文档库 最新最全的文档下载
当前位置:文档库 › 数学实验四(概率论)

数学实验四(概率论)

数学实验四(概率论)
数学实验四(概率论)

中北大学概率论实验报告四

实验四方差分析和回归分析 四、实验结果 1、用5种不同的施肥方案分别得到某种农作物的收获量(kg)如右: 在显著性水平= 对农作物的收获量是否有显著影响. >> X=[67 67 55 42 98 96 91 66 60 69 50 35 79 64 81 70 90 70 79 88]; group=[ones(1,4),2*ones(1,4),3*ones(1,4),4*ones(1,4),5*ones(1,4)]; [p,table,stats] = anova1(X,group,'on') p = table = 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F' 'Groups' [+03] [ 4] [] [] [] 'Error' [+03] [15] [] [] [] 'Total' [+03] [19] [] [] []

stats = gnames: {5x1 cell} n: [4 4 4 4 4] source: 'anova1' means: [ ] df: 15 s: 因为p=<,所以施肥方案对农作物的收获量有显著影响。且由箱型图可知:第2种施肥方案对对农作物的收获量的影响最好,即产量最高。 2、某粮食加工产试验三种储藏方法对粮食含水率有无显著影响,现取一批粮食分成若干份,分别用三种不同的方法储藏,过段时间后测得的含水率如右表:

在显著性水平=α下,i x 检验储藏方法对含水率有无显著的影响. >> X=[ 10 ]; group=[ones(1,5),2*ones(1,5),3*ones(1,5)]; [p,table,stats] = anova1(X,group,'on') p = table = 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F' 'Groups' [] [ 2] [] [] [] 'Error' [ ] [12] [] [] [] 'Total' [] [14] [] [] [] stats = gnames: {3x1 cell} n: [5 5 5] source: 'anova1'

工程数学(线性代数与概率统计)答案(1章)

工程数学(线性代数与概率统计) 习题一 一、 1. 5)1(1222 112=-?-?=-; 2. 1)1)(1(1112 32 22 2 --=-++-=++-x x x x x x x x x x ; 3.b a ab b a b a 2 2 2 2-= 4.536158273255984131 11=---++= 5.比例)第一行与第三行对应成(,00000 =d c b a 6.1866627811 3 2 2133 21 =---++=。 二.求逆序数 1. 55 1 2 4 3 1 2 2 =↓↓↓↓↓τ即 2. 52 1 3 4 2 3 =↓↓↓↓τ即 3. 2 ) 1(12)2()1(1 2 ) 1(0 1 ) 2() 1(-= +++-+-=-↓↓-↓ -↓ n n n n n n n n τ即 4. 2 ) 1(* 2]12)2()1[()]1(21[2 4 ) 22() 2() 12(3 1 1 2 1 1 1 -=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n τ 三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值

1. 071 1 8517002021 45900 1577 1 1 2021502 021******** 1 1 025102021421443412321=++------r r r r r r r r 2.31 010000101111301 1 1 101111011111301 1 3 1013110311130 1 1 1 1011110111104 321-=---? =? =+++c c c c 3.abcdef adfbce ef cf bf de cd bd ae ac ab 41 11 111 1 11 =---=--- 4. d c d c b a d c b a 1 10011 1 110 11 110011001--------按第一行展开 ad cd ab d c d a d c ab +++=-+ ---=)1)(1(1 10 111 1 5. b a c c b c a b a a c b a c c b c a b a a b b a c c c b c a b b a a a b a c c c b c a b b a a c b a --------------=------20 202220 2022222222222222 其中

概率统计-习地的题目及答案详解(1)

习题一 1.1 写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合: (1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数); 设事件A 表示:平均得分在80分以上。 (2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和; 设事件A 表示:第一颗掷得5点; 设事件B 表示:三颗骰子点数之和不超过8点。 (3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A 表示:取出的三个球中最小的号码为1。 (4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数; 设事件A 表示:至多只要投50次。 (5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。 1.2 在分别标有号码1~8的八张卡片中任抽一张。 (1)写出该随机试验的样本点和样本空间; (2)设事件A 为“抽得一张标号不大于4的卡片”,事件B 为“抽得一张标号为偶数的 卡片”,事件C 为“抽得一张标号能被3整除的卡片”。 试将下列事件表示为样本点的集合,并说明分别表示什么事件? (a )AB ; (b) B A +; (c) B ; (d) B A -; (e) BC ; (f) C B + 。 1.3 设A 、B 、C 是样本空间的事件,把下列事件用A 、B 、C 表示出来: (1)A 发生; (2)A 不发生,但B 、C 至少有一个发生; (3)三个事件恰有一个发生; (4)三个事件中至少有两个发生; (5)三个事件都不发生; (6)三个事件最多有一个发生; (7)三个事件不都发生。 1.4 设}10,,3,2,1{ =Ω,}5,3,2{=A ,}7,5,3{=B ,}7,4,3,1{=C ,求下列事件: (1)B A ; (2))(BC A 。 1.5 设A 、B 是随机事件,试证:B A AB A B B A +=-+-)()(。 1.6 在11张卡片上分别写上Probability 这11个字母,从中任意抽取7张,求其排列结果为ability 的概率。 1.7 电话号码由6位数字组成,每个数字可以是0,1,2,…,9中的任一个数字(但第一位不能为0),求电话号码是由完全不相同的数字组成的概率。 1.8 把10本不同的书任意在书架上放成一排,求其中指定的3本书恰好放在一起的概率。

《数学实验》试题答案

北京交通大学海滨学院考试试题 课程名称:数学实验2010-2011第一学期出题教师:数学组适用专业: 09机械, 物流, 土木, 自动化 班级:学号:姓名: 选做题目序号: 1.一对刚出生的幼兔经过一个月可以长成成兔, 成兔再经过一个月后可以 繁殖出一对幼兔. 如果不计算兔子的死亡数, 请用Matlab程序给出在未来24个月中每个月的兔子对数。 解: 由题意每月的成兔与幼兔的数量如下表所示: 1 2 3 4 5 6 ··· 成兔0 1 1 2 3 5··· 幼兔 1 0 1 1 2 3··· 运用Matlab程序: x=zeros(1,24); x(1)=1;x(2)=1; for i=2:24 x(i+1)=x(i)+x(i-1); end x 结果为x = 1 1 2 3 5 8 13 21 3 4 5 5 89 144 233 377 610 987 1597 2584 4181 6765 1094 6 7711 2865 7 46368 2.定积分的过程可以分为分割、求和、取极限三部分, 以1 x e dx 为例, 利用

已学过的Matlab 命令, 通过作图演示计算积分的过程, 并与使用命令int() 直接积分的结果进行比较. 解:根据求积分的过程,我们先对区间[0,1]进行n 等分, 然后针对函数x e 取和,取和的形式为10 1 i n x i e e dx n ξ=≈ ∑ ? ,其中1[ ,]i i i n n ξ-?。这里取i ξ为区间的右端点,则当10n =时,1 x e dx ?可用10 101 1.805610 i i e ==∑ 来近似计算, 当10n =0时,100 100 1 01 =1.7269100 i x i e e dx =≈ ∑?,当10n =000时,10000 10000 1 1 =1.718410000 i x i e e dx =≈ ∑ ?. 示意图如下图,Matlab 命令如下: x=linspace (0,1,21); y=exp(x); y1=y(1:20); s1=sum(y1)/20 y2=y(2:21); s2=sum(y2)/20 plot(x,y); hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b') end syms k;symsum(exp(k/10)/10,k,1,10);%n=10 symsum(exp(k/100)/100,k,1,100);%n=100 symsum(exp(k/10000)/10000,k,1,10000);%n=10000

中北大学概率论实验报告四

实验四 方差分析和回归分析 四、实验结果 1、用5种不同的施肥方案分别得到某种农作物的收获量(kg )如右: 在显著性水平=α下,检验施肥方案对农作物的收获量是否有显著影 响. >> X=[67 67 55 42 98 96 91 66 60 69 50 35 79 64 81 70 90 70 79 88]; group=[ones(1,4),2*ones(1,4),3*ones(1,4),4*ones(1,4),5*ones(1,4)]; [p,table,stats] = anova1(X,group,'on') p = table = 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F' 'Groups' [+03] [ 4] [] [] [] 'Error' [+03] [15] [] [] [] 'Total' [+03] [19] [] [] [] 5 9 778

stats = gnames: {5x1 cell} n: [4 4 4 4 4] source: 'anova1' means: [ ] df: 15 s: 因为p=<,所以施肥方案对农作物的收获量有显著影响。且由箱型图可知:第2种施肥方案对对农作物的收获量的影响最好,即产量最高。 2、某粮食加工产试验三种储藏方法对粮食含水率有无显著影响,现取一批粮食分成若干份,分别用三种不同的方法储藏,过段时间后测得的含水率如右表:

在显著性水平=α下,i x 检验储藏方法对含水率有无显著的影 响. >> X=[ 10 ]; group=[ones(1,5),2*ones(1,5),3*ones(1,5)]; [p,table,stats] = anova1(X,group,'on') p = table = 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F' 'Groups' [] [ 2] [] [] [] 'Error' [ ] [12] [] [] [] 'Total' [] [14] [] [] [] stats = gnames: {3x1 cell} n: [5 5 5]

数学实验答案-1

1.(1) [1 2 3 4;0 2 -1 1;1 -1 2 5;]+(1/2).*([2 1 4 10;0 -1 2 0;0 2 3 -2]) 2. A=[3 0 1;-1 2 1;3 4 2],B=[1 0 2;-1 1 1;2 1 1] X=(B+2*A)/2 3. A=[-4 -2 0 2 4;-3 -1 1 3 5] abs(A)>3 % 4. A=[-2 3 2 4;1 -2 3 2;3 2 3 4;0 4 -2 5] det(A),eig(A),rank(A),inv(A) 求计算机高手用matlab解决。 >> A=[-2,3,2,4;1,-2,3,2;3,2,3,4;0,4,-2,5] 求|A| >> abs(A) ans = ( 2 3 2 4 1 2 3 2 3 2 3 4 0 4 2 5 求r(A) >> rank(A) ans =

4 求A-1 《 >> A-1 ans = -3 2 1 3 0 -3 2 1 2 1 2 3 -1 3 -3 4 求特征值、特征向量 >> [V,D]=eig(A) %返回矩阵A的特征值矩阵D 与特征向量矩阵V , V = - + + - - + - + - + - + D = { + 0 0 0 0 - 0 0 0 0 + 0 0 0 0 - 将A的第2行与第3列联成一行赋给b >> b=[A(2,:),A(:,3)'] b = 《 1 - 2 3 2 2 3 3 -2

1. a=round(unifrnd(1,100)) i=7; while i>=0 i=i-1; b=input('请输入一个介于0到100的数字:'); if b==a ¥ disp('You won!'); break; else if b>a disp('High'); else if b

概率统计实验报告

概率统计实验报告 班级16030 学号16030 姓名 2018 年1 月3 日

1、 问题概述和分析 (1) 实验内容说明: 题目12、(综合性实验)分析验证中心极限定理的基本结论: “大量独立同分布随机变量的和的分布近似服从正态分布”。 (2) 本门课程与实验的相关内容 大数定理及中心极限定理; 二项分布。 (3) 实验目的 分析验证中心极限定理的基本结论。 2、实验设计总体思路 2.1、引论 在很多实际问题中,我们会常遇到这样的随机变量,它是由大量的相互独立的随机 因素的综合影响而形成的,而其中每一个个别因素在总的影响中所起的作用是微小的,这种随机变量往往近似的服从正态分布。 2.2、 实验主题部分 2.2.1、实验设计思路 1、 理论分析 设随机变量X1,X2,......Xn ,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ2(k=1,2....),则对任意x ,分布函数 满足 该定理说明,当n 很大时,随机变量 近似地服从标准正 态分布N(0,1)。因此,当n 很大时, 近似地服从正 态分布N(n μ,n σ2). 2、实现方法(写清具体实施步骤及其依据) (1) 产生服从二项分布),10(p b 的n 个随机数, 取2.0=p , 50=n , 计算n 个随 机数之和y 以及 ) 1(1010p np np y --; 依据:n 足够大,且该二项分布具有有限的数学期望和方差。 (2) 将(1)重复1000=m 组, 并用这m 组 ) 1(1010p np np y --的数据作频率直方图进 行观察. 依据:通过大量数据验证随机变量的分布,且符合极限中心定理。

matlab数学实验复习题(有标准答案)

复习题 1、写出3 2、i nv(A)表示A的逆矩阵; 3、在命令窗口健入 clc,4、在命令窗口健入clea 5、在命令窗口健入6、x=-1:0.2:17、det(A)表示计算A的行列式的值;8、三种插值方法:拉格朗日多项式插值,分段线性插值,三次样条插值。 9、若A=123456789?? ????????,则fliplr (A)=321654987?????????? A-3=210123456--??????????A .^2=149162536496481?????????? tril(A)=100450789?????????? tri u(A,-1)=123456089??????????diag(A )=100050009?????????? A(:,2),=2 58A(3,:)=369 10、nor mcd f(1,1,2)=0.5%正态分布mu=1,s igm a=2,x =1处的概率 e45(@f,[a,b ],x0),中参数的涵义是@fun 是求解方程的函数M 文 件,[a,b ]是输入向量即自变量的范围a 为初值,x0为函数的初值,t 为输出指定的[a,b],x 为函数值 15、写出下列命令的功能:te xt (1,2,‘y=s in(x)’

hold on 16fun ction 开头; 17 ,4) 3,4) 21、设x 是一向量,则)的功能是作出将X十等分的直方图 22、interp 1([1,2,3],[3,4,5],2.5) Ans=4.5 23、建立一阶微分方程组? ??+='-='y x t y y x t x 34)(3)(2 的函数M 文件。(做不出来) 二、写出运行结果: 1、>>ey e(3,4)=1000 01000010 2、>>s ize([1,2,3])=1;3 3、设b=ro und (unifrnd(-5,5,1,4)),则=3 5 2 -5 >>[x,m]=min(b);x =-5;m=4 ,[x,n ]=sort(b ) -5 2 3 5 4 3 1 2 mea n(b)=1.25,m edian(b)=2.5,range(b)=10 4、向量b如上题,则 >>an y(b),all(b<2),all(b<6) Ans =1 0 1 5、>>[5 6;7 8]>[7 8;5 6]=00 11 6、若1234B ??=???? ,则 7、>>diag(d iag (B ))=10 04 8、>>[4:-2:1].*[-1,6]=-4 12 9、>>acos(0.5),a tan(1) ans = 1.6598 ans=

西安交大概率论上机实验报告 西安交通大学概率论实验报告

概率论与数理统计上机实验报告

一、实验内容 使用MATLAB 软件进行验证性实验,掌握用MATLAB 实现概率统计中的常见计算。本次实验包括了对二维随机变量,各种分布函数及其图像以及频率直方图的考察。 1、列出常见分布的概率密度及分布函数的命令,并操作。 2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X , (1) 试计算45=X 的概率和45≤X 的概率; (2) 绘制分布函数图形和概率分布律图形。 3、用Matlab 软件生成服从二项分布的随机数,并验证泊松定理。 4、设2 2221),(y x e y x f +-=π是一个二维随机变量的联合概率密度函数,画出这 一函数的联合概率密度图像。 5、来自某个总体的样本观察值如下,计算样本的样本均值、样本方差、画出频率直方图。 A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 22 20 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18] 6. 利用Matlab 软件模拟高尔顿板钉试验。 7. 自己选择一个与以上问题不同类型的概率有关的建模题目,并解决。 二、实验目的 1.要求能够利用MATLAB 进行统计量的运算。 2.要求能够使用常见分布函数及其概率密度的命令语句。 3.要求能够利用MATLAB 计算某随机变量的概率。 4.要求能够利用MATLAB 绘制频率直方分布图。

工程数学-概率统计简明教程,课后重点题目整理

第二章 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率。 一个口袋中有5个红球和2个白球,从中任取一球,看过颜色后放回,再从中任取一球。设每次取球时口袋中各个球被取到的可能性相同,求: (1)第一次、第二次都取到红球的概率; (2)第一次取到红球、第二次取到白球的概率; (3)两次取得的球为红、白各一的概率; (4)第二次取到红球的概率。

一个盒子里有6个晶体管,2只不合格,现在不放回抽样,接连取2次,每次随机取一个,求下列事件概率。 (1)2只都是合格品; (2)1只是合格,1只不合格。 (3)至少有1只是合格。 2个骰子,求下列事件的概率: (1)点数之和为7; (2)点数之和不超过5; (3)点数之和为偶数。 设一质点一定落在xOy平面内有x轴、y轴及直线x+y=1所围成的三角形内,而落在这三角形内各点处的可能性相同,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x=1/3的左边的概率。

设A.B是两个事件,一直P(A)=0.5 ,P (B)=0.7 P(A∪B)=0.8,试求P(A-B)与P(B-A).

第三章 设事件A的概率P(A)=0.5,随机事件B的概率P(B)=0.6及条件概率 P(A|B)=0.7,求P(AB)及P(AB) 一批零件总共100个,次品率10%,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得正品的概率。 设某一工厂有ABC三个车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%,35%,40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%,4%,2%,如果从全厂总产品中抽取一件产品。 (1)求抽取的产品是次品的概率; (2)已知得到的是次品,求它依次是车间A、B、C生产的概率

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3实验二数据的统计描述和分析 p4-8实验三参数估计 p9-11实验四假设检验 p12-14实验五方差分析 p15-17实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf,-1,2) 结果为: 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf,1,3)-unifcdf(-2,1,3) 结果为:

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv,1,2) 结果为: 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],,2,3) A = 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

实验二极限与连续数学实验课件习题答案

天水师范学院数学与统计学院 实验报告 实验项目名称极限与连续 所属课程名称数学实验 实验类型上机操作 实验日期 2013-3-22 班级 10数应2班 学号 291010836 姓名吴保石 成绩

【实验过程】(实验步骤、记录、数据、分析) 1.数列极限的概念 通过计算与作图,加深对极限概念的理解. 例2.1 考虑极限3321 lim 51 x n n →∞++ Print[n ," ",Ai ," ",0.4-Ai]; For[i=1,i 15,i++,Aii=N[(2i^3+1)/(5i^3+1),10]; Bii=0.4-Aii ;Print[i ," ",Aii ," ",Bii]] 输出为数表 输入 fn=Table[(2n^3+1)/(5n^3+1),{n ,15}]; ListPlot[fn ,PlotStyle {PointSize[0.02]}] 观察所得散点图,表示数列的点逐渐接近直线y=0 .4 2.递归数列 例2.2 设n n x x x +==+2,211.从初值21=x 出发,可以将数列一项项地计算出来,这样定义的数列称为 数列,输入 f[1]=N[Sqrt[2],20]; f[n_]:=N[Sqrt[2+f[n-1]],20]; f[9] 则已经定义了该数列,输入 fn=Table[f[n],{n ,20}] 得到这个数列的前20项的近似值.再输入 ListPlot[fn ,PlotStyle {PointSize[0.02]}] 得散点图,观察此图,表示数列的点越来越接近直线2y =

例2.3 考虑函数arctan y x =,输入 Plot[ArcTan[x],{x ,-50,50}] 观察函数值的变化趋势.分别输入 Limit[ArcTan[x],x Infinity ,Direction +1] Limit[ArcTan[x],x Infinity ,Direction -1] 输出分别为2 π 和2π-,分别输入 Limit[sign[x],x 0,Direction +1] Limit[Sign[x],x 0,Direction -1] 输出分别为-1和1 4.两个重要极限 例2.4 考虑第一个重要极限x x x sin lim 0→ ,输入 Plot[Sin[x]/x ,{x ,-Pi ,Pi}] 观察函数值的变化趋势.输入 Limit[Sin[x]/x ,x 0] 输出为1,结论与图形一致. 例2.5 考虑第二个重要极限1 lim(1)x x x →∞+,输入 Limit[(1+1/n)^n ,n Infinity] 输出为e .再输入 Plot[(1+1/n)^n ,{n ,1,100}] 观察函数的单调性 5.无穷大 例2.6 考虑无穷大,分别输人 Plot[(1+2x)/(1-x),{x ,-3,4}] Plot[x^3-x ,{x ,-20,20}] 观察函数值的变化趋势.输入 Limit[(1+2x)/(1-x),x 1] 输出为-∞ 例2.7 考虑单侧无穷大,分别输人 Plot[E^(1/x),{x ,-20,20},PlotRange {-1,4}] Limit[E^(1/x),x 0,Direction +1] Limit[E^(1/x),x 0,Direction -1] 输出为图2.8和左极限0,右极限∞.再输入 Limit[E^(1/x),x 0] 观察函数值的变化趋势. 例2.8 输入 Plot[x+4*Sin[x],{x ,0,20Pi}] 观察函数值的变化趋势. 输出为图2 .9.观察函数值的变化趋势,当x →∞时,这个函数是无穷大,但是,它并不是单调增加.于是,无并不要求函数单调 例2.9 输入

概率论上机实验报告资料

西安交通大学 概率论实验报告 计算机36班 南夷非 2130505135 2014年12月13日

一、实验目的 1.熟练掌握MATLAB 软件关于概率分布作图的基本操作,会进行常用的概率密度函数和分布函数的作图,绘出分布律图形。 2.利用MATLAB 软件解决一些概率论问题在实际生活中的应用。 二、实验内容 1.二项分布的泊松分布与正态分布的逼近 设 X ~ B(n ,p) ,其中np=2 1) 对n=101,…,105,讨论用泊松分布逼近二项分布的误差。 画处逼近的图形 2) 对n=101,…,105, 计算 )505(≤

纸的需求量X的分布律为 试确定报纸的最佳购进量n。(要求使用计算机模拟) 4.蒲丰投针实验 取一张白纸,在上面画出多条间距为d的平行直线,取一长度为r(r

数学实验四(概率论)_6

数学实验四(概率论) 一.用MATLAB 计算随机变量的分布 1.用MA TLAB 计算二项分布 当随变量(),X B n p 时,在MATLAB 中用命令函数 (,,)Px binopdf X n p = 计算某事件发生的概率为p 的n 重贝努利试验中,该事件发生的次数为X 的概率。 例1 在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。 解 在MATLAB 中,输入 >>clear >> Px=binopdf(2,20,0.2) Px = 0.1369 即所求概率为0.1369。 2.用MA TLAB 计算泊松分布 当随变量()X P λ 时,在MATLAB 中用命令函数 (,)P poisspdf x lambda = 计算服从参数为lambda 的泊松分布的随机变量取值x 的概率。用命令函数 (,)P poisscdf x lambda = 计算服从参数为lambda 的泊松分布的随机变量在[]0,x 取值的概率。 例2 用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求: (1)保险公司的此项寿险亏损的概率; (2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率. 利用泊松分布计算. 25000.0025np λ==?= (1) P(保险公司亏本)= ()()15 250025000(3020)1(15)10.0020.998k k k k P X P X C -=-<=-≤=- ?∑ =15 5 051! k k e k -=-∑ 在MATLAB 中,输入 >> clear >> P1=poisscdf(15,5) P1 = 0. 9999 即 15 5 05! k k e k -=∑= P1 =0.9999 故 P(保险公司亏本)=1-0.9999=0.0001

数学实验(MATLAB版韩明版)5.1,5.3,5.5,5.6部分答案

练习 B的分布规律和分布函数的图形,通过观1、仿照本节的例子,分别画出二项分布()7.0,20 察图形,进一步理解二项分布的性质。 解:分布规律编程作图:>> x=0:1:20;y=binopdf(x,20,; >> plot(x,y,'*') 图像: y x 分布函数编程作图:>> x=0::20; >>y=binocdf(x,20, >> plot(x,y) 图像: 《

1 x 观察图像可知二项分布规律图像像一条抛物线,其分布函数图像呈阶梯状。 2、仿照本节的例子,分别画出正态分布()25,2N的概率密度函数和分布函数的图形,通过观察图形,进一步理解正态分布的性质。 解:概率密度函数编程作图:>> x=-10::10; >> y=normpdf(x,2,5); >> plot(x,y) 图像:

00.010.020.030.040.050.060.070.08x y 分布函数编程作图:>> x=-10::10; >> y=normcdf(x,2,5); ~ >> plot(x,y) 图像:

01x y 观察图像可知正态分布概率密度函数图像像抛物线,起分布函数图像呈递增趋势。 3、设()1,0~N X ,通过分布函数的调用计算{}11<<-X P ,{}22<<-X P , {}33<<-X P . 解:编程求解: >> x1=normcdf(1)-normcdf(-1),x2=normcdf(2)-normcdf(-2),x3=normcdf(3)-normcdf(-3) x1 = x2 = ) x3 = 即:{}6827.011=<<-X P ,{}9545.022=<<-X P ,{}9973.033=<<-X P . 4、设()7.0,20~B X ,通过分布函数的调用计算{}10=X P 与{}10> x1=binopdf(10,20,,x2=binocdf(10,20,-binopdf(10,20, x1 = x2 =

《工程数学概率统计简明教程(同济大学应用数学系)》课后答案【khdaw_lxywyl】

课后答案网习w题w一w解.答https://www.wendangku.net/doc/653021795.html, 1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1) 抛一枚硬币两次,观察出现的面,事件A{两次出现的面相同} ; (2) 记录某电话总机一分钟内接到的呼叫次数,事件A (3) 从一批灯泡中随机抽取一只,测试其寿命,事件A { 一分钟内呼叫次数不超过3 次};{ 寿命在2000 到2500 小时之间}。 解(1){( ,), ( ,), ( ,), (, )} ,A{( ,), ( ,)}. (2) 记X 为一分钟内接到的呼叫次数,则 {X k | k0,1,2,LL} , A {X k | k0,1,2,3} . (3) 记X 为抽到的灯泡的寿命(单位:小时),则 {X (0,)} , A {X(2000,2500)} . 2. 袋中有10 个球,分别编有号码1 至10,从中任取1 球,设A {取得球的号码是偶数},B {取得球的号码是奇数},C {取得球的号码小于5},问下列运算表示什么事件: (1) A U B ;(2) AB ;(3) AC ;(4) AC ;(5) A C;(6) B U C ;(7) A C . 解(1) A U B是必然事件; (2) AB 是不可能事件; (3) AC {取得球的号码是2,4}; (4) AC {取得球的号码是1,3,5,6,7,8,9,10}; (5) A C{取得球的号码为奇数,且不小于5} {取得球的号码为5,7,9}; (6) B U C B I C{取得球的号码是不小于5 的偶数} {取得球的号码为6,8,10}; (7) A C AC {取得球的号码是不小于5 的偶数}={取得球的号码为6,8,10} 3. 在区间[0 , 2] 上任取一数,记A (1) A U B ;(2) ;(3) ;(4) A U B .x 1 x 2 1 ,B x 1 x 4 3 ,求下列事件的表达式: 2 解(1) A U B x 1 x 3 ; 4 2 (2) A x 0 x 1 或1 x 2 2 I B x 1 x 4 1 U x1 x 3 ; 2 2 (3) 因为A B ,所以AB ; (4) A U B A U x 0 x 1 或 3 x 2x 0 x 1 1 x 1或 3 x 2 4. 用事件A, B, C 4 2 4 2 2 的运算关系式表示下列事件: (1) A 出现,B, C都不出现(记为E 1 ); (2) A, B 都出现,C 不出现(记为E 2 ); (3) 所有三个事件都出现(记为E 3 ); (4) 三个事件中至少有一个出现(记为E 4 ); (5) 三个事件都不出现(记为E 5 ); (6) 不多于一个事件出现(记为E 6 ); (7) 不多于两个事件出现(记为E 7 ); (8) 三个事件中至少有两个出现(记为E 8 )。 解(1) E 1 (3) E 3(5) E 5 AB C;(2) E 2 ABC ;(4) E 4

数学实验答案

实验一 %sy1ljq20111668 %第一大题 %1 x=[3,2*pi]; y1=sin(x)+exp(x) %y1= 20.2267 535.4917 %2 x=2:2:10 y2=x.^2+sqrt(2*x) %y2= 6.0000 18.8284 39.4641 68.0000 104.4721 %3 a=2*pi,b=35/180*pi,c=exp(2); y31=sin(a/5)+cos(b)*c y32=tan(b)*cot(a/3) %y31 =7.0038 %y32 =-0.4043 %6 a1=-6.28,a2=7.46,a3=5.37; a11=fix(a1) a21=fix(a2) a31=fix(a3) %a11=-6 %a21=7 %a31=5 %7

y71=abs(a1*a2+a3) y72=a1^2*sqrt(a2*a3/2) %y71 =41.4788 %y72 =176.5066 %8 save sy1 clear %9 load sy1 %10 A=[2 -5 6;8 3 1;-4 6 9]; A1=A' A2=det(A) A3=5*A save sy1 A1 A2 A3 %A1 = 2 8 -4 -5 3 6 6 1 9 %A2 =782 %A3 = 10 -25 30 40 15 5 -20 30 45 %第二大题 %1 X=0:pi/10:2*pi; Y=cos(X);S=[X',Y']

%S = 0 1.0000 0.3142 0.9511 0.6283 0.8090 0.9425 0.5878 1.2566 0.3090 1.5708 0.0000 1.8850 -0.3090 2.1991 -0.5878 2.5133 -0.8090 2.8274 -0.9511 3.1416 -1.0000 3.4558 -0.9511 3.7699 -0.8090 4.0841 -0.5878 4.3982 -0.3090 4.7124 -0.0000 5.0265 0.3090 5.3407 0.5878 5.6549 0.8090 5.9690 0.9511 6.2832 1.0000 %2 a22=input('a22='); b22=input('b22=');

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

相关文档
相关文档 最新文档