文档库 最新最全的文档下载
当前位置:文档库 › 公务员行测排列组合的六种方法

公务员行测排列组合的六种方法

公务员行测排列组合的六种方法
公务员行测排列组合的六种方法

搞定排列组合的六种方法

公务员考试行测中的排列组合题我们在高中时候就学过,但具体面对这类题目时依然存在很大的疑惑,感觉无从下手,或者有时候做出来了错误率也极高。那么究竟该如何复习排列组合这类考题呢?在此传授给大家六个“高招”,让你看到此题不再愁。

一、何为排列组合

在传授“招数”之前,先回顾一下排列与组合的基本概念以及在具体题目中如何快速识别。比如,4 个人中挑选 2 个人相互握手,先选甲、再选乙或者先选乙、再选甲;这两种不同的选择顺序,最终都是甲乙2 人互相握手,所以,顺序对结果不造成影响,则叫组合,记为C42 ;反之,若4 个人中挑选2 个人,一个当班长,一个当学委,那么先选甲、再选乙或者先选乙、再选甲;这两种不同的选择顺序会带来两种不同的结果:甲当班长、乙当学委或者乙当班长、甲当学委。所以,顺序对结果造成影响,则叫排列,记为A42。

二、解答排列组合六招数

招数一:优先法

优先法,即对有特殊要求的元素优先进行考虑。

例题1:a、b、c、d、e、f 6 个人排队,问a、b 既不在排头也不在排尾的方式有几种?

解析:a、b 是具有特殊要求的元素,优先进行考虑,一头一尾不能选,只有中间4 个位置,于是有A42 。剩下的c、d、e、f 4 个人,4 个位置全排列, A44 。所以,总的排列方式是A42·A44 。

招数二:捆绑法

捆绑法,即将相邻元素捆绑在一起作为一个整体和其它元素进行排列与组合。例题2:计划展出10 幅不同的画,其中1 幅水彩画、4 幅油画、5 幅国画,排成一行陈列,要求同品种的必须连在一起,那么共有多少陈列方式的种数?

解析:把 4 幅油画必须相邻看成一个整体、5 幅国画必须相邻看成一个整体,则加上水彩画一共有3 个整体,所以排列方式是A33 。

招数三:插空法

插空法,即先考虑其它元素,再将不相邻的元素插入他们的间隙。

例题3:某论坛邀请了6 位嘉宾,安排其中三人进行单独演讲,另三人参加圆桌对话节目。如每位嘉宾都可以参加演讲或圆桌对话,演讲顺序分先后且圆桌对话必须安排在任意两场演讲之间,问一共有多少种不同的安排方式?

解析:圆桌对话必须不相邻,因此要先考虑演讲,6 个人中选 3 个人演讲,分先后顺序则有A63 ,剩下的3 人只能圆桌对话且不能安排在首位,则只有2 个空可以插,则有A22 ,所以总的排列方式有A63· A22 。

招数四:隔板法

隔板法,适用同素分堆且问法为“至少一个”的题型。何为同素分堆呢?即相同的元素分成若干堆,如6 个相同的苹果分给3 个不同的小朋友,问有几种分法。将6 个苹果中间的5 个空插2 块隔板,即可分成3 堆,如:○/○○○/○○,则有C52。

例题4:把20 台相同的电脑分给8 个部门,每个部门至少2 台,问共有几种分

法?

解析:先每个部门分别发1 台,还剩12 台,剩下的隔板,C117 。

招数五:错位重排

错位重排,即鸽子回笼。如1 只鸽子1 个笼,它飞出去,再飞回来,回错笼的种数为0;2 只鸽子2 个笼,它飞出去,再飞回来,回错笼的种数为1;3 只鸽子3 个笼,它飞出去,再飞回来,回错笼的种数为2;4 只鸽子4 个笼,它飞出去,再飞回来,回错笼的种数为9;以此类推,5 只鸽子5 个笼,它飞出去,再飞回来,回错笼的种数为44。

所以,需要记住以下结论:

N 1 2 3 4 5

D(n) 0 1 2 9 44

例题5:新年到了,某单位5 个人写5 张贺卡互相赠送,要求5 个人都收到贺卡,且不能收到自己写的贺卡,问收贺卡的方式有多少种?

解析:直接利用结论,5 对应44 种。

招数六:环形排列

环形排列,即圆桌入座,比如 5 个人(a、b、c、d、e)围着一张桌子入座,问有多少种入座方式?正常情况,直线排列5 个人则是A55。那么环形排列有什么不同呢?在环形中,若所有的元素顺时针移动相同的格数,对应的顺序不改变,则算同1 种。所以不管怎么移动,一定能找到元素a,则不用考虑a,只需要考虑其它4 个元素即可,即总共有A44 种。

以上就是解决排列组合题的六种“招数”了,希望可以对考生有所帮助。

排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、4441284 3 3 C C C A 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法: 例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

2013国家公务员考试行测暑期向前冲 数学运算:排列组合与概率问题重难点讲解

2013国家公务员考试行测暑期向前冲数学运算:排列组合 与概率问题重难点讲解 排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。 在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。 一、基础原理 二、基本解题策略 面对排列组合问题常用以下三种策略解题: 1.合理分类策略 ①类与类之间必须互斥(互不相容);②分类涵盖所有情况。 2.准确分步策略 ①步与步之间互相独立(不相互影响);②步与步之间保持连续性。 3.先组后排策略 当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。 【例题1】班上从7名男生和5名女生中选出3男2女去参加五个竞赛,每个竞赛参加一人。问有多少种选法?

A.120 B.600 C.1440 D.42000 中公解析:此题答案为D。此题既涉及排列问题(参加五个不同的竞赛),又涉及组合问题(从12名学生中选出5名),应该先组后排。 三、概率问题 概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。概率问题经常与排列组合结合考查。因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。 1.传统概率问题 2.条件概率 在事件B已经发生前提下事件A发生的概率称为条件概率,即A在B条件下的概率。 P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。

初中排列组合公式例题.

复习排列与组合 考试内容:两个原理;排列、排列数公式;组合、组合数公式。 考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 重点:两个原理尤其是乘法原理的应用。 难点:不重不漏。 知识要点及典型例题分析: 1.加法原理和乘法原理 两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。 解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。 (2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。 例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射? 分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。” 因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=125(种)。 2.排列数与组合数的两个公式 排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。 连乘积的形式阶乘形式 Anm=n(n-1)(n-2)……(n-m+1) = Cnm= 例3.求证:Anm+mAnm-1=An+1m 证明:左边= ∴等式成立。 评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形

国家公务员:排列组合之错位排序

国家公务员:排列组合之错位排序 排列组合的数量题目当中,有一些技巧我们常常会用到,今天我们就一起来看一下排列组合问题中常用的方法——错位排序。 我们来讨论一个问题:这是一个很经典的数学问题:有一个人写了n封信件,对应n个信封,然而粗心的秘书却把所有信件都装错了信封,那么一共有多少种装错的装法? 这个问题可抽象为以下一个数学问题:已知一个长度为n的有序序列{a1,a2,a3,…,an},打乱其顺序,使得每一个元素都不在原位置上,则一共可以产生多少种新的排列?首先考虑几种简单的情况: 原序列长度为1 序列中只有一个元素,位置也只有一个,这个元素不可能放在别的位置上,因此原序列长度为1时该为题的解是0。 原序列长度为2 设原序列为{a,b},则全错位排列只需将两个元素对调位置{b,a},同时也只有这一种可能,因此原序列长度为2时该问题的解是1。 原序列长度为3 设原序列为{a,b,c},则其全错位排列有:{b,c,a},{c,a,b},解是2。 原序列长度为4 设原序列为{a,b,c,d},则其全错位排列有:{d,c,a,b},{b,d,a,c},{b,c,d,a},{d,a,b,c},{c,d,b,a},{c,a,d,b},{d,c,b,a},{c,d,a,b},{b,a,d,c},解是9。 在往下数,次数会更多,那我们就可以用不完全归纳得出规律:f(n)=(n-1)f(n-2)+(n-1)*f(n-1)=(n-1)[f(n-2)+f(n-1)] 。 很明显,规律不太好记。但是我们不用记,因为在公务员考试当中,题目一般情况下比较简单,我们只需要记住D1=0;D2=1;D3=2;D4=9;D5=44。即可下面我们一起来看一道例题: 【例】(2015-山东-59)某单位从下属的5个科室各抽调了一名工作人员,交流到其他科室,如每个科室只能接收一个人的话,有多少种不同的人员安排方式?()

行测排列组合例题

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法?

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

公务员考试逻辑判断排列组合题型解题技巧

公务员考试逻辑判断排列组合题型解题技巧 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。 一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。 例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( ) A6 B.9 C.11 D.23 解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B 二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。 三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。

四、消序 例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。 解析:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。 五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。 经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

行测排列组合例题

行测排列组合例题Last revision on 21 December 2020

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)= 4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法 解答:

假设我们已经找出了两种排列方法(黄、白、蓝)和(蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P(3,3)= 3!321 6 (33)!1 ?? == - (计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法解答 这仍然属于排列问题,只不过r变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P(3,2)= 3!321 6 (32)!1 ?? == - (计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4黄、白、蓝三个球,任意取出两个,有几种取法 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下

排列组合例题精选

10.1排列与组合 10.1.1学习目标 掌握排列、组合问题的解题策略 10.1.2重点 (1),特殊元素优先安排的策略: (2),合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4 )正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略;(6 )不相邻问题插空处理的策略。 10.1.3难点 综合运用解题策略解决问题。 10.1.4学习过程: (1)知识梳理 1 ?分类计数原理(加法原理):完成一件事,有几类办法,在第一类中有m1种有不同的方法,在第2类中有m2种不同的方法……在第n类型有m n种不同的方法,那么完成这件事 共有N = mn ? m2? m n种不同的方法。 2?分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有m n种不同的方法;那么完成这件事 共有N = mb m2;—心m n种不同的方法。 特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏。 3.排列:从n个不同的元素中任取m(m窃)个元素,按照.一定.顺序.排成一列,叫做从n个不同元素中取出m个元素的一个排列. 4 .排列数:从n个不同元素中取出m(m

排列组合公式详解(公务员)

排列组合公式大全 (1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 (2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 知识要点及典型例题分析: 1.加法原理和乘法原理两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1 .书架上放有3 本不同的数学书,5 本不同的语文书,6 本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3 种书,则分为3 类然后依据加法原理,得到的取法种数是:3+5+6=14 种。 (2)由于从书架上任取数学书、语文书、英语书各 1 本,需要分成3 个步 骤完成,据乘法原理,得到不同的取法种数是: 3 X 5 X 6=90 (种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1 本,语英各1 本)而在每一类情况中又需分2 个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3X 5+3X 6+5X 6=63(种)。 例2 ?已知两个集合A={1 , 2, 3}, B={a,b,c,d , e},从A到B建立映射, 问可建立多少个不同的映射?分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A 中的每一个元素,在B 中都有唯一的元素与之对应。” 因A 中有3 个元素,则必须将这3 个元素都在B 中找到家,这件事才完成。因此,应分3 个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5 X 5 X 5=125 (种)。

行测排列组合例题整理

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 !()!r n n P n r =- r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中

取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法? 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下 ()!!!r n n C r n r =- r n C 也可写成C (n,r )其中n 表示总共的元素个数,r 表示进行组合的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 C (5,3)=5!54321302!(53)!(21)(21) ????==-??? 另外,为便于计算,还有个公式请记住 r n r n n C C -=

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

行测排列组合习题

错位重排问题又称伯努利-欧拉错装信封问题,是组合数学史上的一个著名问题。此问题的模型为: 编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信和信封的编号不同,问有多少种装法? 对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1, Dn=(n-1)( Dn-1+ Dn-2)。这样,就能根据这个递推公式推出所有数的错位重排,解题时又快又准 1.张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个节目,有多少种安排方法? A,20 B.12 C,6 D,4 2. 某单位今年新近3个工作人员,可以分配到3个部门,但是每个部门之多只能接收2个人,问有几种不同分配方案 A.18 B.20 C.24 D28 3.班委改选,由8人竞选班长、学习委员、生活委员、文娱委员和体育委员五种职务。最后每种职务都有一个人担当,则共有多少种结果?( ) A.120 B.40320 C.840 D.6720 4. 乒乓球比赛共有14名选手参加,先分成两组参加单循环比赛,每组7人,然后根据积分由两组的前三名再进行单循环比赛,决出冠亚军,请问共需要多少场? A.54 B.56 C.57 D.60 5. 林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同选择方法? ( ) A. 4 B. 24 C. 72 D. 144 6.从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法 A.240 B.310 C.720 D.1080 7.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( ) A280种B240种C180种 D96种 8.五人排队甲在乙前面的排法有几种? A.60 B.120 C.150 D.180 9.若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?

排列组合专题总结复习及经典例题详解 .docx

排列组合专题复习及经典例题详解 1.学目 掌握排列、合的解策略 2.重点 (1)特殊元素先安排的策略: (2)合理分与准确分步的策略; (3)排列、合混合先后排的策略; (4)正反、等价化的策略; (5)相捆理的策略; (6)不相插空理的策略. 3.点 合运用解策略解决. 4.学程 : (1)知梳理 1.分数原理(加法原理):完成一件事,有几法,在第一法中有m1种不同的方法,在第 2 法中有m2种不同的方法??在第n 型法中有m n种不同的方法,那么完成件事共有N m1m2... m n种不同的方法. 2.分步数原理(乘法原理):完成一件事,需要分成n 个步,做第 1 步有m1种不同的方法,做第 2 步有m2种不同的方法??,做第n 步有m n种不同的方法;那么完成件事共有 N m1 m2...m n种不同的方法. 特提醒: 分数原理与“分”有关,要注意“ ”与“ ”之所具有的独立性和并列性; 分步数原理与“分步”有关,要注意“步”与“步”之具有的相依性和性,用两个原理行正确地分、分步,做到不重复、不漏. 3.排列:从 n 个不同元素中,任取m(m≤n) 个元素,按照一定的序排成一列,叫做从n 个不同元素中取出 m个元素的一个排列,m n叫做排列,m n 叫做全排列. 4.排列数:从 n 个不同元素中,取出m(m≤n) 个元素的所有排列的个数,叫做从n 个不同元素中取出 m个元素的排列数,用符号P n m表示. 5.排列数公式:P n m n(n1)( n2)...( n m1) (n n!( m n,n、 m N)m)! 排列数具有的性: P n m1P n m mP n m 1 特别提醒: 规定 0!=1

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

排列组合练习题与答案

排列组合习题精选 一、纯排列与组合问题: 1.从9人中选派2人参加某一活动,有多少种不同选法? 2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( ) A.12个 B.13个 C.14个 D.15个 答案:1、2936C = 2、2972A = 3、选 B. 设男生n 人,则有2138390n n C C A -=。4、22 58m n m A A +-= 选C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )

A.720 B.1440 C.2880 D.3600 答案:1.24 2448 A A=(2) 选 B 325 3251440 A A A= 三、不相邻问题: 1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任两个舞蹈节目都不相邻,有多少种不同排法? 2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个? 3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有() A.2880 B.1152 C.48 D.144 4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法? 5.8椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种? 6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法? 7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法? 8. 在一次文艺演出中,需给舞台上安装一排彩灯共15只,以不同的点灯式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮式是() A.28种 B.84种 C.180种 D.360种

2018国家公务员考试排列组合题目怎么做

2018国家公务员考试排列组合题目怎么做 2018年国家公务员考试公告暂未公布,根据历年国家公务员考试安排,2018国家公务员考试预计也会在2017年10月份启动,备考之事必须提上日程。为帮助广大考生快速了解国考、顺利备考,湖南华图教育对历年国考信息进行分析汇总,并且会第一时间发布2018国家公务员考试相关信息,为广大考生的国考之路保驾护航! 根据往年的考试情况来看,2013年国家公务员考试报名工作预计在今年10月中旬展开,笔试时间一般为11月底或12月初。复习时间非常充裕。河南华图特整理资料。 数量关系的考核——“排列组合”历来是广大考生最为头疼的“拦路虎”,“排列组合”既是难点,又是重点,所以是考生必须引起重视的核心模块,能否突破排列组合这道关卡,将是考生最后取得高分的关键。华图公务员考试研究中心分析指出,最近联考的趋势中排列组合的考察逐渐出现创新点,就是基于传统排列组合问题之上的概率问题。概率问题在2010,2011的四月份联考中连续出现过两次,在2012年国家公务员考试中也有所出现,联考历来以国考为风向标,而概率问题也将成为排列组合中考核的要点,所以必须引起考生的重视,笔者在这里将简单介绍一下概率问题的知识点,并以一道联考真题为例讲解一些概率问题解题思路。 在这里首先介绍一下概率问题的基本知识点,对于大多数基础比较差的考生而言,概率问题首先需要记住这样一个公式:概率=满足条件的情况数÷总情况数

这个公式中,满足条件的情况数和总情况数的算法源于排列组合的相关知识,考生根据题意判断即可,而对于分情况概率和分步骤概率的解法,也是脱胎于排列组合问题,分类用加法,分步用乘法,因此有了这两个公式: 总体概率=满足条件的各种情况概率之和; 分步概率=满足条件的每个步骤概率之积。 以上是概率问题的一些基本概念,下面通过一道典型例题来讲解下概率问题的解题思路,这道题是是2011年424联考的第44题,一道典型的概率问题,题目是这样出的: 【2011-424-44】小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1、0.2、0.25、0.4,则他上班经过4个路口至少有一处遇到绿灯的概率是( ) A.0.899 B.0.988 C.0.989 D.0.998 这道题问4个路口至少有一处遇到绿灯的概率,有两种解法:一种是分情况讨论,分别算出一处绿灯,二处绿灯,三处绿灯,四处绿灯的概率,然后相加即可; 另一种方法是逆向思维法,上文中反复提到,概率问题是排列组合的延伸,排列组合是概率问题的基础,而在解决排列组合问题的过程中,我们常用到这样一个公式:满足条件的情况数=总情况数—不满足条件的情况数 而在概率问题中,这个公式也能适用,具体公式为: 某条件成立概率=总概率—该条件不成立的概率 值得注意的是,这里的总概率指的就是全概率,就是1,落

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

最新排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所 有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类, 又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。 随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。 5.隔板法: 不可分辨的球即相同元素分组问题

相关文档
相关文档 最新文档