文档库 最新最全的文档下载
当前位置:文档库 › tf卡通信协议

tf卡通信协议

竭诚为您提供优质文档/双击可除

tf卡通信协议

篇一:sd卡和tF卡简介

sd卡和tF卡简介

tF卡

全名:transFlash,原名microsdcard。

由摩托罗拉与sandisk共同研发,在20xx年推出。是一种超小型卡(11*15*1mm),约为sd卡的1/4,可以算目前最小的储存卡了。tF卡可经sd卡转换器后,当sd卡使用。利用适配器可以在使用sd作为存储介质的设备上使用。transFlash主要是为照相手机拍摄大幅图像以及能够下载

较大的视频片段而开发研制的。transFlash卡可以用来储存个人数据,例如数字照片、mp3、游戏及用于手机的应用和个人数据等,还内设置版权保护管理系统,让下载的音乐、影像及游戏受保护;未来推出的新型transFlash还备有加密功能,保护个人数据、财政纪录及健康医疗文件。体积小巧的transFlash让制造商无须顾虑电话体积即可采用此设计,而另一项弹性运用是可以让供货商在交货前随时按客户不同需求做替换,这个优点是嵌入式闪存所没有的。

tF卡引脚定义:

tF卡(sd模式):

1-data2,2-data3,3-cmd,4-vdd,5-clk,6-vss,7-data0,8-d ata1tF卡(spi模式):

1-rsv,2-cs,3-di,4-vdd,5-sclk,6-vss,7-do,8-rsv sd卡(securedigitalmemorycard)

安全数码卡,是一种基于半导体快闪记忆器的新一代记忆设备,它被广泛地于便携式装置上使用,例如数码相机、个人数码助理(外语缩写pda)和多媒体播放器等。sd卡是一种基于半导体闪存工艺的存储卡,1999年由日本松下主导概念,参与者东芝和美国sandisk公司进行实质研发而完成。2000年这几家公司发起成立了sd协会(securedigitalassociation简称sda),阵容强大,吸引了大量厂商参加。其中包括ibm,microsoft,motorola,nec、samsung等。在这些领导厂商的推动下,sd卡已成为目前消费数码设备中应用最广泛的一种存储卡。sd卡具有大容量、高性能、安全等多种特点的多功能存储卡,它比mmc卡多了一个进行数据著作权保护的暗号认证功能(sdmi规格),读写速度比mmc卡要快4倍,达2m/秒。

尺寸32mmx24mmx2.1mm

sd卡的技术是基于multimediacard(mmc)格式上发展而来,大小和mmc卡差不多,尺寸为32mmx24mmx2.1mm。长

宽和mmc卡一样,只是比mmc卡厚了0.7mm,以容纳更大容量的存贮单元。sd卡与mmc卡保持着向上兼容,也就是说,mmc卡可以被新的sd设备存取,兼容性则取决于应用软件,但sd卡却不可以被mmc设备存取。(sd卡外型采用了与mmc 卡厚度一样的导轨式设计,以使sd设备可以适合mmc卡)。

sd卡接口除了保留mmc卡的7针外,还在两边加多了2针,作为数据线。采用了nand型Flashmemory,基本上和smartmedia的一样,平均数据传输率能达到2mb/s。

设有sd卡插槽的设备能够使用较簿身的mmc卡,但是标准的sd卡却不能插入到mmc卡插槽。sd卡能够于cF卡和pcmcia卡上,插上转接器使用;而minisd卡和microsd卡亦能插上转接器于sd卡插槽使用。一些usb连接器能够插上sd卡,而且一些读卡器亦能够插上sd卡,并由许多连接埠,例如usb、Firewire等存取使用。sd卡的结构能保证数字文件传送的安全性,也很容易重新格式化,所以有着广泛的应用领域,音乐、电影、新闻等多媒体文件都可以方便地保存到sd卡中。因此不少数码相机也开始支持sd卡。速率等级

根据数据传输速度,sd有不同的等级。速度等级有两种表示方法:

"x"表示法(sd1.0规范,现已不用):

它是按cd-Rom的150kb/s为1倍速的速率计算方法来

计算的。基本上,它们能够比标准cd-Rom的传输速度快6倍(900kb/秒),而高速的sd卡更能传输66x(10mb/秒)以及133x或更高的速度。一些数码相机需要高速sd卡来更流畅地拍摄影片,和连续拍摄相

片更迅速。直至20xx年12月,大部分设备跟从sd卡的1.01规格,而更高速至133x的设备亦跟从1.1规格,最高12.5mb/秒。

速度等级标识

sd2.0的规范中对sd卡的速度分级方法是:普通卡和高速卡的速率定义为class2、class4、class6和class10四个等级。在class10卡问世之前,存在过一阵class11和class13的卡,但这种标准最终没有被sda共识。

sd3.01规范被称为超高速卡,速率定义为uhs-i和uhs-ii。到20xx年第二季度为止,已上市的只有uhs-i卡。uhs-ii在20xx年第4季度发布,但就20xx年前的技术发展速度来看,uhs-i完全足够度过20xx年甚至更久。uhs-i卡的速度等级分为uhs-class0和uhs-class1。uhs-i的class 和sd2.0的class不同,没有明确的class0卡,字面含义就是达不到class1的卡。可能未来老class标准的都会被归纳为class0吧。class1代表的是最大读取104mb/s,而sd2.0标准里的class代表的是写入最小的速度范围。

不同等级的读取速度和能满足的应用要求见下表:

容量等级

sd卡容量目前有3个级别,那就是sd,sdhc和sdxc 下表为等级容量范围和标准磁盘格式

sd容量有8mb、16mb、32mb、64mb、128mb、256mb、512mb、1gb、2gbsdhc容量有2gb、4gb、8gb、16gb、32gb sdxc容量有32gb、48gb、64gb、128gb、256gb、512gb、1tb、2tb

使用方法

sd卡应用于以下的手提数码装置:

●数码相机储存相片及短片

●数码摄录机储存相片及短片

●个人数码助理(pda)储存各类资料

●手提电话储存相片、铃声、音乐、短片等资料

●多媒体播放器

sd卡多用于mp3随身听、数码摄像机、数码相机等,也有用于笔记本电脑上。sd卡在20xx年的发展很快,已经开始威胁到cF卡的市场份额了。不过注意的是,在某些产品例如手机上,sd卡和mmc卡是不能兼容的。20xx年的sd卡容量由8mb到128gb不等。发展历程

mmc卡在sm卡基础上诞生替代了东芝开发的sm卡。不久的几年后,在mmc卡基础上研发的sd卡又替代了mmc卡,成为了几乎一切便携式数码产品的存储卡格式。20xx年sm

单片机串口通信协议程序

#include #include #define R55 101 #define RAA 202 #define RLEN 203 #define RDATA 104 #define RCH 105 //#define unsigned char gRecState=R55; unsigned char gRecLen; unsigned char gRecCount; unsigned char RecBuf[30]; unsigned char gValue; void isr_UART(void) interrupt 4 using 1 { unsigned char ch; unsigned char i; unsigned char temp; if (RI==1) { ch=SBUF; switch(gRecState) { case R55: // wait 0x55 if (ch==0x55) gRecState=RAA; break;

case RAA: if (ch==0xaa) gRecState=RLEN; else if (ch==0x55) gRecState=RAA; else gRecState=R55; break; case RLEN: gRecLen=ch; gRecCount=0; gRecState=RDATA; break; case RDATA: RecBuf[gRecCount]=ch; gRecCount++; if (gRecCount>=gRecLen) { gRecState=RCH; } break; case RCH: temp=0; for(i=0;i

串口通信协议

串口通讯—通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA 与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提出的串行通信接口基本任务的大部分工作,且都是可编程的。才用这些芯片作为串行通信接口电路的核心芯片,会使电路结构比较简单。 3.有关串行通信的物理标准 为使计算机、电话以及其他通信设备互相沟通,现在,已经对串行通信建立了几个一致的概念和标准,这些概念和标准属于三个方面:传输率,电特性,信号名称和接口标准。 1、传输率:所谓传输率就是指每秒传输多少位,传输率也常叫波特率。国际上规定了一个标准波特率系列,标准波特率也是最常用的波特率,标准波特率系列为110、300、600、1200、4800、9600和19200。大多数CRT终端都能够按110到9600范围中的任何一种波特率工作。打印机由于机械速度比较慢而使传输波特率受到限制,所以,一般的串行打印机工作在110波特率,点针式打印机由于其内部有较大的行缓冲

51串口通信协议(新型篇)

51串口通信协议(新型篇) C51编程:这是网友牛毅编的一个C51串口通讯程序! //PC读MCU指令结构:(中断方式,ASCII码表示) //帧:帧头标志|帧类型|器件地址|启始地址|长度n|效验和|帧尾标志 //值: 'n' 'y'| 'r' | 0x01 | x | x | x |0x13 0x10 //字节数: 2 | 1 | 1 | 1 | 1 | 1 | 2 //求和: ///////////////////////////////////////////////////////////////////// //公司名称:*** //模块名:protocol.c //创建者:牛毅 //修改者: //功能描述:中断方式:本程序为mcu的串口通讯提供(贞结构)函数接口,包括具体协议部分 //其他说明:只提供对A T89c51具体硬件的可靠访问接口 //版本:1.0 //信息:QQ 75011221 ///////////////////////////////////////////////////////////////////// #include #include //预定义 //帧 #define F_ST1 0x6e //帧头标志n #define F_ST2 0x79 //帧头标志y #define F_R 0x72 //帧类型读r #define F_W 0x77 //帧类型写w #define F_D 0x64 //帧类型数据帧d #define F_B 0x62 //帧类型写回应帧b #define F_C 0x63 //帧类型重发命令帧c #define F_Q 0x71 //帧类型放弃帧q #define F_ADDR 0x31 //器件地址0-9 #define F_END 0x7a //帧尾标志z #define F_SPACE 0x30 //空标志0 #define F_ERR1 0x31 //错误标志1,flagerr 1 #define F_ERR2 0x32 //错误标志2 2 //常数 #define S_MAXBUF 16 //接收/发送数据的最大缓存量 #define FIELD_MAXBUF 48 //最小场缓存,可以大于48字节,因为协议是以20字节为

stm32串口通信协议简单教程

STM32串口通信协议简单教程 一、修改串口UART1IT工程模版 用Keil MDK打开短学期资料中的工程示例→串口→UART1IT示例,查看main.c代码如图1所示: 图1 UART1IT串口示例代码 打开文件列表中的stm32f10x_it.c文件,找到UART1中断函数如图2所示代码: 图2 UART1串口中断函数

为方便起见,将整个USART1_IRQHandler函数剪切到main.c文件末尾如图3所示。并删除stm32f10x_it.c文件中的sp变量定义,如图4所示。 图3 移动串口中断函数 图4 去除stm32f10x_it.c中的sp变量声明 重新编译一次工程,看看修改是否出现错误,编译失败出现错误则需仔细检查刚才的修改是否正确。编译成功,下载工程到实验板,关闭下载程序。将实验板BOOT跳线至正常运行模式并重新上电。打开串口调试助手,选择实验板USB虚拟串口并打开,如图5所示。可以看到图中窗口不停的接收到“Hello world!”这样的字符串数据。在发送区域输入字符1,点击发送按钮,可以观察到实验板的流水灯速度变快了很多。

在main函数之前,添加按键扫描代码如图6所示,然后在main函数中,添加sendstr 数组,key和oldkey两个整数变量,如图7所示。

图6 添加按键扫描函数 图7 添加相关变量 接下来,在main函数的while主循环中,添加发送按键状态代码如图8所示。同时,将main函数中的Hello world字符串发送行注释掉,如图9所示。为使按键响应灵敏,可以将main.c文件开头的sp变量初始值由100改为10。 注意,资料包里面的串口调试助手UartAssit软件容易造成虚拟串口占用,甚至使系统崩溃。考虑到使用方便,推荐使用sscom42软件。这里给大家一个下载地址https://www.wendangku.net/doc/659284765.html,/soft/53912.html

AB DF1串口通讯协议API接口

Fax: 1-703-709-0985 https://www.wendangku.net/doc/659284765.html, Allen-Bradley DF1 Serial Communication Interface API The DASTEC Corporation Allen-Bradley DF1 Serial Communication Interface API allows the user to implement bi-directional serial communications to exchange data between applications running on a Windows/WinCE-based system with other devices supporting the Allen-Bradley DF1 full-duplex serial protocol. The devices can be AB devices, other host computers or even other system applications using the API. The Allen-Bradley DF1 Serial Communication Interface API enables a system to acts as a client device to other Allen-Bradley peer devices, initiating read and write operations on behalf of the system applications. The API also allows the system to emulate an Allen-Bradley PLC to respond to read and write requests and thus acts as a “virtual PLC” to other AB peers. The API is available for different Windows/WinCE-based systems/platforms and can be used with C/C++ or Visual Basic. The API consists of two component functionalities, client side and server side. The client side functionality is implemented with a single API DLL. Server side functionality is implemented with a DLL/executable pair. Together these components manage all aspects of the protocol and data exchange including responding to peers with proper acknowledgements, error/success codes and protocol data byte ordering. The system application need only to deal with the data values exchanged in native byte order. The user can employ either the API’s client, server or both functionalities with minimal code implementation.

系统串口通讯协议

ZHET 系统串口通讯协议 通 讯 技 术 手 册 型号:SYRDS1-485 (SYRDSSS1) SYRDL1-485 (SYRLSSS1) 玺瑞国际企业有限公司 SYRIS International Corp.

通讯技术手册 通讯协议(Protocol) 卡片阅读机模块(Reader Module)的通讯协议(Protocol)皆出自于SYRIS 的一种标准通讯协议,这种协议格式如下表: 1.SOH 和 END 都是一个字节的控制字符: SOH 控制器端定义为 <0x09> 模块端定义为 <0x0A> END 控制器及模块端均固定为 <0x0D> 其中 <0x> 为十六进制表示法. 2.TYPE 为模块型式编号,固定为一个字节,本型式编号固定为“A”. 3.ID为模块端的识别代码,这一字节的 ASCII 字符必须是在 1 <0x31> 到 8 <0x38> 的范围内,假如控制器端传送之ID值与模块地址编号相同时, 则该模块将会接收控制器端所传送的数据,而模块响应时,也会传回相同的地址编号.

4.FC是通讯功能码(Function Code)和资料(DATA)有相关性,固定为一个 字节,这些资料请参考通讯协议表及相关说明. 5.错误讯息判断代码(Error Code)为两个字节,第一个字节为固定为 <0x0E> ,第二个字节为错误代码,请参考错误讯息代码表. 6.8 BITS BCC是所有字符的检查字段,为二个字节,有关 8 BITS BCC 的 信息和范例程序,请参考附录A. 7.RS485传输协议请设定为”E,8,1”,速率为”19200”. 错误讯息代码表(Error Code Table) ※ Error Code #1固定为 <0x0E>.

串口通讯协议

串口通讯协议 波特率9600,数据位8位,起始位1位,停止位2位,校验采用16位CRC校验,校验包括头部信息和数据。 帧定义: 主机发送事件数据定义

u16 const crc_table[256] = { 0x0000U, 0x1021U, 0x2042U, 0x3063U, 0x4084U, 0x50a5U, 0x60c6U, 0x70e7U, 0x8108U, 0x9129U, 0xa14aU, 0xb16bU, 0xc18cU, 0xd1adU, 0xe1ceU, 0xf1efU, 0x1231U, 0x0210U, 0x3273U, 0x2252U, 0x52b5U, 0x4294U, 0x72f7U, 0x62d6U, 0x9339U, 0x8318U, 0xb37bU, 0xa35aU, 0xd3bdU, 0xc39cU, 0xf3ffU, 0xe3deU, 0x2462U, 0x3443U, 0x0420U, 0x1401U, 0x64e6U, 0x74c7U, 0x44a4U, 0x5485U, 0xa56aU, 0xb54bU, 0x8528U, 0x9509U, 0xe5eeU, 0xf5cfU, 0xc5acU, 0xd58dU, 0x3653U, 0x2672U, 0x1611U, 0x0630U, 0x76d7U, 0x66f6U, 0x5695U, 0x46b4U, 0xb75bU, 0xa77aU, 0x9719U, 0x8738U, 0xf7dfU, 0xe7feU, 0xd79dU, 0xc7bcU, 0x48c4U, 0x58e5U, 0x6886U, 0x78a7U, 0x0840U, 0x1861U, 0x2802U, 0x3823U, 0xc9ccU, 0xd9edU, 0xe98eU, 0xf9afU, 0x8948U, 0x9969U, 0xa90aU, 0xb92bU, 0x5af5U, 0x4ad4U, 0x7ab7U, 0x6a96U, 0x1a71U, 0x0a50U, 0x3a33U, 0x2a12U, 0xdbfdU, 0xcbdcU, 0xfbbfU, 0xeb9eU, 0x9b79U, 0x8b58U, 0xbb3bU, 0xab1aU, 0x6ca6U, 0x7c87U, 0x4ce4U, 0x5cc5U, 0x2c22U, 0x3c03U, 0x0c60U, 0x1c41U, 0xedaeU, 0xfd8fU, 0xcdecU, 0xddcdU, 0xad2aU, 0xbd0bU, 0x8d68U, 0x9d49U, 0x7e97U, 0x6eb6U, 0x5ed5U, 0x4ef4U, 0x3e13U, 0x2e32U, 0x1e51U, 0x0e70U, 0xff9fU, 0xefbeU, 0xdfddU, 0xcffcU, 0xbf1bU, 0xaf3aU, 0x9f59U, 0x8f78U, 0x9188U, 0x81a9U, 0xb1caU, 0xa1ebU, 0xd10cU, 0xc12dU, 0xf14eU, 0xe16fU, 0x1080U, 0x00a1U, 0x30c2U, 0x20e3U, 0x5004U, 0x4025U, 0x7046U, 0x6067U, 0x83b9U, 0x9398U, 0xa3fbU, 0xb3daU, 0xc33dU, 0xd31cU, 0xe37fU, 0xf35eU, 0x02b1U, 0x1290U, 0x22f3U, 0x32d2U, 0x4235U, 0x5214U, 0x6277U, 0x7256U, 0xb5eaU, 0xa5cbU, 0x95a8U, 0x8589U, 0xf56eU, 0xe54fU, 0xd52cU, 0xc50dU, 0x34e2U, 0x24c3U, 0x14a0U, 0x0481U, 0x7466U, 0x6447U, 0x5424U, 0x4405U, 0xa7dbU, 0xb7faU, 0x8799U, 0x97b8U, 0xe75fU, 0xf77eU, 0xc71dU, 0xd73cU, 0x26d3U, 0x36f2U, 0x0691U, 0x16b0U, 0x6657U, 0x7676U, 0x4615U, 0x5634U, 0xd94cU, 0xc96dU, 0xf90eU, 0xe92fU, 0x99c8U, 0x89e9U, 0xb98aU, 0xa9abU, 0x5844U, 0x4865U, 0x7806U, 0x6827U, 0x18c0U, 0x08e1U, 0x3882U, 0x28a3U, 0xcb7dU, 0xdb5cU, 0xeb3fU, 0xfb1eU, 0x8bf9U, 0x9bd8U, 0xabbbU, 0xbb9aU, 0x4a75U, 0x5a54U, 0x6a37U, 0x7a16U, 0x0af1U, 0x1ad0U, 0x2ab3U, 0x3a92U, 0xfd2eU, 0xed0fU, 0xdd6cU, 0xcd4dU, 0xbdaaU, 0xad8bU, 0x9de8U, 0x8dc9U, 0x7c26U, 0x6c07U, 0x5c64U, 0x4c45U, 0x3ca2U, 0x2c83U, 0x1ce0U, 0x0cc1U, 0xef1fU, 0xff3eU, 0xcf5dU, 0xdf7cU, 0xaf9bU, 0xbfbaU, 0x8fd9U, 0x9ff8U, 0x6e17U, 0x7e36U, 0x4e55U, 0x5e74U, 0x2e93U, 0x3eb2U, 0x0ed1U, 0x1ef0U }; u16 crc16(u16 crc,const u8 *data, u32 len )len可以为u8,u16,u32 { while (len--) crc = crc_table[(crc >> 8 ^ *(data++)) & 0xffU] ^ (crc << 8); return crc; } 例:u8 *buf=”123456789”;

串口通信协议

串口通信协议 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。 什么是RS-232 RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。用于驱动和连线的改进,实际应用中RS-232的传输长度或者速度常常超过标准的值。RS-232只限于PC串口和设备间点对点的通信。RS-232串口通信最远距离是50英尺。 DB-9针连接头 9针串口连接口顺序图 从计算机连出的线的截面。 RS-232针脚的功能: 数据: TXD(pin 3):串口数据输出(Transmit Data) RXD(pin 2):串口数据输入(Receive Data) 握手: RTS(pin 7):发送数据请求(Request to Send) CTS(pin 8):清除发送(Clear to Send) DSR(pin 6):数据发送就绪(Data Send Ready) DCD(pin 1):数据载波检测(Data Carrier Detect) DTR(pin 4):数据终端就绪(Data Terminal Ready) 地线: GND(pin 5):地线 其他 RI(pin 9):铃声指示 什么是RS-422 RS-422(EIA RS-422-AStandard)是Apple的Macintosh计算机的串口连接标准。RS-422使用差分信号,RS-232使用非平衡参考地的信号。差分传输使用两根线

串口通讯—通信协议

串口通讯—串口通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,串口通信协议通常有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1、串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM 时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提出的串行通信接口基本任务的大部分工作,且都是可编程的。采用这些芯片作为串行通信接口电路的核心芯片,会使电路结构比较简单。

基于串口自定义协议的数据通信方式设计

基于串口自定义协议的数据通信方式设计 ?引言 计算机与计算机之间的数据交换不仅可以采用常用的通信协议进行联网方式交换,还可以采用串行通信方式或并行通信方式通过非常规的通信协议方式交换。不同安全等级的计算机之间需要进行数据传输(出于安全考虑,多数是从安全等级高的计算机向安全等级低的计算机单向传输数据) ,而不同安全等级的计算机是不允许进行直接网络连接的,由此设计了自定义通信协议下通过串行通信端口RS2232 实现处于不同安全等级的计算机之间进行数据传输。 1.RS232 串行端口 一组比特数据在多条线上同时被传送的传输方式被称为并行传输。在传输过程中各数据位可并行传送,传送速度快、效率高,多用于要求实时、快速的场合。但是有多少数据位就需要多少根数据线,传送成本高。而串行端口通信是数据通过一根传输线逐位传送,数据传送按位顺序进行,至少只需要一根传输线即可完成,节省传输线。由于串行通信方式使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用. 1.1 RS 2232 端口简介 RS232 串行通信端口属于PC 机(个人计算机)及电信应用领域中最为成功的串行数据标准。它被定义为一种在低速率串行通信中增加通信距离的单端标准,是目前PC 机与通信工业中应用最广泛的一种串行通信接口。现在的PC机一般有1 到2 个串行通信端口COM1 及COM2 ,这些串行通信端口均为9 个引脚,即异步通信的9 个信号。在通信速率低于20 kbit / s时,与其直接连接的电缆最大物理距离为15 m(即直接传输距离) 。RS232 标准规定,若不使用Modem ,在码元畸变小于4 %的情况下,数据终端设备(DTE)和数据通信设备(DCE)之间最大传输距离为15 m。一般应用中当通信距离小于12 m 时,可以用电缆线直接连接标准RS232 端口。若距离较远, 须附加调制解调器(Modem) 。本方案中传输数据的2 台计算机距离很近,采用最基本的接法,将RS232 端口的关键引脚直接用电缆线相连。 RS2232 端口引脚说明见表1。

串口通信协议程序

主机程序: /* 主机主要处理: 主—>从 1.给从机发送命令 2.给从机发送数据 3.命令从机向主机发送数据 从—>主由中断程序处理根据从机发送过来的请求类型 0.请求主机发送命令(包括主到从的1,2命令) 1.请求主机接收数据 2,3保留 */ #include #include #define uchar unsigned char #define uint unsigned int #define slav1_addr 0x01 #define slav2_addr 0x02 #define COMEND 0 #define REC_DATE 1 //主机向从机发送多数据命令高四位为1111,所以其他命令高四位不能为1111 #define cmd_X 0x12 #define cmd_rec_data 0x11 sbit signal=P3^2; uchar temp_addr,num,rec,style,re_addr; uchar buf[20]; uchar rec_data[10]; void delay(unsigned int i) { while(i--); } void init_uart(void) { TMOD=0x20; //定时器方式2--8位reload模式 TH1=0xfd; TL1=0xfd; PCON=0; //波特率不加倍 SCON=0xf0; //方式三 TB8=1; //发送地址时第九位为1 SM2=1; //接收到第九位为1时才能接收数据

TR1=1; //要在设置scon后开定时 ES=1; //开中断 EA=1; } //发送命令 void uart_send_cmd(uchar addr,uchar cmd)//uchar *date) { while(signal==0); //检查总线是否被占 signal=0; //占用总线 EA=0;//关中断 do { do { SBUF=addr; //发送从机地址 while(TI!=1); TI=0; } while(RI!=1); //一直等待从机响应 //while循环里可加入出错处理temp_addr=SBUF; RI=0; } while(temp_addr!=addr); //一直等到从机回应的地址相同 //while循环里可加入出错处理 TB8=0; //发送数据第9位为0 // SM2=0; // 接收到第九位为1时才置位RI //每次一个数据 SBUF=cmd; while(TI!=1); TI=0; TB8=1; // SM2=1; RI=0; TI=0; //不处理期间发生的中断 EA=1; signal=1; //释放总线 }

串口通信协议

1 串口 串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal SerialBus或者USB混淆)。 2 串行通信的传输方向 2.1 单工 单工是指数据传输仅能沿一个方向,不能实现反向传输。 2.2 半双工 半双工是指数据传输可以沿两个方向,但需要分时进行。 2.3 全双工 全双工是指数据可以同时进行双向传输。 单工半双工全双工 3 重要参数 串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配。 3.1 波特率 这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。 常用的波特率有,1200,2400,4800,9600,19200,38400,115200等。 3.2 数据位 这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。

串口通信协议

标签:RS232RS485串口协议比较 串口通信协议比较 串口通信协议主要有RS232、RS422 、RS485。下面将从其发展历史、各自特点来介绍各种协议,RS232和RS485的区别和接法。 首先是发展历史。最开始出现的串口通信协议是RS232,1962年发布的。由于其传输速度、单向传递、传输距离短等多方面的制约,因此使用受到限制。于是人们在RS232的基础上做了相应的改进,提高了相应的传输速度、传输距离,于是出现了RS422的雏形,并在工业上得到了相应的应用。但由于任然是单向传输的,使构成的网络只能是单向的。既只能是主机给从机发送指令或数据,从机只能接受并处理相应的消息,不能反映相应的结果。于是人们又做了相应的调整。最后于1983年发布了RS485通信协议。 正如前面所说的。RS232协议是一种简单的串口通信协议,也是最基本的。一般用在实验室等短距离、对传输速度等要求不高的场合,并且与TTL电平不兼容。 RS422有了相应的提高。是一种单机发送,多机接收的平衡通信协议接口,传输速度最高可以达到10Mbps,传输距离最远可达到4000英尺,并且在这条平衡总线上能最多带10个从机,但是任然是单向的传输。 RS485是一种多点,双向通信的平衡通信协议接口。再RS422的基础上增加了网络中接点(多机)的数量和双向通信能力,同时还增加了驱动器的传输能力和冲突保护特性,扩展了总线共模范围。传输速度最高可以达到10Mbps,标准距离可以达到4000英尺,实际能达到3000米,并且在这条线上最多可以带128个收发器。 RS232和RS485的区别: 1.传输速度不同。RS485可以达到10Mbps,高于RS232的速度。 2.电气特性不同。RS485采用的是平衡驱动器和差分接收器的组合。RS485 是输出的是差分信号,抗共模干扰能力强。逻辑“1”是两输出信号的+(2~6)V,“0”是-(2~6)V表示。电气信号低于RS232的电气信号,不容易损坏接口芯片,并且与TTL电平兼容。 3.传输距离不同。RS485标准距离为4000英尺,实际可以达到3000米。远远大于RS232的距离。 4.接收器数量不同。RS485接收器最多可以达到128个,即多站能力。而RS232只能是一个,即单站接点。

SPI串行通信协议

SPI串行通信协议 同步串行外设接口(S PI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。 SPI(Serial Peripheral Interface)是一种串行串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。 总线协议 该总线通信基于主-从(所有的串行的总线均是这样,USB,IIC,SPI等)配置,而且下面提到的方向性的操作合指代全部从主设备的角度说得。它有以下4个信号: MOSI:主出/从入 MISO:主入/从出 SCK:串行时钟 SS:从属选择;芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。 在SPI传输中,数据是同步进行发送和接收的。数据传输的时钟基于来自主处理器的时钟脉冲(好像也可以是IO上的电平的模拟时钟),摩托罗拉没有定义任何通用SPI的时钟规范。然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。CPOL和CPHA的设置决定了数据取样的时钟沿。 数据方向和通信速度 SPI传输串行数据时首先传输最高位。波特率可以高达5Mbps,具体速度大小取决于SPI硬件。例如,Xicor公司的SPI 串行器件传输速度能达到5MHz。 SPI总线接口及时序 SPI总线包括1根串行同步时钟信号线以及2根数据线。 SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。SPI接口时序如图3、图4所示。

串口通信协议程序

串口通信协议程序 主机程序: /* 主机主要处理 : 主—>从 1.给从机发送命令 2.给从机发送数据 3.命令从机向主机发送数据 从—>主由中断程序处理根据从机发送过来的请求类型 0.请求主机发送命令(包括主到从的1,2命令) 1.请求主机接收数据 2,3保留 */ #include #include #define uchar unsigned char #define uint unsigned int #define slav1_addr 0x01 #define slav2_addr 0x02 #define COMEND 0 #define REC_DATE 1 //主机向从机发送多数据命令高四位为1111,所以其他命令高四位不能为1111 #define cmd_X 0x12 #define cmd_rec_data 0x11 sbit signal=P3^2; uchar temp_addr,num,rec,style,re_addr; uchar buf[20]; uchar rec_data[10];

void delay(unsigned int i) { while(i--); } void init_uart(void) { TMOD=0x20; //定时器方式2--8位reload模式 TH1=0xfd; TL1=0xfd; PCON=0; //波特率不加倍 SCON=0xf0; //方式三 TB8=1; //发送地址时第九位为1 SM2=1; //接收到第九位为1时才能接收数据 TR1=1; //要在设置scon后开定时 ES=1; //开中断 EA=1; } //发送命令 void uart_send_cmd(uchar addr,uchar cmd)//uchar *date) { while(signal==0); //检查总线是否被占 signal=0; //占用总线 EA=0;//关中断 do {

SPI串口通信协议

SPI串口通信协议 1.1 SPI串口通信介绍 SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出

STMZET6与S7-1200自定义通信协议实现串行通信

摘要:针对现有潜水器模拟装置数据采集和处理方法单一、故障率高、通讯系统复杂的不足。介绍了STM32单片机与西门子S7-1200系列PLC 实现远距离自定义通信协议的串行通信的硬件连接和软件实现方法;重点阐述了自定义通信协议的实现。该方案已实际应用于潜水器模拟控制平台项目中;实现了系统交互式通信。 关键词:PLC ,单片机,通信协议,串行通信 Abstract 押This paper introduces the hardware connection and software realization method of serial communication between STM32MCU and SIEMENS S7-1200series PLC.Focuses on the implementation of the custom communication protocol.This scheme has been applied to the submarine simulation control platform project.It realizes the system interactive communication. Keywords 押PLC熏MCU熏communication protocol熏serial communication 传统的潜水器模拟装置控制系统存在以下两个不足:一是数据采集和处理方式单一,故障率高;二是通讯系统逻辑层次凌乱,没有统一标准。能够解决上述问题意义重大。因此本文采用单片机和PLC 的相互配合,扩展控制功能,实现对系统的综合控制。下面以西门子PLC S7-1200系列与STM32单片机的通信为例,阐述自定义通信协议的实现方法。1硬件设计 1.1STM32单片机 ST 公司的STM32单片机的优异性体现在以下几个方面:价格低廉、外设较多、开发成本极低以及杰出的功耗控制等。STM32的串口资源相当丰富,功能也相当强大。本文所使用的STM32F103ZET6型号开发板最多可提供5路串口,有分数波特率发生器、支持同步单线通信和半双工单线通讯等。采用串口2来实现串行通信所需的两条引脚是PA2和PA3,通过STM32的PG9控制MAX485E 的收发以及三极管的基极。当PG9=0时,为接收模式;当PG9=1时,为发送模式。1.2S7-1200系列PLC 西门子公司S7-1200系列PLC 通过增添通信模块CM1241(RS422/485)实现串行通信,本文采用RS-485接口标准,接收差模信号,可以组成半双工串行通信网络。S7-1200采用自由端口模式协议,协议通过在软件中配置消息接收的格式和编程实现。通过单片机与PLC 的配合实现自定义协议通信,在传送大量数据时是很方便的。1.3MAX485E 芯片 MAX485E 采用半双工通讯方式,它实现TTL 电平转换为RS-485电平的功能。MAX485E 芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。RO 和DI 端分别为接收器的输出和驱动器的输入端,与STM32的串口2的PA2和PA3相连即可;接收和发送的使能端分别为/RE 和DE 端,当/RE 为逻辑0时,MAX485E 处于接收状态;当DE 为逻辑1时,MAX485E 处于发送状态。因为MAX485工作在半双工状态,所以只需用STM32的PG9控制这两个引脚即可。同时需在A 和B 端之间加匹配电阻,一般可选120赘的电阻。1.4S9013三极管 S9013是一种NPN 型小功率三极管。S9013NPN 三极管主要用途:音频放大、推挽输出以及开关等。本文中采用单片机 来控制PLC ,但是单片机的管脚最大输出电压只有3.3V ,不足以控制PLC 的IO 口。采用图1的接法(共发射极)能够放大电压起到开关的作用从而控制PLC 的IO 口。 图1信号转换电路 2通信系统设计 为了提高通讯的实时性及可靠性,除了改变传输的波特率以外,还应尽量减小每个通信周期传送的数据量。制定用户通信协议的核心是合理安排数据结构,使频率变化高的数据在每个通信周期内都能及时传输,而频率变化低的数据只有在变化稳定后方可进行传输[1-3]。2.1通信协议设计 单片机使用串口2进行异步发送和接收,协议用C 语言编程实现。一次发送的一组数据作帧,每帧数据最多可由30个字符组成,考虑到传输数据量较大,本文一次传送16个字符,且采用多次传送方式。单片机发送的命令的具体格式如下:1)起始符占一个字符,设置为6A (可任意配置);2)标识符占一个字符,用于区分多组数据;3)数据占12个字符,存储需要发送的数据; 4)校验符占一个字符,校验发送的数据是否正确;5)结束符占一个字符,设置为1C (可任意配置)。 PLC 采用自由口通信模式,可以实现用户自定义通信协议。本文中PLC 接收消息开始字符设置成6A ,接收数据的长度为16个字符,消息结束字符为1C ,配置如图2、图3所示。这样配置刚好与单片机所发送的数据相对应。 STMZET6与S7-1200自定义通信协议实现串行通信 张 堃1牟少芳1刘晓杰2丁新平1张民1 (1青岛理工大学自动化工程学院,山东青岛266520;2中石油华北油田华港燃气集团有限公司,河北任丘062552) STMZET6and S7-1200Custom Communication Protocol to Achieve Serial Communication STMZET6与S7-1200自定义通信协议实现串行通信 104

相关文档