学习方式中慢慢变弱和消失,如果能注重学生感兴趣的材料进行情景设计,充分挖掘实验现象进行教学设计,借助数字化实验设备感性的展示,让教学难点在学生探究的过程中加以分散和化解,不仅可以让知识变得有趣实用,也慢慢地增强了学生对学科的兴趣感同时也培养了思维的创新性和发散性。

二、探索与尝试

实验教学是化学课程最显著的特征之一,盐桥电池的大多实验角度方式陈旧老套新颖度不够,使用的电流计也仅仅从偏转的现象加以利用和解释,在教学实施过程中略显深广度不足,对此,笔者敏锐地对一些现象再处理,挖掘数字化实验实验设备的功能,通过一定的情景设计教学,收到了不错的效果。

1.创设探究情景——为手机充电

普通高中化学新课程强调,要从学生已有的经验和将要经历的社会生活实际出发,积极创设化学情境,帮助学生认识化学与人类生活的关系,关注人类面临的与化学相关的社会问题,培养学生的社会责任感和参与意识,促进学习方式的多样化,发展高中学生自主获取知识的愿望和能力。创设一个合适的教学情境,是探究的关键。

铜锌原电池在《化学2》中就已提出,学生通过《化学2》中的学生对铜锌硫酸作为电解质的原电池模型有了一定的了解和认识,知道了构成原电池的条件,也看过比如该原电池能使电流表指针发生偏转,能使发光二极管亮起来,但具体到能产生多大的电流,多大的电压,能不能稳定的发电等没有感性认识,如果仅仅是让知识停留在定性分析的层面会使知识停留在低位少了实用性的活力,而这些问题的本身就是学生感兴趣的点,如能找到载体加以利用就能激发起学生探究的兴趣。笔者就抓住这点,创设情境——“此原电池能为手机充电吗?要不一起尝试一下!”给手机充电不是有电就行的,需要一定的电压,稳定的电流,手机又是人人都有的,这个情景的创设这一下就引起了学生的共鸣,激发了学生探究的兴趣。当然事前先做好准备工作,如先把的手机充电用的USB接线进行改进(分出两根正负极导线),使这个情景不停留在想法和口号,而是可以实实在在可以动手操作体验的一个实验小课题。

2.充分利用数字化实验现象

有了探究的课题如何展开探究的过程又是探究教学中的难点,如果仅仅是为了引题而创设情境,那么探究教学就失去了其本身的意义。探究的过程就如同电影大片中一个个扣人心弦的环节,要紧张激烈跌宕起伏,对于化学课来说能起到这样效果的唯有实验,当然实验的切入点对学生来说应该是全新的,充满了很多“神奇”或“迷惑”,知识的认知上离学生已有能力相差不远,教学中就应该细心地寻找这些实验,通过一连串环环相扣的数字化实验展

开探究的过程,不停地刺激学生的大脑,去寻找解决问题的方法和体会探究的乐趣。Cu-Zn 原电池中就有很多可以挖掘的数字化实验,笔者结合课例简单地谈谈如何利用数字化实验为教学架起探究的桥梁。

2.1利用电流传感器体会单液原电池Zn∣H2SO4∣Cu电流迅速减弱

[实验1] :将锌片与铜片用导线连接起来,导线中间连接数字化实验设备的电流传感器,再将锌片与铜片插入稀硫酸(1mol/L)的烧杯中,观察实验现象。实验中我们发现传感器的读数从280mA迅速减小10秒钟左右减到40mA左右,并还在持续减小。

设计实验意图:单液原电池Zn∣H2SO4∣Cu在《化学2》中已进行了学习,学生对其构成,正负极分析,电子运动情况和溶液中离子运动情况都有了一定的了解,并能简单的分析两极可能出现的实验现象。用此电池给手机充电对于学生来说是有可能的,但此实验中电流会迅速减弱即会引起极化现象对学生又是未知的,如能分析清楚主要成因那就会为课题的再进行指明了方向和提供可能。

教学过程设计:

【师】为什么会这样?电子从负极流出经导线流入正极,在正极表面交给H+,电流迅速的减弱了,也就是说电子在流动过程中迅速地受阻了,谁阻碍了电子的流动?

【生】铜片表面吸附的氢气。

【师】原来没有气泡之前H+得电子很方便,一旦氢气小气泡吸附在Cu片表面,就阻碍了铜片上的电子与溶液中的H+接触,原电池的放电效果变差了,我们把这种现象称之为极化现象。

【师】使电流强度迅速变弱的主要原因就是使用硫酸这种电解质会和锌反应会产生气体,怎么改进一下?

【生】使用硫酸铜!

【师】再试试看!

2.2利用电流传感器体会单液原电池Zn∣CuSO4∣Cu电流逐渐减弱

[实验2] :将锌片与铜片用导线连接起来,导线中间连接电流传感器,再将锌片与铜片插入稀硫酸(1mol/L)的烧杯中,观察实验现象。实验中我们发现电流表的读数从80mA左右逐渐减小10秒钟左右减到60mA左右,并也在持续减小,只是没刚才硫酸实验中变化的快。设计实验意图:单液原电池Zn∣CuSO4∣Cu是学生在分析了上面实验电流迅速减弱的原因后自发提出的改进意见,是学生自主活动的结果,学生对这个实验充满了期待。而实验结果电流还是会逐渐减弱又会引起学生的思考,如果能分析清楚主要原因--化学腐蚀在同时进行就能顺理成章地引入盐桥电池再次为课题的深入指明方向。

教学过程设计:

【师】减小的没那么迅速,但还是逐渐减弱。这次又是什么原因?

【生】讨论后:锌和硫酸铜直接接触也会发生了化学腐蚀。

【师】锌置换出了铜,析出的铜又和锌构成原电池,Zn失去的电子一部分直接给了溶液中的Cu2+,这样的小的原电池越来越多,流向铜片的电子越来越少,电流就缓慢的减弱了,如果析出的Cu最终覆盖了Zn,又会怎样?如果我们这个解释正确,化学能没有全部转化为电能,还转化成那种形式的能?

【生】热能。

2.3利用温度传感器测量单液原电池Zn∣CuSO4∣Cu中溶液温度

[实验3] :用温度传感器的探针测量单液原电池Zn∣CuSO4∣Cu中溶液温度为14℃(室内温度为17℃),当探针靠近负极Zn片时温度逐渐升高,碰到Zn片后显示为22℃。

设计实验意图:验证学生的猜想,让学生体会到探究的乐趣,通过实验事实的证明了单液电池的局限性,然而引入盐桥的概念。

教学过程设计:

【师】一锌多用,化学能有一部分转化为了热能。

【师】问题的产生不就是由于锌片和硫酸铜溶液直接接触了,分开不就可以了嘛!如何分开?【生】把锌片单独的放到一个烧杯中,在另一个烧杯中盛硫酸铜溶液,铜片插到其中。【师】锌片应该插到哪种溶液中呢?,该溶液能和它反应吗?

【生】比如硫酸锌溶液

【师】连上外电路,该电池能工作了吗?

【生】没有形成闭合的回路,溶液中离子无法定向移动。

【师】溶液分开了,溶液中离子不能定向移动,还必须在中间搭一座桥,联通两边的溶液。这边是---盐桥。

【知识介绍】展示《化学反应原理》中有关盐桥的介绍

盐桥中通常装有饱和KCl溶液,离子在盐桥中能移动,在反应中,盐桥中的Cl-移向ZnSO4溶液,K+移向CuSO4溶液,使两电解质溶液均保持电中性,氧化还原反应得以继续进行。【师】有了盐桥锌片终于能一锌一意发电了,再试试看。

2.4利用电流传感器体会双液原电池Zn∣ZnSO4||CuSO4|Cu电流稳定,但强度很小

[实验4] :将锌片插入硫酸锌溶液,铜片插入硫酸铜溶液,两烧杯间用盐桥连接,用导线连接电极,导线中间连电流传感器,实验中我们发现电流传感器的读数稳定在6mA左右。设计实验意图:此实验是学生对单液电池缺点的理解上对装置进行改造后构建出来的,充分地体现了学生创作性思维。同时对实验中电流变小的现象,笔者引入了离子和电子运动速率的数量级,从定量角度进行分析,为学生带去足够的思考空间,培养学生的发散性思维,是这个课创新之举。

教学过程设计:

【师】电流是很稳定,但强度减少了那么多,又会是什么新的原因呢?

【知识介绍】

在电场中,离子迁移速率的数量级一般仅为10-5 m·s-1;

导线中电子的运动速率的数量级为105 m·s-1。

【生1】有了盐桥溶液中离子的移动距离变长了。

【生2】U形管交细,盐桥中能移动的离子数目变小了。

【师】如何改进盐桥让电流强度变大?

【生1】用更粗更短的U形管

【生2】增加盐桥个数

【生3】增加盐桥中KCl溶液的浓度

2.5增加双液原电池Zn∣ZnSO4||CuSO4|Cu的盐桥个数,电流强度增加

[实验5] :将盐桥增加一根,我们发现电流传感器的读数稳定在11mA左右,增加两根,读数稳定在15mA左右。

设计实验意图:用实验来验证学生的猜想,巩固所学的新知识

2.6学生探究实验1

[实验6] :

(1)实验用品:硫酸锌溶液(取40mL) 、硫酸铜溶液(取40mL) 、热的硫酸铜溶液(同浓度) 、硫酸铜晶体、铜片、锌片、万用表、药匙、烧杯(50mL)、盐桥、玻璃棒。

(2)两位同学一组,合作探究

(3)及时记录数据

(4)万用表介绍

设计实验意图:有了稳定的电流,但强度变小,为实现给手机充电变成可能就需要增大电流

强度,笔者从结合化学反应速率,从影响反应速率因素的角度探究增加电流强度的方法,这又是探究中的创新之举。

教学过程设计:

【师】盐桥的使用稳定了电流但也减小了电流强度,能不能想想其他办法再让电流强度增大点?锌和硫酸铜不就是一个化学反应嘛,单位时间内反应快些,得失电子还可以多些,电流强度不就增加了,那那些因素会影响反应速率?

【生】反应物接触面积、反应物浓度、温度、催化剂等。

【师】在这个实验中最方便我们探究的因素是哪些?

【生】反应物接触面积、反应物浓度、温度。

【师】我们就先从这三个角度探究还能增大盐桥电池电流强度的条件

【生1】汇报探究结果:增大Zn片和溶液的接触面、使用热的硫酸铜溶液、增大硫酸铜溶液浓度均可以增大电流强度,只是增大的幅度不大,最多1-2mA。

【生2】电压基本稳定在1v左右。

2.7学生探究实验2

[实验7] :学生搭建双液原电池Zn∣ZnSO4||CuSO4|Cu,在串联5个后成功为小米手机充上了电。

设计实验意图:通过探究找到了增加电流强度的方法,但增加的程度不大,学生对能否充电产生了质疑,通过此实验来做最后的探究,真正让学生参与到探究的课堂中成为探究的主体。同时引入电池隔膜的知识激发了学生的社会责任感和爱国心,使这节探究课的课堂氛围达到了高潮,使探究教学的意义得以升华。

教学过程设计:

【师】手机充电器显示电压为5V,电流为直流500mA,用盐桥电池能为手机充电吗?【生】电流小点可能还不是问题最多充电时间会延长,电压不够我们可以串联几个原电池。【师】邀请二位学生配合着来尝试为手机充电。

【生】配合着构建双液电池并进行串联,尝试为手机充电。

【师】成功了!了不起!充电的指示灯亮了!但实用电池又是什么样的情况?一块小小的锂电池就可以供手机使用了,里面肯定也有即起到盐桥的作用,又尽可能让正负极靠的更接近的部件,我们来认识一下。

【知识介绍】电池隔膜

电池隔膜是指在电池正极和负极之间一层隔膜材料,其主要作用是:隔离正、负极,让电解液中的离子在正负极之间自由通过。电池隔膜的离子传导能力直接关系到电池的整体性能。全球制造电池隔膜的公司主要有日本的旭化成,东然、日东以及美国的ENTEK, celgard 等。

【师】现在雾霾天经常出现,如果大街上跑的都是电动汽车PM2.5应该会好很多,但现在很多技术问题还没有解决,如提升电池放电效率的理想隔膜还没有出现,美丽中国梦期待着各位能为之而努力!

三、反思与体会

1.关于数字化实验教学

数字化实验是通过采用传感器实验设备将实验数据转入电脑,进行实验分析与探究的新型实验形式,通过传感器可以从定量角度分析单液电池和双液电池的优缺点,让理论味道过浓的电化学知识变成了生动活泼探究画面,通过简单的手段获得精确的实验结果,可以节省课堂学时,更好地阐述原理,提高课堂教学效率,也是信息技术与化学教学整合的新途径。

2.关于学生

教材中安排的实验科学性强、易于操作,现象明显,具有很强的信息资源。学生对实验

现象的一些“质疑”不应是以标准答案简单地“规范”,而是赞赏质疑,认真探究,仔细推敲,那么实验探究活动中的“质疑”才真正成为培养学生创新精神的原动力。在“质疑”前提下的学生尝试,即使仅仅是一个实验的改进都有可能影响到学生的终身。如学生在课后提出能否用金属代替盐桥,就是学生创作的灵感和思维的发散,可以成为教师在再次构建探究式教学的起点。

总之,将教材中的一些验证性实验的呈现方式进行调整,利用数字化实验直观感性的呈现方式,充分利用现象,融入更多的探究成分,正真地让学生体验科学探究历程,培养学生严肃认真的科学态度及科学的学习方法,提高学生探究水平。

原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定 一、实验目的 1) 掌握电位差计的测量原理和测量电池电动势的方法; 2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用; 5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池 反应的热力学函数△G 、△S 、△H 。 二、实验原理 1.用对消法测定原电池电动势: 原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。 2.电池电动势测定原理: Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位: 其中)25(00097.0799.0Ag /Ag --=+ t ?;而+ ++-=Ag Ag /Ag Ag /Ag 1 ln a F RT ?? 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25) 而电池电动势 饱和甘汞理论—??+=Ag /Ag E ;可以算出该电池电动势的理论值。与测定值 比较即可。 3.电动势法测定化学反应的△G 、△H 和△S : 如果原电池进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定压

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22() ()2Zn Zn s Zn a e ++-+ 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+ 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++ 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6) 22,1 ln 2Zn Zn Zn RT F a ??+ + -= - (9-7) 式中2,Cu Cu ? +和2,Zn Zn ?+是当221Cu Zn a a ++==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

原电池地探究教学

原电池的探究教学 我们知道,当两种物质的氧化性和还原性不同的物质发生反应时,会发生电子的转移,即发生氧化还原反应时伴有电流通过,此时,化学能就会转化为电能。我们把这种把化学能转变为电能的装置叫做原电池。 原电池形成的原因是由于不同种金属插入电解质溶液之后,使不同电极电势高低不同,当用导线连接时便形成了电流。原电池形成的条件:①活泼性不同的两个电极,其中至少有一种是金属;②有电解质溶液(电解质溶液主要起导电的作用;电解质溶液本身可以参与反应,也可以不参与反应);③形成闭合电路。如图所示: 即负极材料具有还原性,失去电子,发生氧化反应;正极材料具有氧化性,得到电子,发生还原反应。 但是在实际教学中,我们发现许多学生了解原电池的正负极时,经常会出错。究其原因是因为他们在接受原电池这个概念时,对于原电池的正负极区分并不十分清楚,而只是凭死记硬背去学习,故而一旦遇到新问题时往往无从下手。因而我们可采用探究训练的方式来帮助学生理解和记忆原电池的结构。首先,我们 用锌片、铜片、稀硫酸要求学生按下列要求做实验。 同时让学生在做实验的过程中认真思考下列问题:①锌片和铜片分别插入稀硫酸有什么现象发生?②锌片和铜片用导线连接后插入稀硫酸中,铜片上为什么有气泡产生?③锌片的质量有无变化?溶液中c(H+)如何变化?④电子流动的

方向如何?⑤写出锌片和铜片上变化的离子方程式。最后让学生在亲身实践的基础上分析总结原电池的结构和工作原理,以加深其印象。 为了进一步帮助学生分清原电池的正负极和电子流动方向,我们还可以再让学生做一个补充实验:纯锌、粗锌分别与稀硫酸的反应。教师首先要指明粗锌的主要成分,它的冶炼过程。教师要提醒学生仔细观察,比较两个实验现象:有杂质(含非金属碳)的锌反应速度快于纯锌。为了进一步证实不纯的锌反应速度快,我让学生想办法人为地给纯锌加杂质。学生提出了几种方案,向有酸液的纯锌中加入硫酸铜溶液的办法或者在纯锌上缠绕细铜丝的办法或者用一根细铜丝插入装有纯锌和稀硫酸的试管,并把铜丝接触纯锌表面。观察氢气是铜丝表面放出。反应速度也变快了,操作时把铜丝从锌表面移开,再接触反复几次。这时教师可以放手让学生操作、议论,先不提问题,因为学生自己给自己提出了问题,这正是让学生进行探究训练、充分发展创造思维和能力的最好时机。教师只需要倾听他们的议论并适当解答他们的问题。一段时间后教师要集中学生的问题加以系统化,并把问题的讨论引向深入。取小块锌板、铜板(事先焊好导线)把它们分别接在电流表上,放入稀硫酸中,观察电流表指针偏转方向,把导线反接再观察。让学生阐述现象并说明产生不同偏转方向的原因(如图)。 在学生讨论并讲述的基础上教师进行总结。通过上述一系列实验可以知道:在这些反应中锌失去电子,被氧化,电子沿导线(或直线接触)经过电流表转移给铜,酸中的氢离子在铜表面得电子。成氢原子氢分子而成氢气,被还原,是氧化——还原反应。在反应中有电子转移并是按一定方向转移的(如图)。

原电池电动势的测定实验报告

实验九原电池电动势的测定及应用 一、实验目的 1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC-Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=-(9-1) 式中G ?是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为965001 ?);E为电池的电动势。所以测出该电池的电动势E后,进而 C mol- 又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++ - + 正极起还原反应: 22()2()C u C u a e C u s + +- + 电池总反应为: 2222()()()()C u Zn Zn s C u a Zn a C u s ++++ ++ 电池反应的吉布斯自由能变化值为: 22ln C u Zn Zn C u a a G G RT a a ++?=?- (9-2) 上述式中G ? 为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221C u Zn a a + +==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn C u a R T E E nF a ++ =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1ln 2C u C u C u RT F a ??+ ++=- (9-6) 22,1ln 2Zn Zn Zn RT F a ??+ + -=- (9-7) 式中2,Cu Cu ?+ 和2,Zn Zn ?+ 是当221C u Zn a a + +==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

高一化学原电池练习题及答案

高一化学原电池练习题及答案 班级姓名学号 1.下列关于原电池的叙述中,正确的是 A. 原电池中,正极就是阳极,负极就是阴极 B. 形成原电池时,在负极上发生氧化反应 C. 原电池工作时,溶液中的阳离子向负极移动 D. 电子从负极流向正极 2.下列关于原电池的叙述正确的是 A. 构成原电池的正极和负极必须是两种不同的金属 D. Mg片上有气泡产生 6.下列事实能说明Al的金属活动性比Cu强的是 A、常温下将铝和铜用导线连接组成原电池放入到氢氧化钠溶液中 B、常温下将铝和铜用导线连接组成原电池放入到稀盐酸溶液中 C、与氯气反应时,铝失去3个电子,而铜失去2个电子 D、常温下,铝在浓硝酸中钝化而铜不发生钝化 7.有A、B、C、D四种金属,当A、B组成原电池时,电子流动方向A →B ;当A、D组成原电池时,A为正极;B 与E构成原电池时,电极反应式为:E2-+2e-=E,B-2e-=B2+则A、B、D、E金属性由强到弱的顺序为 A、A﹥B﹥E﹥D B、A﹥B﹥D﹥E C、D﹥E﹥A﹥B D、D﹥A ﹥B﹥E.原电池的正负极的判断: ①由组成原电池的两极材料判断。一般是的金属为负极,活泼性的金属或能的非金属为正极。

②根据电流方向或电子流动方向判断。电流是由流向;电子流动方向是由极流向极。 ③根据原电池里电解质溶液内离子的定向流动方向。在原电池的电解质溶液内,阳离子移向的极是极,阴离子移向的极为极。 是 9.______极,发生1011 34.将表面已完全钝化的铝条,插入下列溶液中,不会发生反应的是 A.稀硝酸 B.硝酸铜 C.稀盐酸 D.氢氧化钠 35.下列物质的组合,不属于铝热剂的是 A.FeO+Al B.Mg+Al2O C.Al+V2O D.Al+Cr2O3 36.下列金属冶炼的反应原理,错误的是 高一化学《原电池》专项练习 1. 下列烧杯中盛放的都是稀硫酸,在铜电极上能产生氢气 2. 如下图,下列装置属于原电池的是 3. 关于原电池的叙述中正确的是 A.构成原电池的电极是两种不同的金属B.原电池是将化学能转化为电能的装置 C.原电池负极发生的电极反应是还原反应 D.原电池的正极是还原剂,总是溶液中的阳离子在此

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成.电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小. 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量.原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s ||||

原电池实验报告.doc

word 文档可编辑 探究原电池的工作原理及原电池的设计 【实验目的】 理解原电池原理,掌握原电池的构成条件,会进行简单的原电池设计。 【实验原理】 原电池是将化学能直接转化为电能的装置, 自发的氧化还原反应可设计成原电池 【实验用品】铅笔芯、Cu 片、铁钉、Zn 片、电流计、导线、 稀H 2SO 4、酒精、CuS04溶液、西红柿2个、 【实验过程】 」、探究原电池的工作原理 _______ 失去电子变为离子进入溶液, _______ 在Cu 片上得到电子变为单质析出 电子由 流经 到达 __________ 为负极, _________ 为正极。 实验结论:化学反应中的电子发生了 移动,形成了电流。 实验操作 实验现象 解释或方程式 I P 稀 Zn 片: Cu 片: Cu 片: 电流计:

实验现象 解释或电极反应式 word 文档可编辑 二、探究原电池的构成条件 对比实验1: 实验装置 tag 二 J_J"匚二 J -B T"!_IC^i . ? Il/o* 实验结论:形成原电池,必须发生 _________________________ 反应 对比实验2: 电流计指针 _____________ 实验装置 r~?^\ 实验现象 解释或电极反应式 OiSDi 弱 jft 电流计指针 ____________ 电流计指针 ____________ 电流计指针 _____________

实验装置 实验现象 解释及电极反应式 word 文档可编辑 对比实验 3: 电流计指针 _____________ 电流计指针 _____________ 实验结论:形成原电池,必须有两个 的电极

原电池 说课稿 教案

原电池 一、内容及其解析 1.内容:学习原电池概念、原理、组成及应用 2.解析:要求学生了解化学能与电能相互转化原理 二、目标及其解析 1、目标: ①了解原电池工作原理。②掌握原电池正负极反应式和电池总反应式的书写。 2、解析: (1)通过从电子转移角度理解化学能向电能转化的本质 (2)通过练习,让学生掌握原电池正负极反应式和电池总反应式的书写。 三、教学问题诊断分析 1、重点:初步认识原电池概念、原理、组成及应用。 难点:引导学生从电子转移角度理解化学能向电能转化的本质,以及这种转化的综合利用价值。 2、通过对原电池实验的研究,引导学生从电子转移角度理解化学能向电能转化的本质,以及这种转化的综合利用价值。 四、教学过程 【引入】电能是现代社会中应用最广泛,使用最方便、污染最小的一种二次能源,又称电力。例如,日常生活中使用的手提电脑、手机、相机、摄像机……这一切都依赖于电池的应用。那么,电池是怎样把化学能转变为电能的呢?我们这节课来一起复习一下有关原电池的相关内容。 【板书】§4.1 原电池 一、原电池实验探究 讲:铜片、锌片、硫酸都是同学们很熟悉的物质,利用这三种物质我们再现了1799年意大利物理学家----伏打留给我们的历史闪光点! 【实验探究】(铜锌原电池)

【问题探究】 1、锌片和铜片分别插入稀硫酸中有什么现象发生? 2、锌片和铜片用导线连接后插入稀硫酸中,现象又怎样?为什么? 3、锌片的质量有无变化?溶液中c (H+)如何变化? 4、锌片和铜片上变化的反应式怎样书写? 5、电子流动的方向如何? 讲:我们发现检流计指针偏转,说明产生了电流,这样的装置架起了化学能转化为电能的桥梁,这就是生活中提供电能的所有电池的开山鼻祖----原电池。 【板书】(1)原电池概念:学能转化为电能的装置叫做原电池。 问:在原电池装置中只能发生怎样的化学变化? 学生: Zn+2H+=Zn2++H2↑ 讲:为什么会产生电流呢? 答:其实锌和稀硫酸反应是氧化还原反应,有电子的转移,但氧化剂和还原剂热运动相遇发生有效碰撞电子转移时,由于分子热运动无一定的方向,因此电子转移不会形成电流,而通常以热能的形式表现出来,激烈的时候还伴随有光、声等其他的形式的能量。显然从理论上讲,一个能自发进行的氧化还原反应,若能设法使氧化与还原分开进行,让电子的不规则转移变成定向移动,便能形成电流。所以原电池的实质就是将氧化还原的电子转移变成电子的定向移动形成电流。 (2)实质:将一定的氧化还原反应的电子转移变成电子的定向移动。即将化学能转化成电能的形式释放。 问:那么这个过程是怎样实现的呢?我们来看原电池原理的工作原理。 (3)原理:(负氧正还) 问:在锌铜原电池中哪种物质失电子?哪种物质得到电子? 学生:活泼金属锌失电子,氢离子得到电子 问:导线上有电流产生,即有电子的定向移动,那么电子从锌流向铜,还是铜流向锌? 学生:锌流向铜 讲:当铜上有电子富集时,又是谁得到了电子? 学生:溶液中的氢离子

实验一原电池电动势测定

实验一 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”

【实验报告】原电池电动势的测定实验报告

原电池电动势的测定实验报告 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为φ+,负极电势为φ-,则电池电动势E = φ+ - φ- 。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常

用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。 以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。 仪器和试剂 SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和KCl 溶液。 实验步骤 1. 记录室温,打开SDC-II型数字式电子电位差计预热5 分钟。将测定旋钮旋到“内标”档,用1.00000 V电压进行“采零”。 2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。 3. 半电池的制作:向两个50 mL 烧杯中分别加入1/2 杯深0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管夹住,提起电极管,保证液体不会漏出电极管,如有滴漏,检查电极是否插紧。 4. 原电池的制作:向一个50 mL 烧杯中加入约1/2 杯饱和氯化钾溶液,将制备好的两个电极管的弯管挂在杯壁上,要保证电极管尖端上没有气泡,以免电池断路。

探究原电池的构成条件

《探究原电池的构成条件》说课 高一化学 朱红芹 各位评委,大家好,今天我说课的题目是《探究原电池的构成条件》,本节内容在高中化学必修2第二专题第三单元,把本节内容安排在氧化还原反应知识之后,电解之前,起到了承上启下的作用,是氧化还原反应知识的运用与巩固,使学生在了解原电池的构造,工作原理及新型电池的发展的拓展。化学是以实验为基础的学科,化学实验是化学认识的源泉,是启迪学生思维、培养能力的有效途径,是培养学生科学态度、科学方法的必由之路,是培养学生创新意识和实践能力的重要手段。 学情考情分析:我所教的学生化学学科基础较差,对探究型实验的设计和实际动手能力较差,利用学生对生活中的电器,比如手机,而引发的对手机电池的关注,激发学生了解电池的欲望,推动学生探索、追求知识的动机。电化学知识是高考的高频考点,纵观这几年各地的命题,电化学知识的考查题型为选择题和填空题,选择题重点考查电极名称、离子或电子的移动方向、电极上发生反应的类型、电极附近或整个溶液的酸碱性变化、电极反应式的正误判断;填空题重点考查电极反应式和电极总反应式的书写,利用原电池原理、电解原理解释电化学腐蚀的原理并提出防护措施、解释某些反应速率加快的原因以及进行有关计算等.以新型环保电池为载体考查原电池原理、电解原理,用电解法制备用常规方法难以制备的物质以及电化学与元素化合物、化学实验、化学计算等有机结合的试题将是高考命题的新动向. 学习目标:本节化学实验的设计是从传统的演示实验、验证性实验为主转化为探究性实验为主,教师通过启发性讲解,培养学生问题意识、实验探究和实验设计能力。提高学生的动手实践能力,掌握原电池的构成条件。 掌握化学探究性实验方案设计的原则和方法。 教学难点: 设计化学探究性实验方案的体会和领悟。 课时安排:1课时 实验方案设计、探究实验 教法学法:设疑引导,形成方案,自主探究,实验验证。 教学过程设计: 【引入】通过PPT 展示生活中的火力发电厂,各种电池等物品引起学生的兴趣。通过预习教材p40,学生回答原电池的构成条件:一是有正负极;二是有电解质溶液;三是构成闭合回路。 设置疑问: 一是原电池的两极材料有要求吗? 二是必须是电解质溶液吗? 三是如何检验构成闭合回路是原电池的构成条件? 四是铜,石墨--硫酸能构成原电池吗? 五是完成上述探究实验需要哪些设备和药品? 学生讨论: 【结果】实验用品:2个锌电极,2个铜电极,2个石墨电极,2个烧杯,稀硫酸,导线若干。(教师给出)盐桥镁电极,铝电极,氢氧化钠溶液 教师指导: 探究性实验设计的原则 1.科学性的原则。所设计的实验应该符合科学道理,不能凭空捏造。 2.对照性的原则。要设计一个对照性的实验,要想这个实验更能够说明问题,一定要有正反两个方面的实验。 3.等量性的原则。所设计的实验中的平行反应,试剂的取用应该是等量的。 4.单因子的变量原则。对某个实验的影响,会有很多的因素,实验正是要人为控制条件,使众多变量中,只能有一个因素是变量,其余几个是一样的。 实验设计: 设计实验探究构成原电池的条件,装置如下: 实验一:实验探究电极的构成〈甲图〉 ①A 、B 两极均选用石墨作电极,现象_______________; ② A 、B 两极均选用铜片作电极,现象______________; ③ A 极用锌片,B 极用铜片,现象___________________; ④ A 极用锌片,B 极用石墨,现象___________________。 结论一: ___________________________________ 实验二:探究溶液的构成〈甲图,A 极用锌片,B 极用铜片) ①液体采用无水乙醇,现象_______________________________________; ②改用硫酸溶液,现象__________________________________________。 结论二 :__________________________________ 实验三:对比实验,探究乙图装置能否构成原电池 将锌、铜两电极分别放入稀硫酸溶液中,现象_____________________________ 结论三:____________________________________。 实验四:铜,石墨--硫酸能构成原电池吗?学生预测分为两部分,等待实验探究求证。 【分组实验】 放手让学生去做实验,教师做好巡视和指导,及时解决学生问题,纠正学生的实验操作。指导学生填好实验报告单。 【能力提升】 (1)镁铝稀硫酸电池 (2)镁铝氢氧化钠电池 板书设计: 标题: 原电池 一、 构成条件: 1、 活泼性不同的电极 2、 电解质溶液 3、 闭合回路 4、 氧化还原反应(放热)

原电池电动势的测定实验报告

原电池电动势的测定实验报告 原电池电动势的测定实验报告1 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成"盐桥"来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为hi;+,负极电势为hi;-,则电池电动势E = hi;+ - hi;- 。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电

势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。 以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。 仪器和试剂 SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和KCl 溶液。 实验步骤 1. 记录室温,打开SDC-II型数字式电子电位差计预热5 分钟。将测定旋钮旋到"内标"档,用1.00000 V电压进行"采零"。 2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。 3. 半电池的制作:向两个50 mL 烧杯中分别加入1/2 杯深0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管夹住,提起电极管,保证液体不会漏出电极管,如有滴漏,检查电极是否插紧。 4. 原电池的制作:向一个50 mL 烧杯中加入约1/2 杯饱和氯化

大学物理化学实验报告-原电池电动势的测定

篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势。 如图所示,电位差计就是根据补偿法原理设计的,它由工作电流回路、标准回路和测量电极回路组成。 ①工作电流电路:首先调节可变电阻,使均匀划线AB上有一定的电势降。 ②标准回路:将变换开关合向,对工作电流进行标定。借助调节使得 =0来实现 = CA。③测量回路:扳回,调节电势测量旋钮,直到 =0。读出。 -25高电势直流电位差计: 1、转换开关旋钮:相当于上图中,指在处,即接通,指在 1,即接通未知电池。 2、电计按钮:原理图中的。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻。 -1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此

示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100 容量瓶5个,50 滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0. · C 溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0. ·的 C 溶液分别稀释成0.0100 ·,0.0300 ·,0.0500 ·,0.0700 -1-1 ·,0.0900 ·各100 。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池, | 2C 2, C (饱和)‖ C (c)|A C |A 5、将转换开关拨至 1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 ·,0.0300 ·,0.0500 ·,0.0700 ·,0.0900 -1

原电池化学实验报告

总实验目的: 研究原电池中各种因素对电池产生的电压、电流大小的影响 总实验用品:碳棒、铜棒、万用表(自备)、烧杯、导线(带夹子)稀硫酸2mol/L、5mol/L、10 mol/L(递增即可,或者现配,则需配溶液用具),钠块、镁片(一卷,放心,用不完)、铜片、铝 片、锌片、铁片 实验一 实验目的:探究负极金属活泼性对电压、电流的影响。 实验器材:碳棒、万用表(自备)、烧杯、导线(带夹子) 实验药品:稀硫酸2mol/L,钠块、镁片、铝片、锌片、铁片 实验二 实验目的:探究正极活泼性对电压、电流的影响 实验器材:碳棒、万用表(自备)、烧杯、导线(带夹子) 实验药品:稀硫酸2mol/L,碳棒、镁片、铜片、铜棒、铁片、锌片实验三 实验目的:探究负极金属表面积大小对电压、电流的影响 实验器材:碳棒、万用表(自备)、烧杯、导线(带夹子) 实验药品:稀硫酸2mol/L,镁片(多个) 实验四(合在实验一中) 实验目的:研究钠作负极的原电池 实验用品:碳棒、导线(带夹子)、稀硫酸2mol/L、钠块、锡纸(被乌鸡白凤丸的药丸壳所替代)、万用表(自备)、烧杯

附加实验以苹果为电解液的原电池 实验总结: 1、当负极一样时,正极是铜要比正极是碳产生的电压和电流要大。 2、当正极一定时,负极越活泼,产生的电压和电流整体上呈增大 趋势。(不排除例外) 3、正负极都一定时,负极表面积越大,产生的电压和电流在整体 上是呈增大趋势的。(怀疑最后一组全加起来有问题) 4、当两极都是氢前金属时,较活泼的一极是负极。电压稳定,电 流从大到小突变较大,最终保持在较小数值。 5、当两极都是氢后金属时,上述现象更加明显。突变时较大,之 后电压电流都很低。 6、苹果也能形成原电池。之前的结论依然成立。可怜的苹果……小组成员: 崇煜明张捷然韩涧镇朱千袤傅小勇赵英灼李城鋆李越

原电池电动势的测定实验报告 浙江大学

实验报告 课程名称:大学化学实验p 实验类型:中级化学实验 实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师厉刚 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、实验材料与试剂(必填)四、实验器材与仪器(必填) 五、操作方法和实验步骤(必填)六、实验数据记录和处理 七、实验结果与分析(必填)八、讨论、心得 一、实验目的: 1、补偿法测定电池电动势的原理和方法。 2、掌握电位差计、检流计与标准电池的使用方法。 3、学会电极和盐桥的制备方法。 4、掌握通过测量原电池的电动势计算热力学函数变化值的原理、方法及其他应用。 二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势E。 如图所示,电位差计就是根据补偿法原理设计的,它由工作电流回路、标准回路和测量电极回路组成。 ①工作电流电路:首先调节可变电阻R P ,使均匀划线AB上有一定的电势降。 ②标准回路:将变换开关SW合向E s ,对工作电流进行标定。借助调节R p 使得I G =0来实现E s =U CA 。 ③测量回路:SW扳回E x ,调节电势测量旋钮,直到I G =0。读出E x 。 专业:理科1010 姓名:陈世杰 学号:3100102092 日期:2012.03.26 地点:化学实验中心307 装 订 线 A

UJ-25高电势直流电位差计: 1、转换开关旋钮:相当于上图中SW,指在N处,即SW接通E N ,指在X 1 ,即接通未知电池E X 。 2、电计按钮:原理图中的K。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻R P 。 4、电势测量旋钮:中间6只旋钮,×10-1,×10-2,×10-3,×10-4,×10-5,×10-6,被测电动势由此 示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100mL容量瓶5个,50mL滴定管一支,恒温槽一套,饱和氯化钾盐桥。 试剂:0.200mol·L-1KCl溶液 四、实验步骤: 1、配制溶液。 将0.200 mol·L-1的KCl溶液分别稀释成0.0100 mol·L-1,0.0300 mol·L-1,0.0500 mol·L-1,0.0700 mol·L-1,0.0900 mol·L-1各100mL。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至N处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池,Hg |Hg 2Cl 2 ,KCl(饱和)‖KCl(c)|AgCl|Ag 5、将转换开关拨至X 1 位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个小窗口的读数即为待测电极的电动势。 6、改变电极中c依次为0.0100 mol·L-1,0.0300 mol·L-1,0.0500 mol·L-1,0.0700 mol·L-1,0.0900 mol·L-1,测各不同浓度下的电极电势E x 。

原电池电动势的测定实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-053983 原电池电动势的测定实验报告Experimental report on measurement of electromotive force of

原电池电动势的测定实验报告 原电池电动势的测定实验报告1 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。

可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为φ+,负极电势为φ-,则电池电动势E = φ+ - φ- 。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。 以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。 仪器和试剂 SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和KCl 溶液。 实验步骤 1. 记录室温,打开SDC-II型数字式电子电位差计预热5 分钟。将测定旋钮旋到“内标”档,用1.00000 V电压进行“采零”。 2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。 3. 半电池的制作:向两个50 mL 烧杯中分别加入1/2 杯深0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管

相关文档
相关文档 最新文档