文档库 最新最全的文档下载
当前位置:文档库 › 如何正确使用脉冲信号发生器

如何正确使用脉冲信号发生器

如何正确使用脉冲信号发生器
如何正确使用脉冲信号发生器

如何正确使用脉冲信号发生器

脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般都以矩形波为标准信号输出。

脉冲信号发生器的种类繁多,性能各异,但内部基本电路应包括图1所示的几个部分。

主振级一般由无稳态电路组成,产生重复频率可调的周期性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器使输出的脉冲信号幅度可调。

所示为xc-15型脉冲信号发生器的面板示意图,xc-15型脉冲信号发生器是高重复频率ns(纳秒)级脉冲信号发生器。其重复频率范围为1kHz~100MHz,脉冲宽度为5ns~300μs,幅度为150mV~5V,并输出正、负脉冲及正、负倒置脉冲,性能比较完善。

(1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用

① “频率”粗调开关和“频率细调”旋钮。调节“频率”粗调开关和“频率细调”旋钮,可实现

1kHz~100MHz的连续调整。粗调分为十挡(1kHz、 3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz和100MHz),用细调覆盖。“频率细调”旋钮顺时针旋转时频率增高,顺时针旋转到底,为“频率”粗调开关所指频率;逆时针旋转到底,为此“频率”粗调开关所指刻度低一挡。例如,“频率”粗调开关置于 10kHz挡,“频率细调”旋钮顺时针旋转到底时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。

②“延迟”粗调转换开关和“延迟细调”旋钮。调节此组开关和旋钮,可实现延迟时间5ns~300,tts的连续调整。延迟粗调分为十挡(5ns、10ns、30ns、l00ns、 300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输出负方波的下降沿超前主脉冲前沿的时间。

“延迟细调”旋钮逆时针旋转到底为粗调挡所指的延迟时间。顺时针旋转延迟时间增加,顺时针旋转到底为此粗调挡位高一挡的延迟时间。例如,“延迟”粗调开关置于30ns挡,“延迟细调”旋钮顺时针旋转到底时输出延迟时间为100ns;逆时针旋转到底时输出延迟时间为30ns。

③ “脉宽”粗调开关和“脉宽细调”旋钮。通过调节此组开关和旋钮,可实现脉宽5ns~300μs的连续调整。“脉宽”粗调分为十挡(5ns、10ns、 30ns、100ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。“脉宽细调”旋钮逆时针旋转到底为粗调挡所指的脉宽时间。顺时针旋转脉宽增加,顺时针旋转到底为此粗调挡位高一挡的脉宽。例如,“脉宽”粗调开关置于10ns挡,“脉宽细调”旋钮顺时针旋转到底时输出脉宽为30ns;逆时针旋转到底时输出延迟时间为10ns。

④“极性”选择开关。转换此开关可使仪器输出四种脉冲波形中的一种。

⑤“偏移”旋钮。调节偏移旋钮可改变输出脉冲对地的参考电平。

⑥“衰减”开关和“幅度”旋钮。调节此组开关和旋钮,可实现150mV~5V的输出脉冲幅度调整。

(2)使用注意事项在使用xc 15型脉冲信号发生器时应注意如下两点事项。

①本仪器不能空载使用,必须接入50Ω负载,并尽量避免感性或容性负载,以免引起波形畸变。

②开机后预热15min后,仪器方能正常工作。

秒脉冲发生器

设计题目:秒脉冲发生器的设计 设计小组:第三组

1 秒脉冲发生器整体设计方案 1.1秒脉冲发生设计方案概述 秒脉冲发生器是由100HZ时钟产生电路和分频电路两部分构成,其中100HZ时钟产生电路主要由555定时器组成的时钟电路,主要用来产生100HZ的脉冲信号;分频电路主要由74LS192组成的100进制计数器电路,主要用于将100HZ 脉冲信号分成1HZ脉冲信号。该方案通过了Multisim软件仿真,并得到了1HZ的脉冲信号,基本实现了工程训练的要求。

1.2 秒脉冲发生器整体设计电路设计图 图1 秒脉冲发生器整体设计电路设计图1.3 秒脉冲发生器整体设计电路仿真图 图2 秒脉冲发生器整体设计电路仿真图

2 各分电路的元件介绍及设计方案 2.1 100HZ时钟产生电路 图3 100HZ时钟产生电路 2.1.1元件介绍 555芯片引脚图及引脚描述: 555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。 4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。 5脚是控制端。

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

脉冲信号发生器的使用方法

脉冲信号发生器的使用方法 脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲 信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般 都以矩形波为标准信号输出。脉冲信号发生器的种类繁多,性能各异,但 内部基本电路应包括主振级一般由无稳态电路组成,产生重复频率可调的周期 性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主 振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路 组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对 脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉 冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器 使输出的脉冲信号幅度可调。 如(1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ①频率粗调开关和频率细调旋钮。调节频率粗调开关和频率细调旋钮, 可实现1kHz~100MHz的连续调整。粗调分为十挡 (1kHz、3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz 和100MHz),用细调覆盖。频率细调旋钮顺时针旋转时频率增高,顺时针旋转 到底,为频率粗调开关所指频率;逆时针旋转到底,为此频率粗调开关所指刻 度低一挡。例如,频率粗调开关置于10kHz挡,频率细调旋钮顺时针旋转到底 时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②延迟粗调转换开关和延迟细调旋钮。调节此组开关和旋钮,可实现延 迟时间5ns~300,tts的连续调整。延迟粗调分为十挡 (5ns、10ns、30ns、l00ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输

脉冲信号发生器设计

脉冲信号发生器 摘要:本实验是采用fpga方式基于Alter Cyclone2 EP2C5T144C8的简易脉冲信号发生器,可以实现输出一路周期1us到10ms,脉冲宽度:0.1us到周期-0.1us,时间分辨率为 0.1us的脉冲信号,并且还能输出一路正弦信号(与脉冲信号同时输出)。输出模式 可分为连续触发和单次手动可预置数(0~9)触发,具有周期、脉宽、触发数等显示功能。采用fpga计数实现的电路简化了电路结构并提高了射击精度,降低了电路功耗和资源成本。 关键词:FPGA;脉冲信号发生器;矩形脉冲;正弦信号; 1 方案设计与比较 脉冲信号产生方案: 方案一、采用专用DDS芯片的技术方案: 目前已有多种专用DDS集成芯片可用,采用专用芯片可大大简化系统硬件制作难度,部数字信号抖动小,输出信号指标高;但专用芯片控制方式比较固定,最大的缺点是进行脉宽控制,测量困难,无法进行外同步,不满足设计要求。 方案二、单片机法。 利用单片机实现矩形脉冲,可以较方案以更简化外围硬件,节约成本,并且也可以实现灵活控制、能产生任意波形的信号发生器。但是单片机的部时钟一般是小于25Mhz,速度上无法满足设计要求,通过单片机产生脉冲至少需要三条指令,所需时间大于所要求的精度要求,故不可取。 方案二:FPGA法。利用了可编程逻辑器件的灵活性且资源丰富的特点,通过Quartus 软件的设计编写,实现脉冲信号的产生及数控,并下载到试验箱中,这种方案电路简单、响应速度快、精度高、稳定性好故采用此种方案。 2 理论分析与计算 脉冲信号产生原理:输入量周期和脉宽,结合时钟频率,转换成两个计数器的容量,用来对周期和高电平的计时,输出即可产生脉冲信号。 脉冲信号的精度保证:时间分辨率0.1us,周期精度:+0.1%+0.05us,宽度精度:

可编程脉冲信号发生器的设计说明

可编程脉冲信号发生器的设计 摘要 基于单片机的可编程脉冲信号发生器,通过4x4的非编码矩阵键盘键入脉冲信号的指标参数频率、占空比和脉冲个数,在单片机的控制处理下发出满足信号指标的脉冲信号,并在液晶显示屏的制定位置显示出相关参数。复位电路采用上电复位和手动复位的复合复位方式,保证单片机在上电和程序运行进入死循环时,单片机均能正常复位。利用在工作方式1下的定时器和计数输出低频脉冲信号,以及在工作方式2下能够自动重复赋初值的定时器输出高频脉冲信号,从而使频率和占空比满足指标要求。通过程序设计,使单片机每次发出信号后等到重置信号进行下一次脉冲信号的输出,有效的提高了单片机的使用效率。 本课题设计利用单片机技术,通过相应的软件编程和较简易的外围硬件电路来实现,其产生的脉冲信号干扰小,输出稳定,可靠性高,人机界面友好,操作简单方便,成本低,携带方便,扩展性强。关键的是,脉冲信号频率、脉冲个数和脉冲占空比可调节,可通过键盘输入并由显示器显示出来。 本课题设计所要达到的指标要求: (1)脉冲信号频率0.1HZ到50KHZ可调并在液晶显示屏指定位置显示。 (2)脉冲信号个数0到9999可调并在液晶显示屏指定位置显示。 (3)脉冲信号占空比任意可调并在液晶屏显屏指定位置示出来。 关键词:单片机,脉冲信号,频率,脉冲个数,占空比

Programmable pulse signal generator design ABSTRACT The programmable pulse signal generator based on single chip, through the 4x4 non-coding matrix keyboard inputing pulse signal parameters of frequency, duty cycle and pulse number, pulse signal is sent to meet the targets of signal processing chip.The related parameters are displayed on the setting position on the liquid crystal. The reset circuit by power-on reset and manual reset, ensure the SCM in power and run into dead circulation can be reset. Use in work mode 1 timer and counter output low frequency pulse signal, and in work mode 2 to timer output high frequency pulse signal ,automaticly repeat initialization, so as to make the frequency and duty ratio meet the requirements. Through the program design, the microcontroller each signal and then wait for the reset signal, the signal at the output of the pulse next time, effectively improve the efficiency in the use of single-chip microcomputer. The subject of the use of single-chip technology, which achieved through the corresponding software and the simple peripheral hardware circuit. The advantages of which are the small interference of the pulse signal, output stability, high reliability, friendly man-machine interface, easy operation, low cost, portability, scalability strong. The keys, pulse frequency, pulse number and pulse duty ratio are adjustable, which can be inputed through the keyboard and displayed through LCD. The requirements of this topic design: (1) The pulse signal frequency of 0.1HZ to 50KHZ is adjustable and can be displaied on the specify location in the LCD screen. (2) Pulse signal number of 0 to 9999 is adjusted and can be displaied on the specify location in the LCD screen. (3)Pulse duty ratio is adjustable and can be displaied on the specify

秒信号发生器

一、硬件电路设计 (1)复位电路 复位是使单片机处于某种确定的初始状态。单片机工作从复位开始。在单片机RST引脚引入高电平并保持2个机器周期,单片机就执行复位操作。复位操作有两种基本方式:一种是上电复位,另一种是上电与按键均有效的复位。如图1所示为复位电路: 图1复位电路 开机瞬间RST获得高电平,随着电解电容C3的充电,RST引脚的高电平将逐渐下降。若该高电平能保持足够2个机器周期,就可以实现复位操作。根据经典电路选择参数,选取C3=10μF,R1=10KΩ。 (2)晶振电路 单片机的时钟信号通常有两种产生方式:一是内部时钟方式,二是外部时钟方式。内部时钟方式是利用单片机内部的振荡电路产生时钟信号。外部时钟方式是把外部已有的时钟信号引入到单片机内。本次设计中,采用的是12MHz晶振,配上30pF的电容,构成谐振,这样有助于输出稳定的波形。图2所示为晶振电路: 图2晶振电路

在单片机的XTAL1和XTAL2引脚外接石英晶体(简称晶振),作为单片机内部振荡电路的负载,构成自激振荡器,可在单片机内部产生时钟脉冲信号。C1和C2的作用是稳定振荡频率和快速起振。根据经典电路选择参数,本电路选用晶振12 MHz,C1=C2=33PF。其中晶振周期(或外部时钟信号周期)为最小的时序单位。 (3)串口调试电路 二、程序设计 程序思路说明:只需要4个按键。关于频率和占空比的确定,对于12M晶振,输出频率为1KHZ,这样定时中断次数设定为 10,即10MS 中断一次,则TH0=FF,TL0=F6;由于设定中断时间为10ms,这样可以设 * *定占空比可从1-99%变化。即10ms*100=1s #include #define uchar unsigned char #define uint unsigned int uchar timer0_tick,ZKB=1;//timer0_tick计数,ZKB占空比 uchar i=0,n=0,temp=0; code seven_seg[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //1,2,3, 4, 5, 6, 7, 8, 9 code scan[2]={0xfd,0xfe}; uchar counter[2]={0,0}; sbit AN1=P3^2;//调整个位 sbit AN2=P3^3;//调整十位 sbit AN3=P3^4;//启动按键

脉冲信号发生器

电子技术综合训练 设计报告 题目:脉冲信号发生器 姓名:xxx 学号:xxxxxxx 班级:xx 电气及其自动化xx 同组成员:xxx 指导教师:xxx 日期:2011年1月4日

脉冲信号发生器的原理主要分为四部分,即正弦波的产生,方波的变换,分频电路和倍频电路,并由这四部分最终产生三种不同频率的信号,其要点在于电路的线路连接及焊接。通过设计体会理论与实际结合的重要性. 关键字:正弦发生多谐振荡器降频电路锁相环

一、设计任务和要求 (5) 1.1设计任务 (5) 1.2设计要求 (5) 二、系统设计 (6) 2.1系统要求 (6) 2.2方案设计 (6) 2.3系统工作原理 (7) 三、单元电路设计 (8) 3.1 RC正弦发生器 (8) 3.1.1电路结构及工作原理 (9) 3.1.2电路仿真 (9) 3.1.3元器件的选择及参数确定 (9) 3.2 555定时器组成的多谐振荡器 (9) 3.2.1电路结构及工作原理 (9) 3.2.2电路仿真 (11) 3.3 74LS161计数器降频电路 (11) 3.3.1电路结构及工作原理 (11)

3.3.2电路仿真 (11) 3.3.3元器件的选择及参数确定 (11) 3.4 锁相环升频电路 (13) 3.4.1电路结构及工作原理 (13) 3.4.2元器件的选择及参数确定 (15) 四、系统仿真 (17) 五、电路安装、调试与测试 (18) 5.1电路安装 (17) 5.2电路调试 (17) 5.3系统功能及性能测试 (17) 5.3.1测试方法设计 (18) 5.3.2测试结果及分析 (18) 结论 (19) 参考文献 (20) 总结、体会和建议 (21) 附录 (22)

脉冲信号发生器与计数器

中南林业科技大学涉外学院 认识实习报告 名称:脉冲信号发生器与计数器 姓名学号: 系:理工系专业:电子信息工程班级:实习时间:实习地点:

目录 一、题目 二、任务和要求 三、内容 (1)如何用仪表测量 (2)如何焊接 (3)如何调试 四、结论 五、体会和收获

一、题目脉冲信号发生其与计数器 二、任务和要求 1:焊接电路板 2:装配电阻、安装短路线、装配芯片、装配按键S、装配电容、装配发光二极管、安装电源插座、测试 三、内容 (1)安装好后,目测检查,是否焊接好了。插入电源线,电源线额另一端接电源,一定不要接错了,印刷板上标有+的一端接电源+5V,另一端接 地。千万注意,电源不要接错了。打开电源,测试电源电压,测试芯片 上各脚电压。按下按键,试着短按和长按,观察现象。测试各发光二极 管(有亮的也有不亮的都测)的电压。短按时,每次产生一个脉冲,观 察到由发光二极管显示的二进制数加一。长按时,产生连续脉冲,观察 到由发光二极管显示的二进制数连续累加。 (2)加热焊件;移入焊锡;焊锡融化后,移开焊锡;移开电烙铁。注意掌握好时间,焊接好后,剪去焊盘外的导线 (3)打开电源,测试电源电压,测试芯片上各脚电压。按下按键,试着短按和长按,观察现象 四、结论 利用集成定时器(芯片 NE555)产生信号,当按键被单次单次地按下时,产生一个一个的单脉冲信号;当按键按下不动时,产生连续脉冲信号。可利用集成技术器(芯片4024)计数。其状态反映脉冲的个数。利用发光二级管显示已经计数的脉冲数,其中74LS04是驱动电路。 五、体会和收获 经过这次实习,了解到了如何焊接电路板、焊接电路板所需注意的事项、认识各种原配件和如何检测焊成后的电路板,同时培养了自己的动手能力和对电路这门课程的认知

秒信号发生器电路图两个

秒信号发生器电路图两个 秒信号发生器: 下面介绍的秒信号发生器可用在LED数字钟中,为数字钟提供秒基准信号。字串7 附图1电路由14位二进制串行计数器/分频器和振荡器 CD4060、BCD同步加法计数器CD4518构成的秒信号发生器。 电路中利用CD4060组成两部分电路。一部分是14级分频器,其最高分频数为16384;另一部分是由外接电子表用石英晶体、电阻及电容构成振荡频率为32768Hz的振荡器。震荡器输出经14级分频后在输出端Q14上得到1/2秒脉冲并送入由1/2 CD4518构成的二分频器,分频后在输出断Q1上得到秒基准脉冲。 检验电路是否工作,可测量CD4060的9脚有无振荡信号输出。调整微调电容可校准振荡频率。 附图2是另一款秒信号发生器电路。它由双BCD同步加计数器CD4518、四输入端与非门CD4011和四2输入端或非门CD4001等构成。 电路中利用CD4060组成两部分电路。一部分是14级分频器,

其最高分频数为16384;另一部分是由外接电子表用石英晶体、电阻及电容构成振荡频率为32768Hz的振荡器。震荡器输出经14级分频后在输出端Q14上得到1/2秒脉冲并送入由1/2 CD4518构成的二分频器,分频后在输出断Q1上得到秒基准脉冲。 检验电路是否工作,可测量CD4060的9脚有无振荡信号输出。调整微调电容可校准振荡频率。 电路中,由CD4011门I构成晶体振荡电路产生的1MHz脉冲信号,经反相器门II送至由CD4518构成的多级计数分频器。其中第一级10分频后输出为100KHz,第二级输出为10KHz,第三级输出为1000Hz,第四级输出为100Hz、第6级输出为1Hz。 由CD4011的门III、IV构成R-S触发器和CD4001的一个门组成了秒信号控制门。单允许工作开关K3置“开”位置时,允许输出秒信号;置“关”位置时,禁止输出秒信号。走时、校准开关K2置“走时”位置时,输出秒信号;置“校准”位置时,输出校准信号。若秒信号与标准时间相差较大,把K1置“快校”位置,送出10KHz信号;若接近标准时间,则置“慢校”位置,送出100Hz信号。

如何正确使用脉冲信号发生器

如何正确使用脉冲信号发生器 脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般都以矩形波为标准信号输出。 脉冲信号发生器的种类繁多,性能各异,但内部基本电路应包括图1所示的几个部分。 主振级一般由无稳态电路组成,产生重复频率可调的周期性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器使输出的脉冲信号幅度可调。 所示为xc-15型脉冲信号发生器的面板示意图,xc-15型脉冲信号发生器是高重复频率ns(纳秒)级脉冲信号发生器。其重复频率范围为1kHz~100MHz,脉冲宽度为5ns~300μs,幅度为150mV~5V,并输出正、负脉冲及正、负倒置脉冲,性能比较完善。 (1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ① “频率”粗调开关和“频率细调”旋钮。调节“频率”粗调开关和“频率细调”旋钮,可实现 1kHz~100MHz的连续调整。粗调分为十挡(1kHz、 3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz和100MHz),用细调覆盖。“频率细调”旋钮顺时针旋转时频率增高,顺时针旋转到底,为“频率”粗调开关所指频率;逆时针旋转到底,为此“频率”粗调开关所指刻度低一挡。例如,“频率”粗调开关置于 10kHz挡,“频率细调”旋钮顺时针旋转到底时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②“延迟”粗调转换开关和“延迟细调”旋钮。调节此组开关和旋钮,可实现延迟时间5ns~300,tts的连续调整。延迟粗调分为十挡(5ns、10ns、30ns、l00ns、 300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输出负方波的下降沿超前主脉冲前沿的时间。 “延迟细调”旋钮逆时针旋转到底为粗调挡所指的延迟时间。顺时针旋转延迟时间增加,顺时针旋转到底为此粗调挡位高一挡的延迟时间。例如,“延迟”粗调开关置于30ns挡,“延迟细调”旋钮顺时针旋转到底时输出延迟时间为100ns;逆时针旋转到底时输出延迟时间为30ns。 ③ “脉宽”粗调开关和“脉宽细调”旋钮。通过调节此组开关和旋钮,可实现脉宽5ns~300μs的连续调整。“脉宽”粗调分为十挡(5ns、10ns、 30ns、100ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。“脉宽细调”旋钮逆时针旋转到底为粗调挡所指的脉宽时间。顺时针旋转脉宽增加,顺时针旋转到底为此粗调挡位高一挡的脉宽。例如,“脉宽”粗调开关置于10ns挡,“脉宽细调”旋钮顺时针旋转到底时输出脉宽为30ns;逆时针旋转到底时输出延迟时间为10ns。 ④“极性”选择开关。转换此开关可使仪器输出四种脉冲波形中的一种。 ⑤“偏移”旋钮。调节偏移旋钮可改变输出脉冲对地的参考电平。 ⑥“衰减”开关和“幅度”旋钮。调节此组开关和旋钮,可实现150mV~5V的输出脉冲幅度调整。

CD4060秒脉冲产生电路

脉冲发生器 要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。而脉冲源产生的脉冲信号的频率较高,因此,需要进行分频,使高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1HZ)。经过分频器输出的秒脉冲信号到计数器中进行计数。将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计时器,可实现对一天24小时的累计。此时需要分别设计60进制,24进制计数器,各计数器输出信号经译码器到数字显示器,使“时”、“分”、“秒”得以数字显示出来。 值得注意的是:任何计时装置都有误差,因此应考虑校准时间电路。校时电路一般采用手动调整。手动调整可利用手动的节拍调准显示时间。 C D4060由一振荡器和14级二进制串行计数器位组成,振荡器的结构可以是RC或晶振电路,CR为高电平时,计数器清零且振荡器使用无效。所有的计数器位均为主从触发器。在CP1(和CP0)的下降沿计数器以二进制进行计数。在时钟脉冲线上使用斯密特触发器对时钟上升和下降时间无限制。 CD4060引角图

CD4060内部方框图 CD4060B典型振荡器连接 上图-RC振荡器下图-晶体振荡器RC振荡器中T=2.2R1C,R2=2*R1~10*R1

脉冲发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体振荡器发出的脉冲经过整形、分频获得1Hz的秒脉冲。如晶振为32768 Hz,通过15次二分频后可获得1Hz的脉冲输出 CD4060秒脉冲发生器电路

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

信号发生器的基本参数和使用方法

信号发生器本人介绍一下信号发生器的使用和操作步骤1、信号发生器参数性能频率范围:0.2Hz ~2MHz 粗调、微调旋钮正弦波, 三角波, 方波, TTL 脉波0.5" 大型LED 显示器可调DC offset 电位输出过载保护信号发生器/ 信号源的技术指标: 主要输出 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (opencircuit);>10Vp-p (加50Ω 负载) 阻抗 50Ω+10% 衰减器 -20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕 4 位LED 显示幕 频率范围 0.2Hz to2MHz(共7 档) 频率控制Separate coarse and fine tuning 正弦波

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB 100kHz~ 2MHz 三角波 线性98% 0.2Hz ~100kHz;95%100kHz~ 2MHz 对称性<2% 0.2Hz ~100kHz 上升/ 下降时间<120nS CMOS输出 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/ 下降时间<120nS TTL 输出 位准>3Vpp 上升/ 下降时间<30nS VCF 输入电压约0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (± 10%) 使用电源 交流100V/120V/220V/230V ±10%, 50/60Hz 附件 电源线× 1, 操作手册× 1, 测试线GTL-101 × 1

信号发生器使用

信号发生器使用 一、信号发生器 信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。能够产生多种波形的信号发生器,如产生三角波、锯齿波、矩形波(含方波)、正弦波的信号发生器称为函数信号发生器 信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。随着科技的发展,实际应用到的信号形式越来越多,越来越复杂,频率也越来越高,所以信号发生器的种类也越来越多,同时信号发生器的电路结构形式也不断向着智能化、软件化、可编程化发展。信号发生信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。随着科技的发展,实际应用到的信号形式越来越多,越来越复杂,频率也越来越高,所以信号发生器的种类也越来越多,同时信号发生器的电路结构形式也不断向着智能化、软件化、可编程化发展。 二、信号发生器的分类 信号发生器所产生的信号在电路中常常用来代替前端电路的实际信号,为后端电路提供一个理想信号。由于信号源信号的特征参数均可人为设定,所以可以方便地模拟各种情况下不同特性的信号,对于产品研发和电路实验特别有用。在电路测试中,我们可以通过测量、对比输入和输出信号,来判断信号处理电路的功能和特性是否达到设计要求。例如,用信号发生器产生一个频率为1kHz 的正弦波信号,输入到一个被测的信号处理电路(功能为正弦波输入、方波输出),

脉冲信号发生器检定规程范文

脉冲信号发生器检定规程范文(JJG490-93) 本规程适用于新制造、使用中和修理后的XC-13A、XC-14A、XC-16A、XC -19A 等同类型脉冲信号发生器的主要工作特性的检定。 一概述 XC43A、XC-14A、XC-16A、XC-19A等型号的脉冲信号发生器是全晶体化的仪器,具有性能稳定、使用方便、波形失真小、重复频率范围宽、上升沿和下降沿可变或固定等特点,是研究脉冲电路、逻辑电路、集成电路等方面不可缺少的仪器; 二技术要求 1. 2. 上冲〈过冲〉≤5% 预冲≤5% 衰减振荡≤5% 倾斜≤5% 3.可选择正脉冲、正倒置、负脉冲、负倒置四种波形中的任意一种. 4.直流偏移: -1~+1V连续可调. 5.触发输出脉冲 5.1 频率与输出脉冲相同. 5.2 幅度: 小于1.5V〈负脉冲〉. 6.外触发: 具有由外部信号源触发和单次触发两种工作方式. 6.1 频率范围: 10 Hz~50 MHz. 6.2波形:负脉冲. 6.3触发幅度: 以说明书给出指针为准. 7.单次: 在前面板上用手动控制. 三检定条件 (一)坏境条件 8.环境温度: 220±5℃. 9.相对湿度: 45~80%. 10.大气压力: 86~106kpa 11.电源电压: 22OV±2% 50±1 Hz (二)检定用设备 12.检定用设备见表2

四检定项目及检定方法 (一)外观及电性能检查 13.被检脉冲信号发生器不应有影响仪器正常工作及读数的任何机械损伤,各个 旋钮要调节平滑,接触良好,各波段开关跳步清晰. 14.按说明书规定接通电源,经过预热,用双踪宽带示波器进行观察,被检脉冲信 号发生器应能正常工作,所有控制开关及有关旋钮能起控制作用,各输出端均应有输出. 15.将重复频率波段开关置于“外”位置,脉冲输出接到示波器或计数器的输入 端,按下"单次"功能按钮,每按一次在示波器屏幕上或计数器上均能观测到单脉冲或双脉冲[将双脉冲信号发生器的种类开关置于“A+B”时,在频率计上读到的频率值是单脉冲(A或B)状态下的频率值的2倍]其按动次数不得少于10次. (二)工作特性的检定 16.脉冲重复频率〈周期〉的检定本规程对脉冲重复频率〈周期〉的检定,采用 数字频率计法和示波器法均可. 16.1数字频率计法 16.1.1检定连接线路如图1所示. 图1 注:本文凡标有*号者是表示匹配负载为500. 16.1.2将被检脉冲信号发生器的延迟时间置于最小,脉冲宽度于相应位置,被检 脉冲信号发生器的频率微调旋钮顺时针方向或逆时针方向旋到底. 16.1.3将数字频率计功能开关置于"测频"位置,调节数字频率计触发电平,使数 字频率计工作正常.将被检脉冲信号发生器的重复频率分别置于被检 文件位置,记录数字频率计所显示的频率值,此值即为被检脉冲信号发生 器重复频率的实际值.

函数信号发生器F120使用说明

F05/F10/F20/F40/F80 /F120 数字合成函数/任意波信号发生器/计数器 使 用 说 明 书 南京盛普仪器科技有限公司NANJING SAMPLE INSTRUMENT TECHNOLOGY CO.,LTD.

目录 第一章概述 (1) 第二章主要特征 (1) 第三章技术参数 (2) 一、函数信号发生器 (2) 二、计数器 (4) 三、其它 (5) 第四章面板说明 (6) 一、显示说明 (6) 二、前面板说明 (7) 三、后面板说明 (11) 第五章使用说明 (12) 一、测量、试验的准备工作 (12) 二、函数信号输出使用说明 (12) 三、计数使用说明 (31) 第六章遥控操作使用说明 (32) 第七章注意事项与检修 (47) 第八章仪器整套设备及附件 (49)

本仪器是一台精密的测试仪器,具有输出函数信号、调频、调幅、FSK 、PSK 、猝发、频率扫描等信号的功能。此外,本仪器还具有测频和计数的功能。本仪器是电子工程师、电子实验室、生产线及教学、科研的理想测试设备。 1、采用直接数字合成技术(DDS )。 2、主波形输出频率为100μHz ~ 120MHz (F120)。 3、小信号输出幅度可达0.1mV 。 4、脉冲波占空比分辨率高达千分之一。 5、数字调频分辨率高、准确。 概述 1 2 主要 特征

6、猝发模式具有相位连续调节功能。 7、频率扫描输出可任意设置起点、终点频率。 8、相位调节分辨率达0.1度。 9、调幅调制度1% ~ 120% 可任意设置。 10、输出波形达30余种。 11、具有频率测量和计数的功能。 12、机箱造型美观大方,按键操作舒适灵活。 一、函数发生器 1、波形特性 主波形:正弦波,方波, TTL 波(频率大于40MHz 仅有正弦波) 波形幅度分辨率:12 bits 采样速率:200Msa/s (F120 为300 Msa/s) 正弦波谐波失真:-50dBc (频率≤ 5MHz ) -45dBc (频率≤ 10MHz ) -40dBc (频率≤ 20MHz ) -35dBc (频率> 20MHz ) 正弦波失真度: ≤0.1%(f :20Hz ~ 100kHz ) 方波升降时间: ≤25ns (F05型、F10型) ≤15ns (F20型、F40型、F80型、F120型) 3 技术指标

精密秒脉冲发生器

精密秒脉冲发生器电路 第一种:使用价格低廉的32768HZ 晶体,配上HC4060 电路,自身工作电压 2 -6V,静态电流仅仅20 uA 左右。没有任何分频和其他多余器件,如果集成电路采用贴片封装,体积将非常小。本身具有天然的 秒闪烁脉冲信号。 也可以配套CD4060 电路,但是电压范围为 3 -18V,静态电流随电压提高而上升,在+5V 供电时,静态电流约0.25 -5uA,主要考虑的是在 3.0V 电池供电时的停振问题。而HC4060 电路工作电压可以低一些。(本电路还可以输出其他标准频率的参考信号,印刷板上预留了 5 种频率输出信号的焊盘)。 主要参数:供电:DC5V. 月误差:≤ 15S。提示:输出应该外加高输入阻抗的缓冲级。 第二种:是曾经大名鼎鼎的高频高精度晶体振荡电路,也叫“高频石英钟电路”,由于原来是驱动步进电机的,所以其输出间隔是2*0.5HZ/S,我们仅仅使用单边电路,可以得到30 个脉冲/S。其供电电压仅仅 1.5 V,神奇的低!工作电流不到1uA,输出电压也很低,因此,使用分立的PNP 三极管把电平提高到任意值。需要注意:1.5V 电源的正端子,应该就是+5V 电源的正端子。 市场上已经较难购买到5512F 电路了。 上面的电路无需太多调整,本身就有非常准确的精度。如果与单片机配套,单片机需要干的事情仅仅就是计数而已。对5512F 电路,单片机还需要生成一个秒脉冲输出信号。(0.5S 的高低交替电平输出)。 主要参数:供电:DC5V. 月误差:≤ 6S。提示:输出应该外加高输入阻抗的缓冲级。

计数译码显示在现代科学技术中应用非常广泛,它由计数器、译 码器和显示器三部分组成,包含数字电子系统的组合逻辑电路和时序 逻辑电路,因此本实验是一个综合性的实验。次实验的目的是: 掌握中规模集成计数器74LS90的功能和使用方法; 学习使用74LS48BCD码译码器和共阴极数码管显示器; 掌握计数、译码、显示电路综合应用方法; 学会用规模集成计数器74LS90等芯片设计任意进制计 数器的方法。 熟悉用Multisim仿真数字电路的方法。 实验仪器与元件 数字逻辑实验箱; 示波器; 74LS90 二——五——十进制计数器; 74LS48BCD码七段译码驱动器; 七段共阴极数码管; 仿真实验PC机; 其他可选芯片:74LS161,74LS00,74LS20。 实验器件及原理 它是一种中规模集成电路,种类很多,不但可以实现计数、分频, 而且可以实现测量、运算、定时、延时等控制功能。目前各类计数器均有典型产品,如属于二进制计数器的74LS161、74LS163……,属于十进制计数器的74LS90、74LS160等。 本实验采用的是74LS90二—五—十进制异步计数器。74LS90的内部结构是一个二分频和五分频电路,可以独立地作为二进制和五进制计数器使用,同时进行适当的连接又可以构成十进制计数器。

信号发生器使用说明

信号发生器使用说明: 1. 窄带脉冲信号的产生: 开机—双击桌面上的ArbExpress Application 图标。 进入界面后,点击上方Equation Editor 按钮(图1),可以得到图2所示界面。 这里需要设置的参数有:在左上方的Equation 这一栏,输入波形的表达式,以及波形绘制时间范围;在右下方的Settings 中,设置需要绘制的点数Number of Points 以及采样率Sampling Rate 。 以中心频率为10KHz ,5周期的窄带脉冲信号为例,如图3、4中设置,我们输入range(0,0.0005s),表达式Sin(2*pi*10000*t)*(1-Cos(2*pi*10000*t/5)),采样率设为16MS/s ,取10000个点。 在设置完成后,点击Compile 按钮,可以看到波形的预览图,再点击OK ,进入到ArbExpress 窗口界面,如图5。 图1 图2 图3 图4

对波形进行保存,命名波形并保存类型为(*.wfm )文件。至此,一个窄带脉冲信号就产生了。关闭ArbExpress 界面。 2. 信号的输出 双击桌面上的AWG 图标,进入界面后,单击左上方的File —Import from File ,选择AWG400/500/600/700(*.WFM)类型文件,选择刚才保存的文件并打开,就可以将波形输送到通道1,如图6所示。 下面我们对波形进行一些设置,如图6中下方所示,在Amplitude 选项卡中可以对波形的幅值进行调节;在Time 选项卡中可以通过改变Sampling Rate 的值来改变输出波形的中心频率;在Run Mode 选项卡中,我们选择Triggered 即触发模式。 最后,我们按下前面板上的Run 以及Ch1按钮(图7)就可以从通道1发射波形了。由于我们选择的是触发模式,因此还需要手动按下前面板上的 Force 图5 图6

相关文档