文档库 最新最全的文档下载
当前位置:文档库 › F_P半导体光放大器的频率响应特性_王刚

F_P半导体光放大器的频率响应特性_王刚

F_P半导体光放大器的频率响应特性_王刚
F_P半导体光放大器的频率响应特性_王刚

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

中科大半导体器件原理考试重点

《半导体器件原理》课程复习提纲 2017.12 基础:半导体物理、半导体器件的基本概念、物理效应。 重点:PN结、金半结、双极型晶体管、JFET、MESFET、MOSFET。根据物理效应、物理方程、实验修正等,理解半导体器件的工作原理和特性曲线,掌握器件的工作方程和各种修正效应,了解器件的参数意义,能够进行器件设计、优化、应用、仿真与建模等。 第一章:半导体物理基础 主要内容包括半导体材料、半导体能带、本征载流子浓度、非本征载流子、本征与掺杂半导体、施主与受主、漂移扩散模型、载流子输运现象、平衡与非平衡载流子。 半导体物理有关的基本概念,质量作用定律,热平衡与非平衡、漂移、扩散,载流子的注入、产生和复合过程,描述载流子输 运现象的连续性方程和泊松方程。(不作考试要求) 第二章:p-n结 主要内容包括热平衡下的p-n结,空间电荷区、耗尽区(耗尽层)、内建电场等概念,p-n结的瞬态特性,结击穿,异质结与高低结。 耗尽近似条件,空间电荷区、耗尽区(耗尽层)、内建电势等概念,讨论pn结主要以突变结(包括单边突变结)和线性缓变结为例,电荷分布和电场分布,耗尽区宽度,势垒电容和扩散电容的概念、定义,直流特性:理想二极管IV方程的推导;

对于考虑产生复合效应、大注入效应、温度效应对直流伏安特性的简单修正。PN的瞬态特性,利用电荷控制模型近似计算瞬变时间。结击穿机制主要包括热电击穿、隧道击穿和雪崩击穿。要求掌握隧道效应和碰撞电离雪崩倍增的概念,雪崩击穿条件,雪崩击穿电压、临界击穿电场及穿通电压的概念,异质结的结构及概念,异质结的输运电流模型。高低结的特性。 第三章:双极型晶体管 主要内容包括基本原理,直流特性,频率响应,开关特性,异质结晶体管。 晶体管放大原理,端电流的组成,电流增益的概念以及提高电流增益的原则和方法。理性晶体管的伏安特性,工作状态的判定,输入输出特性曲线分析,对理想特性的简单修正,缓变基区的少子分布计算,基区扩展电阻和发射极电流集边效应,基区宽度调制,基区展宽效应,雪崩倍增效应,基区穿通效应,产生复合电流和大注入效应,晶体管的物理模型E-M模型和电路模型G-P 模型。跨导和输入电导参数,低频小信号等效电路和高频等效电路,频率参数,包括共基极截止频率fα和共射极截止频率fβ的定义,特征频率f T的定义,频率功率的限制,其中少子渡越基区时间,提高频率特性的主要措施。开关特性的参数定义,开关时间的定义和开关过程的描述,利用电荷控制方程简单计算开关时间。 开关晶体管中最重要的参数是少子寿命。异质结双极型晶体管的结构及优点。

半导体激光器的研究

半导体激光器的研究 半导体激光器是近年来应用非常广泛的一种激光器。在本实验中我们将对半导体激光器的主要发光器件——激光二极管(LD)进行全面的实验研究。 【实验内容】 1.激光二极管(LD)的伏安特性测量。 2.LD的发光强度与电流的关系曲线测量。 3*.LD发光光谱分布测量。 4*.LD发光偏振特性分析。 【实验仪器】 激光二极管,电压表,电流表,激光功率计,分光计,格兰—泰勒棱镜等

阅读材料 半导体激光器件 按照半导体器件功能的基本结构可分为:注入复合发光,即电—光转换;光引起电动势效应,即光—电变换。这里主要讨论前者。 半导体激光光源是半导体激光器发射的激光。它是以半导体材料作为激光工作物质的一类激光器,亦称激光二极管,英文缩写为LD。与其相对应的非相干发光二极管,英文缩写为LED。它具有工作电压低、体积小、效率高、寿命长、结构简单、价格便宜以及可以高速工作等一系列优点。可采用简单的电流注入方式来泵浦,其工作电压和电流与集成电路兼容,因而有可能与之单片集成;并且还可用高达吉赫(109 Hz)的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,LD在激光通信、光纤通信、光存储、光陀螺、激光打印、光盘录放、测距、制导、引信以及光雷达等方面已经获得了广泛应用,大功率LD 可用于医疗、加工和作为固体激光器的泵浦源等。 半导体激光器自1962年问世以来,发展极为迅速。特别是进入20世纪80年代,借用微电子学制作技术(称为外延技术),现已大量生产半导体激光器。以半导体LD条和LD堆为代表的高功率半导体激光器品种繁多,应有尽有。 1 概述 1)半导体激光器的分类 从半导体激光器的发射的激光看,可分为半导体结型二极管注入式激光器和垂直腔表面发射半导体激光器两种类型;而从结型看,又可分为同质结和异质结两类;从制造工艺看,又可为一般半导体激光器、分布反馈式半导体激光器和量子阱半导体激光器激光器;另外,为了提高半导体激光器的输出功率,增大有源区,将其做成列阵式,又可分为单元列阵、一维线列阵、二维面阵等。 2)半导体激光器的工作原理 半导体激光器与其它激光器没有原则区别,只是因工作物质不同,而有其自身的特点。图示给出了GaAs激光器的外形及其管芯结构,在激光器的外壳上有一个输出激光的小窗口,激光器的电极供外接电源用,外壳内是激光器管芯,管芯形状有长方形、台面形、电极条形等多种。它的核心部分是PN结。半导体激光器PN结的两个端面是按晶体的天然晶面剖切开的,称为解理面,这两个表面极为光滑,可以直接用作平行反射镜面,构成激光谐振腔。激光可以从某一侧解理面输出,也可由两侧输出。 半导体材料是一种单晶体,各原子最外层的轨道互相重叠,导致半导体能级不再是分

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

半导体的特性

半导体的特性 大家知道:半导体的导电性能比导体差而比绝缘体强。实际上,半导体与导体、绝缘体的区别在不仅在于导电能力的不同,更重要的是半导体具有独特的性能(特性)。 1.在纯净的半导体中适当地掺入一定种类的极微量的杂质,半导体的导电性能就会成百万倍的增加—-这是半导体最显著、最突出的特性。例如,晶体管就是利用这种特性制成的。 2.当环境温度升高一些时,半导体的导电能力就显著地增加;当环境温度下降一些时,半导体的导电能力就显著地下降。这种特性称为“热敏”,热敏电阻就是利用半导体的这种特性制成的。 3.当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏”。例如,用作自动化控制用的“光电二极管”、“光电三极管”和光敏电阻等,就是利用半导体的光敏特性制成的。 由此可见,温度和光照对晶体管的影响很大。因此,晶体管不能放在高温和强烈的光照环境中。在晶体管表面涂上一层黑漆也是为了防止光照对它的影响。最后,明确一个基本概验:所谓半导体材料,是一种晶体结构的材料,故“半导体”又叫“晶体” 一个PN结构成晶体二极管 P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。 一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。 图1

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体? 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何 答:硅(Si)、锗(Ge)和砷化家(AsGa) 何谓VLSI 答:VLSI(Very Large Scale Integration)超大规模集成电路 在半导体工业中,作为绝缘层材料通常称什幺 答:介电质(Dielectric) 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线? 答:良好的导体仅次于铜 介电材料的作用为何? 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质 何谓IMD(Inter-Metal Dielectric) 答:金属层间介电质层。 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass) 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG? 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass) 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体 二氧化硅其K值为3.9表示何义 答:表示二氧化硅的介电质常数为真空的3.9倍 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体 简述Endpoint detector之作用原理. 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测到强度变强或变弱,当超过某一设定强度时,即定义制程结束而该点为endpoint.

1.1半导体的基本特性

项目一半导体器件的识别与检测 课题:1.1 半导体的基本特性 授课者:阚霞 【一】1、学习目标 (1)能从物质的导电能力来理解半导体的概念 (2)知道半导体的三个主要特性 (3)掌握N型、P型半导体的形成与特点 2、能力目标:能够根绝导体的导电性能区分生活中的导体、半导体和绝缘体 3、情感目标:学会倾听,学会表达,学会计划 【二】重点知识:半导体的主要特征 难点知识:N型半导体和P型半导体 【三】教学方法:讲授法、提问法、启发法 【四】教学过程 一、1、课程介绍:该门课程是一个多学期完成的衔接式课程,在上一学期学习了电工基础的基本知识。这学期的内容对于前一期的内容来说要难得多,主要涉及两个大的方面,模拟电子和数字电子。其中模拟电子部分又是难点,在学期的开始就将学习到该内容,要求学生对此的掌握要够扎实。 2、课堂要求:课前准备学习用具,课堂遵守纪律,不玩手机,上课不准睡觉,认真听讲,记好笔记,积极发言。 3、作业要求:按时完成作业,并字迹工整 二、新课引入 电工基础中我们学习过自然界的物质根据导电能力的不同,将它分为了三类,请同学们回忆一下有哪三类呢?(导体、半导体、绝缘体) 三、新课讲解 1.1.1半导体的主要特性 半导体的导电能力时介于导体和绝缘体之间,目前用来制造半导体器件的材料主要是锗和硅,他们都是四件的元素,具有晶体结构,所以半导体又称晶体。半导体之所以得到广泛的应用,主要是具有以下3个主要特征:

1.1.2 P型半导体和N型半导体 在硅和锗半导体中,掺入微量和其他元素后,所得的半导体为杂质半导体,其类型有P型半导体和N型半导体,这两种是制造各种半导体器件的基础材料。

第四章第一节半导体的导电特性

1、下列描述中不属于本征半导体的基本特征是______。 A.温度提高导电能力提高 B.有两种载流子 C.电阻率很小,接近金属导体 D.参杂质后导电能力提高 2、若在本征半导体中掺入某些适当微量元素后,若以空穴导电为主的称______,若以自由电子导电为主的称______。 A.PNP型半导体/NPN型半导体 B.N型半导体/P型半导体 C.PN结/PN结 D.P型半导体/N型半导体 3、一般来说,本征半导体的导电能力______,当掺入某些适当微量元素后其导电能力______。A.很强/更强 B.很强/降低 C.很弱/提高 D.很弱/更弱 4、在P型半导体中多数载流子是______,在N型半导体中多数载流子是______。 A.空穴/自由电子 B.自由电子/空穴 C.空穴/共价键电子 D.负离子/正离子 5、N型半导体中的多数载流子是______。 A.自由电子 B.空穴 C.束缚电子 D.晶格上的离子 6、P型半导体中的多数载流子是______。 A.自由电子 B.空穴 C.束缚电子 D.晶格上的离子 7、关于P、N型半导体内参与导电的介质,下列说法最为合适的是______。 A.自由电子、空穴、位于晶格上的离子 B.无论P型还是N型半导体,自由电子、空穴都是导电介质 C.对于P型半导体,空穴是唯一的导电介质 D.对于N型半导体,空穴是唯一的导电介质 8、对于半导体材料,若______,导电能力减弱。 A.环境温度降低 B.掺杂金属元素 C.增大环境光照强度 D.掺杂非金属元素 9、金属导体的电阻率随温度升高而______;半导体的导电能力随温度升高而______。

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

1-1半导体特性

编号:模电长兴职教中心机电专业《模拟电子技术基础》第2次修改 编制人:一级审核人:霍永红二级审核人:联系领导:日期: 课题1 半导体的主要特性 班级:学生姓名:组别:评价: 【学习目标】 一、知识目标 1、了解半导体的特性、类型和载流子种类 2、理解半导体导电的原理 二、技能目标 1、通过小组合作讨论,提高学生解决问题、团队合作能力。 2、学生小组合作,解决问题,增加交流,增进友谊,体验学习的快乐。 三、情感目标 1、感受学习模拟电子技术的乐趣,激发学习兴趣。 2、在学会和会学的过程中体验学习的快乐,尝试成功,提升自我学习能力。 3、培养学生认真记录、勤于动手动脑的学习习惯,并养成良好的职业素养。【学习重点】 1、半导体的导电特性 2、半导体的分类、特点 【学习难点】 半导体导电的原理 【使用说明与学法指导】 1.用20分钟左右的时间,阅读探究课本的内容,熟记基础知识。自主高效预习,提升自己的阅读理解能力. 2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题. 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑”处. 教材助读: 1、从物质的导电性引入导体、绝缘体和半导体的概念; 2、金属的导电特点 3、参考课本教材:P6—P7页

【预习案】 1、半导体的定义? 2、杂质半导体类型及导电特点 三、我的疑惑 : 【探究案】 一、基础知识探究 1、三种半导体比较 二、问题探究 1、N 型半导体本身带正电、带负电还是电中性?为什么? 【训练案】 1、半导体与金属相比有何特点? 2、判断分析下图中灯泡发光情况,为下节课埋下伏笔。 【我的收获】: 半导体类型 掺杂 载流子数量 多数载流子 导电性 本征半导体 N 型半导体 P 型半导体

相关文档
相关文档 最新文档