文档库 最新最全的文档下载
当前位置:文档库 › 2012TI电子设计大赛——微弱信号检测装置(A题).doc要点

2012TI电子设计大赛——微弱信号检测装置(A题).doc要点

2012TI电子设计大赛——微弱信号检测装置(A题).doc要点
2012TI电子设计大赛——微弱信号检测装置(A题).doc要点

微弱信号检测装置

四川理工学院刘鹏飞、梁天德、曾学明

摘要:

本设计以TI的Launch Pad为核心板,采用锁相放大技术设计并制作了一套微弱信号检测装置,用以检测在强噪声背景下已知频率微弱正弦波信号的幅度值,并在液晶屏上数字显示出所测信号相应的幅度值。实验结果显示其抗干扰能力强,测量精度高。

关键词:强噪声;微弱信号;锁相放大;Launch Pad

Abstract:

This design is based on the Launch Pad of TI core board, using a lock-in amplifier technique designed and produced a weak signal detection device, to measure the known frequency sine wave signal amplitude values of the weak in the high noise background, and shows the measured signal amplitude of the corresponding value in the liquid crystal screen. Test results showed that it has high accuracy and strong anti-jamming capability.

Keywords: weak signal detection; lock-in-amplifier; Launch Pad

目录

摘要:............................................................................................................................. I Abstract: ......................................................................................................................... II

1、引言 (1)

2、方案论证 (1)

3、理论分析与计算 (3)

4、总体方案设计 (3)

5、硬件设计 (4)

5.1信号产生电路 (4)

5.2前置放大电路 (5)

5.3 带通滤波电路 (6)

5.4 移相网络 (6)

5.5 锁相放大电路 (7)

5.6 低通滤波电路 (8)

5.7 LaunchPad电路连接 (8)

6、软件设计 (9)

7、系统测试与结果分析 (10)

7.1 测试仪器 (10)

7.2 测试方案 (10)

7.3 测试结果 (10)

7.4 结果分析 (12)

8、总结 (12)

附录A 硬件实物图 (12)

附录B 软件代码 (12)

参考文献 (22)

1、引言

随着现代科学技术的发展,在科研与生产过程中人们越来越需要从复杂高强度的噪声中检测出有用的微弱信号,因此对微弱信号的检测成为当前科研的热点。微弱信号并不意味着信号幅度小,而是指被噪声淹没的信号,“微弱”也仅是相对于噪声而言的。只有在有效抑制噪声的条件下有选择的放大微弱信号的幅度,才能提取出有用信号。微弱信号检测技术的应用相当广泛,在生物医学、光学、电学、材料科学等相关领域显得愈发重要。

2、方案论证

针对微弱信号的检测的方法有很多,比如滤波法、取样积分器、锁相放大器等。下面就针对这几种方法做一简要说明。

方案一:滤波法。

在大部分的检测仪器中都要用到滤波方法对模拟信号进行一定的处理,例如隔离直流分量,改善信号波形,防止离散化时的波形混叠,克服噪声的不利影响,提高信噪比等。常用的噪声滤波器有:带通、带阻、高通、低通等。但是滤波方法检测信号不能用于信号频谱与噪声频谱重叠的情况,有其局限性。虽然可以对滤波器的通频带进行调节,但其噪声抑制能力有限,同时其准确性与稳定性将大打折扣。

图2-1 常用的滤波器示意图

方案二:取样积分器

取样积分法是利用周期性信号的重复特性,在每个周期内对信号的一部分取样一次,然后经过积分器算出平均值,于是各个周期内取样平均信号的总体便呈现出待测信号的真实波形。由于信号的取样是在多个周期内重复进行的,而噪声在多次重复的统计平均值为零,所以可大大提高信噪比,再现被噪声淹没的波形。 其系统原理图如图2-1所示。

图2-2 取样积分原理图

带阻滤波器

带通滤波器

高通滤波器

低通滤波器

取样门 脉冲产生与控制

积分器

Vs(t)+Vn(t) Vr(t)

Vo(t)

一个取样积分器的核心组件式是取样门和积分器,通常采用取样脉冲控制RC 积分器来实现,使在取样时间内被取样的波形做同步积累,并将累积的结果保持到下一次取样。

取样积分器通常有定点式和扫描式两种工作模式。定点式是测量周期信号的某一瞬态平均值,经过m 次取样平均后,其幅值信噪比改善为

ni

si n s V V

m V V ;扫描式取样积分器利用取样脉冲在信号波形上延时取样,可用于恢复与记录被测信

号的波形,由于其采样过程受到门脉冲宽度的限制,只有在门宽范围内才能被取样。

方案三:锁相放大器

锁相放大器也称为锁定放大器(Lock-In-Amplifier,LIA )。它主要作为一个极窄的带通滤波器的作用,而非一般的滤波器。它的原理是基于信号与噪声之间相关特性之间的差异。锁相放大器即是利用互相关原理设计的一种同步相关检测仪,利用参考信号与被测信号的互相关特性,提取出与参考信号同相位和同频率的被测信号。锁定放大器可在比被测信号强100dB 的噪声干扰中检测出有用信号。其原理框图如图2-3。

图2-3 锁相放大原理框图

锁相放大器的核心部件是鉴相器,它实现了被测信号与参考信号的互相关运算。它把输入信号与参考信号进行比较,当两个信号相位完全相同时,即相位差为0时,经低通滤波后,输出信号的直流分量达到最大,其正比于输入信号中某一特定频率(参考输入频率)的信号幅值。

锁相放大器具有很多优点:信号通过调制后交流放大,可以避免噪声的不利影响;利用相敏检波器实现对调制信号的解调,同时检测频率和相位,噪声同频又同相的概率很小;利用低通滤波器来抑制噪声,低通滤波器的频带可以做得很窄,并且其频带宽度不受调制频率的影响,稳定性也大大提高。但是值得注意的是适合于锁相放大器的检测信号应该是单频的,或者传导频谱所占频带是较窄的。

综合考虑,尤其根据是手头现有器件的情况,我们选择了利用锁相放大器作为本次的检测方案,并达到了预期的效果。

带通滤波 鉴相器 低通滤波器 移相器

本地振荡器

Vs(t)+Vn(t)

Vo

3、理论分析与计算

设输入信号为:

根据傅里叶变换,r(t)可用三角函数的形式表示为:

r(t)与x(t)相乘后的结果为:

上式第一项为差频项,第二项为和频项。在通过低通滤波器(LPF)后,所有的和频项与差频项都被滤除。最后滤波器的输出为:

上式说明被测信号经过相敏检波器(PSD)和低通滤波器(LPF)后,输出正比于被测信号的幅度,同时正比于参考信号与被测信号的相位差的余弦函数,此时,输出最大,从而实现鉴相与鉴幅。同时,有上式若测得输出电压可以反推得到输入电压的幅值:

PSD信号的输出信号由于被测信号与参考信号之间的相位差而产生很大的变化。受此影响,经过低通滤波器后的输出电压也会变化很大。如图3-1所示:

图3-1 相位差的影响

通过图3-1,我们可以看到只有在相位差为时才能很好的检测被测信号的大小。通常,我们在进行测量时需要通过相移网络把参考信号与被测信号之间的相位差调到再输入到PSD。

4、总体方案设计

本设计系统框图如图4-1所示。系统通过把正弦信号与噪声源通过加法器混合,通过电阻分压网络使噪声衰减到一定程度,模拟淹没在噪声中的有用信号,再通过前置放大电路对信号进行预放大,再通过带通滤波器选择设计所需的通频带,然后通过以AD630为核心器件的锁相放大器,输出电压经过低通滤波器之

后得到一个直流电压输出,最后通过MSP430进行AD 采样、数据处理后送液晶显示。在整个电路中放置了A~E 共5个测试点作为调试用。

4-1 系统框图

5、硬件设计

整个系统的电路顶层设计如图5-1所示:包含了电源模块、信号产生电路、前置放大与带通滤波、锁相放大模块、低通滤波器、单片机处理模块这些部分。其中每个模块的电源引脚部分都加入了去耦电容,PCB 对电源线也进行了相应的覆铜处理,降低高频干扰。其整体硬件实物图见附录A 。

图5-1 系统电路顶层设计

5.1信号产生电路

本电路模块旨在产生一个能够模拟实际中淹没在噪声中的微弱信号。包含加

Vi Vo

E

D Vc Vn

Vs

C B A

正弦波信号源

噪声源

加法器

分压网

前置

带通滤波

AD 630

低通滤波

MSP430

处理

液晶显示

移相网络

法器与纯电阻分压网络两部分。在实际电路中采用函数信号发生器产生频率为500Hz ~ 2kHz振幅为的200mV ~ 2V正弦信号Vs。同时使用提供的音频信号作为噪声源Vn。首先通过电压跟随器,再经过加法器实现信号的混合,芯片使用AD827来拓宽其频带到≥1 M Hz带宽,可调节音量使正弦信号完全淹没在噪声中。经过混合后的信号再通过一个纯电阻分压电路把信号衰减大约100倍,得到输入信号Vi。电路中取R5=R7=1k,R6=R8=100。其电路原理图如图5-2所示,并在适当位置预留了测试端口。

图5-2 信号产生电路

5.2前置放大电路

该电路用于对信号进行预放大处理,使其输入到后级锁相放大器的信号有个适当的幅度。其电路如图5-3所示。采用TI公司的OPA2227这款低噪声、高精度的运放(后改用AD827)。第一级放大倍数为11倍,第二级放大倍数为10倍,所以总共放大约110倍。同时在输入端接入R10=2M,保证输入阻抗Ri≥1 M 的要求。其电路连接如下图所示。

图5-3 前置放大电路

5.3 带通滤波电路

为满足设计要求,设计了一个带宽为500Hz ~ 2K Hz的带通滤波器,滤除所需频带外的噪声,降低了噪声对信号的干扰。设计选用了二阶低通滤波器与二阶高通滤波器构成二阶带通滤波网络,由TI的滤波器设计软件FilterPro可以设计得到带通滤波器,其中R16=8.2k,R17=15k,C11=2nF,C12=1nF,R18=10k,R19=24k。运放使用TI的OPA2227,其电路如图5-4所示。

图5-4 带通滤波电路

5.4 移相网络

该移相网络用于对参考信号进行移相,其原理是RC相移,通过跳线选择不同的接口,调整可变电阻来实现不同的相移。通过使用一片OPA2227实现对参考信号进行的相移。其中上方为0~900的相移,下方的模块实现90~1800相移。必须在下方的移相模块中加入饱和电阻,否则频率过低时容易出现输出信号饱和。其电路设计如图5-5所示。

图5-5 相移网络

5.5 锁相放大电路

锁相放大电路采用AD630芯片作为核心,其电路如图5-6所示。AD630是一款高精度的平衡调制器,具有出色的精度与温度稳定性,非常低的通道串扰,高的共模抑制比和增益调节,同时还可以在外部加入反馈来实现所需增益与开关反馈布局,它可以从100dB噪声中恢复信号,频带宽度达到2MHz。其信号处理应用包括:平衡调制与解调、同步检波、相位检测、正交检波、相敏检测、锁定放大以及方波乘法等。实际上锁相放大器与调制解调有些类似,只不过频率更低。使用本芯片可以减少鉴相器与噪声方面的许多考虑,大大减小开发难度与开发周期。

图5-6 锁相放大电路

注意这里的电路连接具有2倍的增益。

5.6 低通滤波电路

本滤波电路采用TI的LF353运放设计,当锁相放大电路输出的信号经过低通滤波器之后可得到一个直流信号,其幅值与输入信号中某一特定频率(参考输入信号的频率)的信号幅值成正比,即。其电路如图5-7所示。

图5-7 低通滤波电路

5.7 LaunchPad电路连接

本设计以TI公司的MSP-EXP430G2 LaunchPad作为数据处理模块,其基本电路连接如5-8所示。

图5-8 LaunchPad 电路连接图

MSP-EXP430G2 LaunchPad 具有很多优良特性:

?USB 调试与编程接口无需驱动即可安装使用,且具备高达9600 波特率的UART 串行通信速度

?支持所有采用PDIP14 或PDIP20 封装的MSP430G2xx 和MSP430F20xx 器件

?分别连接至绿光和红光LED 的两个通用数字I/O 引脚可提供视觉反馈?两个按钮可实现用户反馈和器件复位

?器件引脚方便地用于调试目的,也可用作添加定制的扩展板的插座

?高质量的20 引脚DIP 插座,可轻松简便地插入目标器件或将其移除6、软件设计

本设计以TI提供的MSP-EXP430G2 LaunchPad为核心,用MSP430G2553单片机自带的片上外设AD10对数据进行AD转换,并做相应的处理然后送液晶显示。其软件流程图如图6-1。详细的软件代码见附录B

图6-1 软件设计流程图

7、系统测试与结果分析 7.1 测试仪器

DS1102E 型100MHz 1GSa/s 双通道数字示波器,TFG6030 DDS 函数信号发生

器,数字万用表。

7.2 测试方案

基本功能测试:固定1KHz 改变输入信号的峰峰值在200mV~2V 之间,记录液晶显示数据,计算误差大小。 拓展功能测试:调节使输入信号频率在500Hz~2kHz 范围内,峰峰值在20mV~2V 范围内,观看液晶显示数据,计算误差大小。

7.3 测试结果

噪声幅度:

加法器带宽:BW=0Hz~6.4MHz 纯电阻网络衰减倍数:

N Y 开始

初始化时钟、LCD 、ADC

进入低功耗模式

CvtCnt = CvtCnt + 1

定时器A0中断开始

中断返回

CvtCnt<=64?

ADC 采集数据

数据处理

LCD 显示结果

输入阻抗Ri2M1M

输入输出电压幅度测量结果:

表7-1 输入输出电压测量

输入信号 检测结果

误差 (%) 幅值(mV) 频率(Hz) 幅度 (mV) 基本测试 100 1k 100 0 101 1 100 0 200 1k 200 0 202 1 199 0.5 500 1k 500 0 502 0.4 499 0.2 800 1k 799

0.125 801

0.125 800

0 1000 1k 1001 0.1 1002

0.2 999

0.1 Vs 拓展 10 1k 10 0 11 10 10 0 50 1k

80 1k

频率拓展 500 500 500 800 500 1500

500 2000

7.4 结果分析

经过测量,该装置达到了并且还有很多地方超过了设计所需要求。但是仍然有很多提升的空间,例如可以通过使用外部的高速运放来提高采样的分辨率,提高测量精度;可以设计双相位锁定放大器来提高对任意频率的测量;可以通过软件算法来减小数据的波动;可以通过PCB布线布局,加屏蔽罩等措施提高装置的高干扰能力等等

8、总结

本设计以AD630为核心器件的锁相放大器对淹没在噪声中的微弱信号进行检测,输出的电压经MSP-EXP430G2 LaunchPad的处理,再通过液晶显示出来。经过系统测试,能够完成对微弱信号的检测,所有指标都已经达到或者超过了设计要求。

附录A 硬件实物图

附录B 软件代码

main.c

#include "msp430g2553.h"

#include "ADC10.h"

#include "LCD.h"

#include "HalInit.h"

#define Filter_N 64

float Filter(unsigned int pData[]);

//----------------------------------------------

void main(void)

{

WDTCTL = WDTPW + WDTHOLD;

SysInit();

P2DIR |= BIT3 + BIT4;

__low_power_mode_0();

}

//----------------------------------------------

#pragma vector = TIMER0_A0_VECTOR

__interrupt void TA0_ISR(void)

{

unsigned int Data;

float TempData;

static unsigned int CvtCnt =0,value[Filter_N];

CvtCnt++;

if(CvtCnt <= Filter_N)

{

ADC10Read(&Data,1);

value[CvtCnt-1] = Data;

}

else

{

P2OUT ^= BIT4;

CvtCnt = 0;

TempData = value[0];

TempData = Filter(value);

TempData = 1500*TempData/1023;//转换成采样电压数据TempData *=0.785398;//数据处理

LCD_Disp((unsigned int)TempData);

}

}

//----------------------------------------------

float Filter(unsigned int pData[])

{

unsigned int Cnt;

unsigned long Sum=0;

for(Cnt = 1;Cnt <= Filter_N;Cnt++)

{

Sum += pData[Cnt - 1];

}

return (float)(Sum/Filter_N);

}

//----------------------------------------------

HalInit.c

#include "LCD.h"

#include

#include "HalInit.h"

#include "ADC10.h"

//----------------------------------------------

void SysInit(void)

{

ClkInit();

LCD_init();

ADC10Init(1,0,0);

LCD_Gui();

TimerA0Init();

IE1 |= WDTIE;

_EINT();

}

//----------------------------------------------

void TimerA0Init(void)

{

TA0CTL = TASSEL_1 + TACLR;

TA0CCTL0 = CCIE;

TA0CCR0 = 339;

TA0CTL |= MC_1;

}

//----------------------------------------------

void ClkInit(void)

{

if (CALBC1_12MHZ ==0xFF || CALDCO_12MHZ == 0xFF)

{

// If calibration constants erased P1DIR |= BIT6; // do not load, trap CPU!!

P1OUT |= BIT6;

while(1);

}

BCSCTL1 = CALBC1_12MHZ; // Set DCO to 8MHz DCOCTL = CALDCO_12MHZ;

}

//----------------------------------------------

void LCD_Gui(void)

{

LCD_draw_lineX(0 , 83 , 0);

LCD_draw_lineY(0 , 0 , 47);

LCD_draw_lineY(83 , 0 , 47);

LCD_show_char(8,3,'m');

LCD_show_char(9,3,'v');

LCD_write_stringxy(2,1,"Peak value:");

LCD_Disp(0);

}

//----------------------------------------------

ADC.c

#include "msp430g2553.h"

#include "ADC10.h"

//----------------------------------------------

void ADC10Init(unsigned char SelectRef,unsigned char ConvtMode,unsigned char InputChannel )

{

……

}

//----------------------------------------------

void ADC10Start(void)

{

ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start

}

//----------------------------------------------

unsigned int ADC10Read(unsigned int *pData,unsigned int DatNum)

{

unsigned int i;

if((ADC10CTL1 & CONSEQ1) ==0)//单次转换

{

for(i = 0;i < DatNum;i++)

{

ADC10Start();

__bis_SR_register(CPUOFF + GIE); // LPM0, ADC10_ISR will force exit

while(ADC10CTL1 & ADC10BUSY);

P2OUT ^= BIT3;

*pData++ = ADC10MEM;

ADC10CTL0 &= ~(ENC);

}

}

else//序列转换

{

ADC10DTC1 = DatNum;//传输数据个数

ADC10SA = (unsigned short)pData;

ADC10Start();

__bis_SR_register(CPUOFF + GIE); // LPM0, ADC10_ISR will force exit

ADC10CTL0 &= ~ENC;

}

return 1;

}

//----------------------------------------------

#pragma vector=ADC10_VECTOR

__interrupt void ADC10_ISR(void)

{

__bic_SR_register_on_exit(CPUOFF); // Clear CPUOFF bit from 0(SR) }

//----------------------------------------------

void LCD_PortInit()

{

P1DIR |= BIT1 + BIT2 + BIT3 + BIT4 + BIT5;

P2DIR |= BIT0 + BIT1 + BIT2 + BIT3;

NOKIA5110_VCC_ON;

NOKIA5110_GND_ON;

}

//----------------------------------------------

LCD.c

#include "LCD.h"

……

/*************************************

use SPI send byte

**************************************/

void LCD_sendbyte(INT8U dat,INT8U command)

{

INT8U i;

NOKIA5110_CE_L;

Delay_us(1);

if(command==0)

{

NOKIA5110_DC_L;//传送命令

Delay_us(1);

}

else

{

NOKIA5110_DC_H; //传送数据

Delay_us(1);

}

for(i=0;i<8;i++)

{

if(dat&0x80)

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

微弱信号检测 课程设计

LDO 低输出噪声的分析与优化设计 1 LDO 的典型结构 LDO 的典型结构如下图所示,虚线框内为LDO 芯片内部电路,它是一个闭环系统,由误差放大器(Error amplifier)、调整管(Pass device)、反馈电阻网络(Feedback resistor network)组成,其闭环增益是: OUT REF V Acloseloop V = (1) 此外,带隙基准电压源 ( Bandgap reference)为误差放大器提供参考电压。 LDO 的工作原理是:反馈电阻网络对输出电压进行分压后得到反馈电压,该电压输入到误差放大器的同相输入端。误差放大器放大参考电压和反馈电压之间的差值, 其输出直接驱动调整管,通过控制调整管的导通状态来得到稳定的输出电压。例如,当反馈电压小于基准电压时,误差放大器输出电压下降,控制调整管产生更大的电流使得输出电压上升。当误差放大器增益足够大时,输出电压可以表示为: R1(1+)R2 OUT REF V V = (2) 所谓基准电压源就是能提供高精度和高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,其原理是利用PN 结电压的负温度系数和不同电流密度下两个PN 结电压差的正温度系数电压相互补偿,而使输出电压达到很低的温度漂移。传统基准电压源是基 于晶体管或齐纳稳压管的原理而制成的,其αT =10-3/℃~10-4/℃,无法满足现代电子测量之 需要。20世纪70年代初,维德拉(Widlar)首先提出能带间隙基准电压源的概念,简称带隙(Bandgap)电压。所谓能带间隙是指硅半导体材料在0K 温度下的带隙电压,其数值约为 1.205V ,用U go 表示。带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。由于未采用工作在反向击穿状态下的稳压管,因而噪声电压极低。带隙基准电压源的简化电路如下图所示。

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

强磁场下微弱电压信号检测系统设计

第26卷第6期2013年6月 传感技术学报 CHINESE JOURNAL OF SENSORS AND ACTUATORS Vol.26 No.6Jun.2013 项目来源:贵州大学研究生创新基金项目(理工2012013)收稿日期:2013-03-19 修改日期:2013-05-06 The Design of Weak Signal Detection System in Strong Magnetic Field * LIU Wenjing ,WANG Minhui *,WANG Yalin ,HU Lanzi (Electrical Engineering College of Guizhou University ,Guiyang 550025,China ) Abstract :In order to measure the electric current of busbar ,a measuring device is designed to provide a reference for busbar configuration.This device is based on INA114which is an operational amplifier circuit with high precision and processor S3C2440of ARM.Weak voltage signal and temperature signal can be detected under the strong magnetic field by the detecting system.The characteristic feature and the adverse effects of the strong magnetic field are introduced ,and the characteristics of hardware ,software ,Anti?interference measures are also analyzed.We use the way of power spectral estimation to confirm the signal information of the frequency ,which is proved validity by LabVIEW simulation result.According to the signal frequency ,a low pass filter is designed in the hardware.Finally ,the test data proves that the accuracy of the system can be within 5%.In strong magnetic field the device can collect data once per second and track the change of the current in time. Key words :weak signal detection ;strong magnetic field ;busbar current ;detection circuit ;power spectral estimation ;anti?interference measure EEACC :6140 doi :10.3969/j.issn.1004-1699.2013.06.022强磁场下微弱信号检测系统设计 * 刘文静,王民慧*,汪亚霖,胡兰子 (贵州大学电气工程学院,贵阳550025) 摘 要:为获知母线电流的分布情况,给母线配置提供参考,设计了一个以高精度运放INA114和RAM 处理器S3C2440为基 础的检测装置,使其在强磁场环境下能完成微小电压和温度信号的测量三阐述了强磁场环境的特点和影响,重点分析了系统的硬件构成,软件设计和系统所采取的抗干扰措施三其中,硬件设计采用了功率谱估计的方法确定信号频段,通过Labview 的仿真实验验证了该方法的可行性,并以该频段信息为参考依据设计了低通滤波器三最后,通过试验数据证明了该系统的可靠性,其测量误差小于5%,且在强磁场环境下能实现每秒采集一次数据,实时跟踪电流变化的功能三 关键词:微弱信号检测;强磁场环境;母线电流;检测电路;功率谱估计;抗干扰措施 中图分类号:TP274 文献标识码:A 文章编号:1004-1699(2013)06-0865-06 众所周知,铝电解槽的电场二磁场和流场的稳定直接决定了电解槽的运行情况[1],而运行稳定的电解槽又有利于降低运行电压,达到节能减排的要求三但是,如果母线配置存在缺陷将会导致阴极电流的分布不均,从而无法降低运行电压三刘升[2]在对 300kA 系列电解槽的母线优化改造的研究中,主要以母线电流分布作为参考依据来发现缺陷,通过修正母线电阻来达到从新分配电流的目的三改造后,修正了母线电流的分布偏差,且吨铝省电超过200kWh ,达到了节能的效果三该研究表明,对母线电流 分布的在线监控,可以分析母线配置是否存在缺陷,从而指导电解槽的运行和维护三周萍[3]通过对不同进电方式的电解槽进行了研究,并得出结论:电解槽的进电方式直接影响了槽内熔体的运动三贺志辉[4]对不同进线点的母线配置和母线补偿技术进行了研究,研究表明:进线点数较多以及适当使用母线补偿技术可以有效的降低影响电解生产的垂直磁场强度三对于铝电解工业,电解槽内产生的磁场是直接影响磁流体运动的主要原因之一,磁场不稳定会引起磁流体的强烈扰动[5],从而威胁安全生产三

微弱信号检测技术概述

1213225 王聪 微弱信号检测技术概述 在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。在物理、化学、生物医学、遥感和材料学等领域有广泛应用。微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。微弱信号检测的不同方法 ( 1) 生物芯片扫描微弱信号检测方法 微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。 随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。 固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD捕获荧光信号并成像, 从而完成对生物芯片的扫读。CCD 生物芯片扫描仪即由此原理制成。这种方法制成的扫描仪由于其可移动, 部件少, 可大大减少仪器生产中的失误, 使仪器坚固耐用; 但缺点是分辨率及灵敏度较低。根据生物芯片所使用的标记物不同, 相应的信号检测方法有放射性同位素标记法、生物素标记法、荧光染料标记法等。其中放射性同位素由于会损害研究者身体, 所以这种方法基本已被淘汰; 生物素标记样品分子则多用在尼龙膜作载体的生物芯片上, 因为在尼龙膜上荧光标记信号的信噪比较低, 用生物素标记可提高杂交信号的信噪比。目前使用最多的是荧光标记物, 相应的检测方法也最多、最成熟, 主要有激光共聚焦显微镜、CCD 相机、激光扫描荧光显微镜及光纤传感器等。 ( 2) 锁相放大器微弱信号检测 常规的微弱信号检测方法根据信号本身的特点不同, 一般有三条途径: 一是降低传感器与放大器的固有噪声, 尽量提高其信噪比; 二是研制适合微弱检测原理并能满足特殊需要的器件( 如锁相放大器) ;三是利用微弱信号检测技术, 通过各种手段提取信号, 锁相放大器由于具有中心频率稳定, 通频带窄,品质因数高等优点得到广泛应用。常用的模拟锁相放大器虽然速度快, 但是参数稳定性和灵活性差, 而且在与微处理器通信时需要转换电路; 传统数字锁相放大器一般使用高速APDC 对信号进行高速采样, 然后使用比较复杂的算法进行锁相运算, 这对微处理器的速度要求很高。现在提出的新型锁相检测电路是模拟和数字处理方法的有机结合, 这种电路将待测信号和参考信号相乘的结果通过高精度型APDC 采样,

微弱信号检测装置(国科大电子电路大作业)要点

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 1.1 微弱信号检测技术概述 (2) 1.2 信号检测的方法及微弱信号的特点 (2) 1.2.1 常规小信号的检测方法 (2) 1.2.2 微弱信号的检测方法 (4) 1.2.3 微弱信号的特点 (4) 1.3 本文的主要工作 (5) 第二章微弱信号检测装置设计方案选择与论证 (6) 2.1 方案选择与论证 (6) 2.1.1 系统方案的确定 (6) 2.1.2移相网络设计 (9) 2.2总体方案论述 (9) 第三章基于锁相放大的微弱信号检测装置设计 (10) 3.1 锁相放大器原理 (10) 3.2 移相网络 (10) 3.3 相敏检波器原理分析 (11) 3.4 电路设计 (12) 3.4.1加法器 (12) 3.4.2纯电阻分压网络 (12) 3.4.3前级放大电路模块 (13) 3.4.4带通滤波器 (13) 3.4.5相敏检波器 (13) 第四章仿真分析与程序设计 (16) 4.1 仿真分析 (16) 4.1.1 输入信号波形(前置两级放大电路输入波形) (16) 4.1.2 经过前置放大电路和带通滤波器后输出波形 (16) 4.1.3 参考信号输入输出波形 (17) 4.1.4 LM311过零比较器输出波形 (18) 4.1.5 开关乘法器输出波形 (18) 4.1.6 低通滤波输出波形 (19) 4.2 程序设计 (20) 第五章实物展示与测试方案及结果 (21) 5.1 实物展示 (21) 5.2 测试方案与测试结果 (21) 5.2.1 测试仪器 (21) 5.2.2 测试方案 (21) 5.3测试结果及分析 (23) 5.4 总结 (23)

基于DSP的微弱信号检测采集系统设计

基于DSP的微弱信号检测采集系统设计 通常所用的数据采集系统,其采样对象都为大信号,即有用信号幅值大于噪声信号。但在一些特殊的场合,采集的信号很微弱,其幅值只有几个μV,并且淹没在大量的随机噪声中。此种情况下,一般的采集系统和测量方法无法检测该信号。本采集系统硬件电路针对微弱小信号,优化设计前端调理电路,利用测量放大器有效抑制共模信号(包括直流信号和交流信号),保证采集数据的精度要求。针对被背景噪声覆盖的微弱小信号特性,采用简单的时域信号的取样积累平均方法,有利于减少算法实现难度。 DSP芯片因其具有哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期等特点,使其适合复杂的数字信号处理算法。本系统采用TI公司的TMS320C542作为处理器,通过外部中断读取ADC数据,并实现取样累加平均算法。 1. 取样积累平均理论 微弱信号检测(Weak Signal Detection)是研究从微弱信号中提取有用信息的方法。通过分析噪声产生的原因和规律,利用被测信号的特点和相干性,检测被背景噪声覆盖的有用信号。常用的微弱信号检测方法有频域信号的相干检测、时域信号的积累平均、离散信号的计数技术、并行检测方法。其中时域信号积累平均是常用的一种小信号检测方法。 取样是一种频率压缩技术,将一个高重复频率信号通过逐点取样将随时间变化的模拟量,转变成对时间变化的离散量的集合,从而可以测量低频信号的幅值、相位或波形。时域信号的取样积累方法是在信号周期内将时间分成若干间隔,在这些时间间隔内对信号进行多次测量累加。时间间隔的大小取决于要求恢复信号的精度。某一点的取样值都是信号和噪声

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

基于锁定放大器的微弱信号检测系统设计

龙源期刊网 https://www.wendangku.net/doc/652925880.html, 基于锁定放大器的微弱信号检测系统设计 作者:蒋碧波杨振国杨越 来源:《科技经济市场》2017年第04期 摘要:文章设计了一种基于锁定放大器的微弱信号检测系统,该系统以相敏检波器和单片机为核心,结合加法器、纯电阻分压网络、微弱信号检测电路和显示电路组成。测试表明,该系统可以有效地用于噪声淹没的微弱信号检测。 关键词:微弱信号;强噪声;相敏检波 0.概述 微弱信号检测技术综合利用电子、信息学、计算机技术和物理学方法,研究导致噪声的原因和规律,以及被测信号的相关性,将被噪声淹没的微弱有用信号检测出来。相较于生物芯片扫描法中扫描时间与检测灵敏度难以兼顾的缺点和微弱振动信号的谐波小波频域提取法的局限性来说,以锁定放大器为核心的微弱信号检测系统更有潜力。 用调制器将直流或渐变信号进行交流放大,可以避免噪声的不利影响;利用相敏检测器检测频率和相位,利用窄带低通滤波器来抑制高频噪声,大大提高了稳定性,这些优点使得该项技术具有更加广阔的应用前景。 1.锁定放大器的原理 锁定放大器由信号通道、参考通道、相敏检波器以及输出电路组成。其基本思想是将与被测信号相同频率和相位关系的参考信号作为基准信号,使得只有与被测信号本身以及与参考信号同频和同相的噪声分量有响应,其他频率的噪声被抑制,从而能提取出有用信号。若增加辅助前置放大器,锁相放大器增益可达220dB,能检测极微弱交流输入信号。锁定放大器输出为直流电压信号,且正比于输入信号幅度及被测信号与参考信号相位差。与一般的带通放大器不同,锁相放大器具有极强的抗噪声能力。 系统的核心相敏检波器(PSD)的本质功能是对两个信号之间的相位进行检波,只有当同频同相信号输入时,为全波整流且输出最大。 2.系统总体设计 本系统总体框图如图1所示,系统由接收信号预处理通道、参考信号预处理通道、相关器及输出电路组成,其中核心部件相关器,它包括开关乘法器和RC低通滤波器;其中加法器由同相放大电路构成,实现噪声与待测信号相加,使得信号淹没在噪声环境中,然后经过衰减器衰减约100倍,模拟接收方收到的信号,并送入以相敏检波器为核心的微弱信号检测电路。参

微弱信号检测技术练习思考题DOC

《微弱信号检测技术》练习题 1、证明下列式子: (1)R xx(τ)=R xx(-τ) (2)∣ R xx(τ)∣≤R xx(0) (3)R xy(-τ)=R yx(τ) (4)| R xy(τ)|≤[R xx(0)R yy(0)] 2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α?1,τo是信号返回的时间。但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。 (1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ); (2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。 3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少? 4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。 5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5?10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。 6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。 8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。 9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。请设法进行噪声匹配。(有多种答案) 10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

微弱信号检测学习总结分析方案

微弱信号检测学习总结报告 1本课程的基本构成 本课程目录: 第1章微弱信号检测与随机噪声 第2章放大器的噪声源和噪声特性 第3章干扰噪声及其抑制 第4章锁定放大 第5章取样积分与数字式平均 第6章相关检测 第7章自适应噪声抵消 本课程分为七章: 第一章主要介绍随机噪声的统计特性,是后续各章的理论基础。 第二章主要介绍电路内部固有噪声源及其特性,对各种有源器件的噪声性能进行分析,并阐述低噪声放大器设计中需要考虑的几个问题。 第三章介绍干扰噪声的来源、特点及各种耦合途径,并详细介绍屏蔽和接地对于各种干扰噪声的抑制作用,以及其他一些常用的抗干扰措施和微弱信号检测电路设计原则。 第四~七章分别为锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消,分别介绍这几种方法的理论基础、设计实现以及一些应用实例。 因此本课程<微弱信号检测)基本构成:微弱信号检测与随机噪声,放大器的噪声源和噪声特性、干扰噪声及其抑制、锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消。 2本课程研究的基本问题 微弱信号是相对背景噪声而言的,其信号幅度的绝对值很小、信噪比很低<远小于1)的一类信号。如果采用一般的信号检测技术,那么会产生很大的测量误差,甚至完全不能检测。微弱信号检测的主要目的是提高信噪比。微弱信号检测是测量技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。微弱信号检测技术研究的重点是:如

何从强噪声中提取有用信号,探索采用新技术和新方法来提高检测系统输出信号的信噪比。 本课程<微弱信号检测)研究噪声的来源和统计特性,分析噪声产生的原因和规律,运用电子学和信号处理方法检测被噪声覆盖的微弱信号,并介绍几种行之有效的微弱信号检测方法和技术。 3学习本课程<微弱信号检测)后了解、掌握了哪些内容 通过对微弱信号这门课程的学习,我掌握的内容主要有以下几个方面: <1)了解了常规小信号检测的手段和方法,即滤波、调制放大与解调、零位法、反馈补偿法。 <2)掌握了随机噪声及其统计特征。 ①随机信号的概率密度函数 对于连续取值的随机噪声,概率密度函数(PDF>P(x>表示的是噪声电压x

第四章 微弱信号检测技术

第四章 微弱信号检测技术 4.1 被动信号检测 被动检测是一种常用的检测系统,它已广泛应用于水下引信信号检测及 其它工业领域。在被动信号检测中,常用的时域检测方法有以下几种:①宽带检测、②相干检测、③频率随机分布正弦信号的检测技术、④时域同步平均检测与波形恢复技术、⑤相关技术等等;而在频域的检测方法主要是基于FFT 算法的谱分析技术。 4.1.1宽带检测 在有些应用场合,干扰噪声和输入信号都是一有限长的限带零均值的高 斯分布随机过程,在此情况下一般使用宽带检测技术。 4.1.1.1最佳宽带检测器 最佳宽带检测器的结构框图如下: 图4.1 在高斯噪声中检测高斯信号的最佳系统结构 图 4.1中)(ωS 是信号的功率谱密度,()ωN 是干扰噪声的功率谱密度。而 2/12/12/1)]()()[()()(ωωωωωS N N S H +=表示预选滤波的频率响应。 当信号和噪声都是限带高斯分布白噪声时,信号和噪声的差别是信号和 噪声的功率级不同,)(ωH 为常值,最佳检测器是一个平均功率检测器。从理论上说无论噪声多强,信号多弱,只要他们是平稳的,且他们的方差可准确求出来,那么总可通过比较N 和N+S,发现信号。如果过程)(t r 是各态遍历的,那么方差可通过下式计算出来。 ?-≈=t T t r dt t r T t r E )(1)]([222 σ (4.1.1) 不难看出,由于截取的样本时间是滑动的,从而图 4.1可简化为平方积分系统。由于截断T 不是无限长的,所以输出)(t Z 并不等于2r σ,而是随t 在2r σ的均

值附近起伏。对于限带白谱:起伏的存在将掩盖信号加噪声(H 1)与噪声(H 0) 的差别。所以系统的信噪比计算公式如下: )()]()([)/(202 012Z Z E Z E N S σ-= (4.1.2) 在各态遍历条件下,T 越长系统的最佳性越好。 当信号和噪声的功率谱不是白谱时,可利用的信息不仅有能量差异,而且还有谱形状的差异。此时的预选滤波器的传输函数)(ωH 的幅度特性如下: 2/12/12/1)]()()[()()(ωωωωωS N N S H += (4.1.3) 在小输入信噪比情况下: ) ()()(1)()()(2/12/12/12/1ωωωωωωN S N N S H =≈ (4.1.4) 式(4.1.4)所描述的滤波器称为厄卡特滤波器。若假设信号和噪声有相同的谱形状,则: ) (1)(2/1ωωN H = (4.1.5) 上式所描述的是一个白化滤波器,信号和噪声通过后一律变成白噪声。非白谱小信号情况下,其)(ωH 相当于一个白化滤波器和一个匹配滤波器的级联。当信号与噪声有相同形状功率谱时,匹配网络的频率传输函数等于常数,厄卡特滤波器退化为一个白化滤波器,此时虽然不能提高系统输出端的信噪比,但却通过改善噪声谱的形状(白化)提高了系统的等效噪声谱宽。 4.1.1.2实用宽带检测器 在实际应用中,由于信号和噪声的功率谱很难知道,因此预选滤波器一 般没有白化和对信号进行匹配的能力,因此它对系统的输出信噪比影响很小。在实用的宽带检测系统中,主要研究的是宽带能量检测器,对这种接收机一般以系统的输出信噪比的大小或系统处理增益作为衡量系统性能的指标。宽带能量检测器在判决检测前都相应有一个等效积分器,为使讨论具有一般性,可将积分器理解为一个低通滤波器,积分器的传输函数记为H(w),输入端Y 处与输出端Z 处的信噪比可按如下公式计算: )()]()([)/(20201Y Y E Y E N S Y σ-= (4.1.6) ) ()]()([)/(20201Z Z E Z E N S Z σ-= (4.1.7) 它们和系统参数的关系如下:

微弱信号检测

四川省大学生电子设计竞赛报告题目:微弱信号检测装置

微弱信号检测装置 【摘要】:为提取被噪声淹没的微弱信号,在分析了锁相放大器原理的基础上,采用基于AD630设计了一个双相位锁相放大器。实现了正弦信号的检测和显示,由于时间紧迫,AD采样显示的数值误差较大。 【关键词】:锁相放大器正交信号 AD630 MAX7490 一、方案设计与论证 图1 微弱信号检测装置示意图 1.1 微弱信号检测电路设计与方案 微弱信号检测电路要求采用模拟方法来实现。常用的微弱信号检测方法有:匹配滤波、锁相放大、取样积分等。 方案1:匹配滤波法。使用窄带滤波器,滤掉带宽噪声只让窄带信号通过;此方案电路简单,但是,由于一般滤波器的中心频率不稳定,不能满足更高的滤除噪声的要求。 方案2:单通道锁相放大法。用AD630平衡调制解调芯片、移相器及低通滤波器构成锁相放大电路,基于信号的互相关原理,移相器输出的信号必须与被测信号同频同相,由于被测信号相位未知,需移相器逐步移相,实现较为复杂。 方案3:双通道锁相放大法。用两个AD630平衡调制解调芯片、两个低通滤波器做成双通道锁相放大器,就是被测信号与两个相互正交的信号分别相乘经低通滤波器再送入AD进行采样,这样不需考虑被测信号的相位。两路正交信号由74LS74构成的分频电路产生或由单片机产生。由于只需要直流分量,低通滤波器的截止频率可以低到几百赫兹。 综合考虑,我们采用方案3。 1.2 加法电路的设计与方案 加法电路要求正弦信号与噪声信号相加,并测量噪声的均方根值;因此加法电路的内部噪声越小越好。

方案1:普通加法器。用低噪声放大器OPA2227做一个普通的加法器,但此电路接有电阻电容,会产生附加噪声。 方案2:高性能加法器。用低噪声仪表放大器INA2134做一个高性能的加法器,有独立的共模抑制能力、增益误差、噪声和失真。 方案2虽然比方案1复杂,但引入的附加噪声比方案1小,因此选用方案2。 1.3 带通滤波器设计与方案 题目中给了一个带宽很宽的强噪声,要想进可能地滤掉噪声,需一个窄带带通滤波器。 方案1:采用OPA2227设计中心频率指定的有源带通滤波器。 方案2:采用OPA2227分别设计低通滤波器和高通滤波器,组成一个带通滤波器。 方案3:用MAX7490做程控带通滤波器,参考官方电路设计。 方案1设计的带通滤波器不满足中心频率在500Hz-2000Hz内变化的设计要求;方案2设计的带通滤波器带宽太宽,引入过多噪声容易造成太大的测量误差;因此采用方案3。 1.4 整体系统电路设计 整体系统框图如下: 图2 整体系统框图 二、理论分析与参数计算 2.1锁相放大器电路中的相关器原理 锁相放大电路中最重要的部分是相关器(PSD)部分,它是锁相放大电路的核心,起着至关重要的作用。相关器是相关函数的物理模型,是一种完成被测信号和参考信号互相关函数运算的电子线路,相关器又叫相敏检波器。

2016微弱信号检测技术-补充习题

练习: 1、一个电阻R=1kΩ,用带宽为500kHz,增益为100dB的放大器进行测量时,输出噪声电压为多少? 2、若系统的噪声带宽为100kHz,电阻R=1.0kΩ,问室温T=300K时,产生的热噪声电压是多少? 3、计算某电阻R1两端的热噪声电压;当并联另一个电阻R2时,计算两个电阻并联时的热噪声电压均方根值。其中电阻R1=R2=1.0 kΩ,在温度为290K和10MHz频带内工作。 4、计算RC电路并联输出的热噪声电压。其中,电阻阻值1M ?,电容5pF,在室温30℃环境下工作。 5、有一个噪声指数为NI=-20dB的金属膜电阻,在5V直流电压作用下,试求10Hz~1KHz的过剩噪声有效值及过剩噪声功率谱密度。 6、碳膜电阻的阻值为10kΩ,噪声指数NI=-20dB,用在频率范围为10Hz~10KHz的电路中,电阻两端的直流压降为10V,求此电阻产生的总噪声电压。 7、级联噪声系数的计算P72 8、噪声系数和噪声温度的计算P73 9、典型的低噪声精密运算放大器OP27的额定值eN=3nV/√Hz,fce=2.7Hz,iN=0.4pA/ √Hz,fci=140Hz。试估计噪声电压En(0.1~100Hz)。 10、分别从物理角度和数学角度来解释锁定放大器中相关器是如何抑制噪声的? 11、已知一个混有强随机噪声的弱正弦信号,试说明如何采用自相关检测的方法对该弱信号进行检测。 12、低噪声放大器设计中有哪几个重要环节?关键是哪一级?并说明如何使放大器噪声特性最佳。 13、在微弱信号检测中,如何正确处理系统的接地干扰? 14、锁定放大器有哪几部分组成,它们的功能和特点如何? 15、双极型晶体管的噪声主要有哪些?并说明每一种噪声的特点。 16、场效应晶体管的噪声主要有哪些?并说明每一种噪声的特点。 17、当与系统前置放大器连接的传感器不能利用串并联电阻来满足最佳源电阻匹配时,如何使用噪声匹配方法来改变等效输入电阻,达到最佳源电阻匹配? 18、锁定放大器中相关器的传输性能及特点? 19、锁定放大器的动态范围包括哪些?如何进行动态协调? 20、锁定放大器的等效噪声带宽由哪些因素决定?

微弱信号检测装置

微弱信号检测装置(B题) 2014年520电子设计大赛 参赛选手:朱志炜,周杨灿,朱杏伟 指导老师:姜乃卓 摘要:本微弱信号检测装置信号通道由OPA228为前置放大器,AD707和OP27为主放大器,将微弱小信号放大,然后经过后级的带通滤波器以及GIC滤波器对放大后信号进行滤波,进一步减小噪声的影响;参考通道以LM353为方波发生器,将正弦波化为同频率相位可调的方波,接以CD4046锁相环和D触发器,输出0-270°四个不同相位的方波;信号通道和参考通道的信号会在相关器器中相乘,并把得到的半波积分为直流电平,最终通过ICL7107接数码管显示电平值,并可以调为显示微小信号的值。测试数据表明本设计具有非常高的准确度和极其强大的噪声抑制能力,工作性能稳定,成本低廉,控制方便,是一个优越而实用的设计方案。 关键字:微弱信号;相关检测;噪声抑制;锁相放大器 目录 一、设计目标 1、基本要求 2、发挥部分 二、系统方案 方案一 方案二 三、系统总体框图 四、理论分析与计算 1、前置放大器的噪声分析 2、信号通道的增益计算 3、相关器的理论分析及计算 4、锁相环路的分析计算 5、移相电路的分析计算

五、电路设计 1、信号通道设计 2、参考通道设计 3、相关器设计 4、显示电路设计 六、测试情况 1、测试仪器 2、衰减电路测试数据 3、放大器测试数据 4、带通滤波器及GIC滤波器测试结果 七、总结 八、参考文献 一、设计目标 设计一个微弱信号的检测装置 1、基本要求:

(1)设计和制作两个电压衰减器,要求衰减量分别为20dB和40dB。要求:衰减器的输入阻抗为50,衰减器的输出阻抗为 100。衰减器的输入信号频率范围为100Hz-10KHz。(2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。 (3)检测的幅度有效值显示在数码管或者液晶显示屏上,要求显示精度达到小数点后面1位,显示时间不超过1分钟。 (4)设计一个白噪声和衰减后的输入正弦信号相叠加的加法电路,输入信号叠加白噪声后的信噪比在-20dB-0dB范围内连续可调。

2012TI电子设计大赛——微弱信号检测装置(A题).doc要点

微弱信号检测装置 四川理工学院刘鹏飞、梁天德、曾学明

摘要: 本设计以TI的Launch Pad为核心板,采用锁相放大技术设计并制作了一套微弱信号检测装置,用以检测在强噪声背景下已知频率微弱正弦波信号的幅度值,并在液晶屏上数字显示出所测信号相应的幅度值。实验结果显示其抗干扰能力强,测量精度高。 关键词:强噪声;微弱信号;锁相放大;Launch Pad

Abstract: This design is based on the Launch Pad of TI core board, using a lock-in amplifier technique designed and produced a weak signal detection device, to measure the known frequency sine wave signal amplitude values of the weak in the high noise background, and shows the measured signal amplitude of the corresponding value in the liquid crystal screen. Test results showed that it has high accuracy and strong anti-jamming capability. Keywords: weak signal detection; lock-in-amplifier; Launch Pad

相关文档
相关文档 最新文档